Strain and stress tensors in spherical coordinates
|
|
- Λουκιανός Μακρής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian coodinates. Click hee to download the woksheet file (ipynb fomat). To un it, you must stat Saeath with the Jupyte notebook, via the command sae -n jupyte NB: a vesion of Saeath at least equal to 7.5 is equied to un this woksheet: In []: Out[]: vesion() 'Saeath vesion 7.5., Release Date: ' Fist we set up the notebook to display mathematical objects usin LaTeX endein: In []: %display latex Euclidean -space and spheical coodinates We intoduce the Euclidean space as a -dimensional diffeentiable manifold: In []: anifold(, '', stat_index) pint() -dimensional diffeentiable manifold (, θ, ϕ) We shall make use of spheical coodinates : In [4]: sphe.<,th,ph>.chat(':(0,oo) th:(0,pi):\theta ph:(0,*pi):\phi ') pint(sphe) sphe Chat (, (, th, ph)) Out[4]: (, (, θ, ϕ)) Spheical coodinates do not fom a eula coodinate system of the Euclidean space. So declain that they span means that, stictly speakin, the manifold is not the whole Euclidean space, but the Euclidean space minus some half plane (the azimuthal oiin). Howeve, in this woksheet, this diffeence will not matte. The natual vecto fame of spheical coodinates is In [5]: Out[5]: sphe.fame() (, (,, ))
2 Saeanifolds.0 We shall expand vecto and tenso fields on the othonomal fame spheical coodinates, which is elated to the natual fame means of the followin field of automophisms: ( e, e, e ) (/, /, /) associated with displayed above by In [6]: Out[6]: to_othonomal.automophism_field() to_othonomal[,] to_othonomal[,] / to_othonomal[,] /(*sin(th)) to_othonomal.display() d dθ dϕ In othe wods, the chane-of-basis matix is In [7]: Out[7]: to_othonomal[:] We constuct the othonomal fame fom the natual fame of spheical coodinates by this chane of basis: In [8]: e sphe.fame().new_fame(to_othonomal, 'e') e Out[8]: (, ( e, e, e )) In [9]: Out[9]: In [0]: Out[0]: In []: Out[]: e[].display() e e[].display() e e[].display() e At this stae, the default vecto fame on spheical coodinates: is the fist one intoduced, namely the natual fame of In []: Out[]:.default_fame() (, (,, )) Since we pefe the othonomal fame, we declae In []:.set_default_fame(e)
3 Saeanifolds.0 Then, by default, all vecto and tenso fields ae displayed with espect to that fame: In [4]: Out[4]: e e e[].display() To et the same output as in Out[0], one should specify the fame fo display, since this is no lone the default one: In [5]: Out[5]: e[].display(sphe.fame()) e Displacement vecto and stain tenso Let us define the displacement vecto in tems of its components w..t. the othonomal spheical fame: In [6]:.vecto_field(name'') [:] [function('_')(,th,ph), function('_')(,th,ph), function('_')(,th,ph)].display() Out[6]: (, θ, ϕ) e (, θ, ϕ) e (, θ, ϕ) e The followin computations will involve the metic of the Euclidean space. At the cuent stae of Saeanifolds, we need to intoduce it explicitly, as a Riemannian metic on the manifold futue vesion of Saeanifolds, one shall to declae manifold, so that it will come equipped with ): (in a as an Euclidean space, and not meely as a In [7]:.iemannian_metic('') pint() Riemannian metic on the -dimensional diffeentiable manifold e dia(,, ) Since is supposed to be an othonomal fame, we declae that the components of with espect to it ae : In [8]: [,], [,], [,],,.display() Out[8]: e e e e e e The expession of with espect to the natual fame of spheical coodinates is then In [9]:.display(sphe.fame()) Out[9]: d d dθ dθ sin (θ) dϕ dϕ The covaiant deivative opeato is intoduced as the (Levi-Civita) connection associated with :
4 Saeanifolds.0 In [0]: nabla.connection() pint(nabla) nabla Levi-Civita connection nabla_ associated with the Riemannian metic on the -dimensional diffeentiable manifold Out[0]: The connection coefficients with espect to the spheical othonomal fame e ae In []: nabla.display() Out[]: Γ Γ Γ Γ Γ Γ cos(θ) cos(θ) while those with espect to the natual fame of spheical coodinates (Chistoffel symbols) ae: In []: Out[]: nabla.display(sphe.fame()) Γ θ θ Γ ϕ ϕ Γ θ θ Γ θ θ Γ θ ϕ ϕ Γ ϕ ϕ Γ ϕ θ ϕ Γ ϕ ϕ Γ ϕ ϕ θ sin (θ) cos(θ) sin(θ) cos(θ) sin(θ) cos(θ) sin(θ) The covaiant deivative of the displacement vecto is In []: nab nabla() pint(nab) Tenso field nabla_() of type (,) on the -dimensional diffeentiab le manifold 4
5 Saeanifolds.0 In [4]: Out[4]: nab.display() e (, θ, ϕ) e ( e ) e (, θ, ϕ) sin(θ) e e e e (, θ, ϕ) (, θ, ϕ) cos(θ) e e ( ) e e We convet it to a tenso field of type (0,) (i.e. a bilinea fom) by lowein the uppe index with : e e e e (, θ, ϕ) cos(θ) (, θ, ϕ) sin(θ) e e In [5]: nab_fom nab.down() pint(nab_fom) Tenso field of type (0,) on the -dimensional diffeentiable manifold In [6]: Out[6]: nab_fom.display() (, θ, ϕ) e e ( e ) e (, θ, ϕ) sin(θ) e e e e (, θ, ϕ) (, θ, ϕ) cos(θ) e e ( ) e e ε e e e e (, θ, ϕ) cos(θ) (, θ, ϕ) sin(θ) e e The stain tenso is defined as the symmetized pat of this tenso: In [7]: E nab_fom.symmetize() pint(e) Field of symmetic bilinea foms on the -dimensional diffeentiable m anifold 5
6 Saeanifolds.0 In [8]: E.set_name('E', latex_name'\vaepsilon') E.display() Out[8]: (, θ, ϕ) ε e e e e ( ) ( (, θ, ϕ)) sin(θ) e e (, θ, ϕ) (, θ, ϕ) e e e e ( ) ( ) (, θ, ϕ) cos(θ) sin(θ) e e ( (, θ, ϕ)) sin(θ) e e (, θ, ϕ) cos(θ) sin(θ) e e (, θ, ϕ) cos(θ) (, θ, ϕ) sin(θ) e e ε Let us display the components of, skippin those that can be deduced by symmety: In [9]: E.display_comp(only_nonedundantTue) Out[9]: ε ε ε ε ε ε (,θ,ϕ) ( (,θ,ϕ) ) sin(θ) (,θ,ϕ) (,θ,ϕ) cos(θ)sin(θ) (,θ,ϕ) cos(θ) (,θ,ϕ) sin(θ) Stess tenso and Hooke's law To fom the stess tenso accodin to Hooke's law, we intoduce fist the Lamé constants: In [0]: Out[0]: va('ll', latex_name'\lambda') λ 6
7 Saeanifolds.0 In []: Out[]: va('mu', latex_name'\mu') μ The tace (with espect to ) of the bilinea fom means of and (ii) by takin the tace of the esultin endomophism: ε is obtained by (i) aisin the fist index (pos0) by In []: te E.up(, pos0).tace() pint(te) Scala field on the -dimensional diffeentiable manifold In []: Out[]: te.display() (, θ, ϕ) R (,θ,ϕ) cos(θ) ( (,θ,ϕ) ) sin(θ) S The stess tenso is obtained via Hooke's law fo isotopic mateial: S λ tε μ ε In [4]: S ll*te* *mu*e pint(s) Field of symmetic bilinea foms on the -dimensional diffeentiable m anifold 7
8 Saeanifolds.0 In [5]: Out[5]: S.set_name('S') S.display() S λ (, θ, ϕ) cos(θ) ((λ μ) λ (, θ, ϕ) λ ) sin(θ) λ μ μ (, θ, ϕ) μ e e e ( ) (μ μ (, θ, ϕ)) sin(θ) μ e e μ μ (, θ, ϕ) μ e e ( ) λ (, θ, ϕ) cos(θ) (λ (λ μ) (, θ, ϕ) (λ μ) ) sin(θ) λ μ (, θ, ϕ) cos(θ) μ sin(θ) μ e e e (μ μ (, θ, ϕ)) sin(θ) μ e e μ (, θ, ϕ) cos(θ) μ sin(θ) μ e e (λ μ) (, θ, ϕ) cos(θ) (λ (λ μ) (, θ, ϕ) λ ) sin(θ) (λ μ) e e e e 8
9 Saeanifolds.0 In [6]: S.display_comp(only_nonedundantTue) Out[6]: S λ (,θ,ϕ) cos(θ) ( (λ μ) λ (,θ,ϕ)λ ) sin(θ)λ S μ μ (,θ,ϕ)μ S ( μ μ (,θ,ϕ) ) sin(θ)μ S λ (,θ,ϕ) cos(θ) ( λ (λμ) (,θ,ϕ)(λ μ) ) sin(θ)λ S μ (,θ,ϕ) cos(θ)μ sin(θ) μ S (λ μ) (,θ,ϕ) cos(θ) ( λ (λμ) (,θ,ϕ)λ ) sin(θ)(λ μ) Each component can be accessed individually: In [7]: S[,] Out[7]: μ μ (, θ, ϕ) μ Diveence of the stess tenso j S j i The diveence of the stess tenso (with espect to ) is the -fom: f i In a next vesion of Saeanifolds, thee will be a function diveence(). Fo the moment, to f S j i S evaluate, we fist fom the tenso by aisin the fist index (pos0) of with : In [8]: S S.up(, pos0) pint(s) Tenso field of type (,) on the -dimensional diffeentiable manifold The diveence is obtained by takin the tace on the fist index (0) and the thid one () of the tenso ( S) j ik k S j i : In [9]: divs nabla(s).tace(0,) pint(divs) -fom on the -dimensional diffeentiable manifold 9
10 Saeanifolds.0 In [40]: Out[40]: divs.set_name('f') divs.display() f ((λ μ) (λ μ) (λ μ) (λ μ) (, θ, ϕ) sin μ (λ μ) ) (θ) ( (λ μ) ((λ μ) (λ μ) (, θ, ϕ) μ ) cos(θ) sin (λ μ) ) (θ) μ sin (θ) ( μ (λ μ) μ (λ μ) (λ μ) ) sin (θ) (λ μ) cos(θ) (λ μ) (, θ, ϕ) ( (λ μ) cos(θ) (λ μ) ) sin(θ) μ sin (θ) ( μ μ μ ) sin (θ) (λ μ) cos(θ) μ (, θ, ϕ) ( (λ μ) μ cos(θ) (λ μ) (λ μ) ) sin(θ) (λ μ) sin (θ) e 0
11 Saeanifolds.0 In [4]: Out[4]: divs.display_comp() ( (λ μ) (λ μ) (λμ) (λ μ) (,θ,ϕ)μ (λ μ) ) sin (θ) f f f ( (λμ) ( (λμ) (λ μ) (,θ,ϕ)μ ) cos(θ)(λ μ) ) sin(θ)μ sin (θ) ( μ (λμ) μ (λ μ) (λ μ) sin (λ μ) cos(θ) ) (λ μ) (,θ,ϕ) ( (λ μ) cos(θ) (λμ) sin (θ) ) sin(θ)μ (θ) ( μ μ μ sin (λ μ) cos(θ) μ (,θ,ϕ) ) (θ) ( (λμ) μ cos(θ) (λ μ) (λμ) sin (θ) sin(θ)(λ μ) ) Note that f is quite badly displayed. We et a bette view by displayin the components one by one: In [4]: Out[4]: divs[] ((λ μ) (λ μ) (λ μ) (λ μ) (, θ, ϕ) sin μ (λ μ) ) (θ) ( (λ μ) ((λ μ) (λ μ) (, θ, ϕ) μ ) cos(θ) sin (λ μ) ) (θ) μ sin (θ) In [4]: Out[4]: In [44]: divs[] ( μ (λ μ) μ (λ μ) (λ μ) ) sin (θ) divs[] (λ μ) cos(θ) (λ μ) (, θ, ϕ) ( (λ μ) cos(θ) (λ μ) ) sin(θ) μ sin (θ) Out[44]: ( μ μ μ ) sin (θ) (λ μ) cos(θ) μ (, θ, ϕ) ( (λ μ) μ cos(θ) (λ μ) (λ μ) ) sin(θ) (λ μ) sin (θ)
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
r = x 2 + y 2 and h = z y = r sin sin ϕ
Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics
I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized
Schwarzschild spacetime
SageManifolds. Schwazschild spacetime This woksheet demonstates a few capabilities of SageManifolds vesion., as included in SageMath 7.5) in computations egading Schwazschild spacetime. Click hee to download
Fundamental Equations of Fluid Mechanics
Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.
4.2 Differential Equations in Polar Coordinates
Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
The Laplacian in Spherical Polar Coordinates
Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Curvilinear Systems of Coordinates
A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce
Solutions Ph 236a Week 2
Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2
Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
General Relativity (225A) Fall 2013 Assignment 5 Solutions
Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor
VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST
Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Lecture VI: Tensor calculus
Lectue VI: Tenso calculus Chistophe M. Hiata Caltech M/C 350-7, Pasadena CA 925, USA (Dated: Octobe 4, 20) I. OVERVIEW In this lectue, we will begin with some examples fom vecto calculus, and then continue
ANTENNAS and WAVE PROPAGATION. Solution Manual
ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
1 Full derivation of the Schwarzschild solution
EPGY Summe Institute SRGR Gay Oas 1 Full deivation of the Schwazschild solution The goal of this document is to povide a full, thooughly detailed deivation of the Schwazschild solution. Much of the diffeential
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d
PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by
5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Chapter 7a. Elements of Elasticity, Thermal Stresses
Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook
Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook Βήμα 1: Step 1: Βρείτε το βιβλίο που θα θέλατε να αγοράσετε και πατήστε Add to Cart, για να το προσθέσετε στο καλάθι σας. Αυτόματα θα
CYTA Cloud Server Set Up Instructions
CYTA Cloud Server Set Up Instructions ΕΛΛΗΝΙΚΑ ENGLISH Initial Set-up Cloud Server To proceed with the initial setup of your Cloud Server first login to the Cyta CloudMarketPlace on https://cloudmarketplace.cyta.com.cy
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!
VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης
Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
How to register an account with the Hellenic Community of Sheffield.
How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click
1 3D Helmholtz Equation
Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx