ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ"

Transcript

1 ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ B ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

2 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Δείκτες Επιτυχίας Επίπεδο Δραστηριοτήτων Δείκτες Επάρκειας Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς μέχρι το 100. Αρ1.4 Αναπαριστούν αριθμούς μέχρι το 100 λεκτικά, συμβολικά ή με τη χρήση υλικών, όπως ζάρια, αριθμητήριο, κύβους unifix/dienes και εφαρμογιδίων. Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το Αρ2.3 Αναπαριστούν τους φυσικούς αριθμούς μέχρι το 1000, Προαπαιτούμενες Γνώσεις: Αναγνώριση και αναπαράσταση αριθμών μέχρι το 100 Σύγκριση και διάταξη αριθμών μέχρι το 100 Νέες Έννοιες: Απαγγελία, αναγνώριση και αναπαράσταση αριθμών μέχρι το 1000 λεκτικά, εικονικά και συμβολικά Εκτίμηση πληθικού αριθμού συνόλου μέχρι το 100 Σύγκριση και διάταξη αριθμών μέχρι το Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να απαγγέλλουν αριθμούς: μέχρι το , 5-5, μέχρι το Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να αναπαριστούν τους αριθμούς μέχρι το 1000, λεκτικά, εικονικά και συμβολικά και με τη χρήση υλικών (π.χ. Dienes, αριθμητήρια, εφαρμογίδια). ΜΠ1 Κατανόηση μέσω προβλήματος Διαβάζω και κατανοώ το πρόβλημα, σκέφτομαι πώς θα το λύσω και ελέγχω κατά πόσο η απάντησή μου είναι λογική. Παράδειγμα: Η Μελίνα σκέφτεται έναν αριθμό μεγαλύτερο από το 60 και μικρότερο από το 70. Όταν μετρήσει δύο-δύο, περισσεύει πάντα ένα. Όταν μετρήσει πέντε-πέντε, περισσεύουν πάντα δύο. Ποιος μπορεί να είναι ο αριθμός που σκέφτεται η Μελίνα; Ποιοι αριθμοί βρίσκονται μεταξύ του 60 και του 70; Ποιους από αυτούς τους αριθμούς τους συναντώ όταν μετρήσω 2-2; Ποιους από αυτούς τους αριθμούς τους συναντώ όταν μετρήσω 5-5; ΜΠ2 Ποσοτική και αφηρημένη σκέψη Κατανοώ τη σημασία των ποσοτήτων και δίνω έμφαση στη δημιουργία αναπαραστάσεων αριθμών με διαφορετικούς τρόπους Παράδειγμα: Να δείξεις στο διάγραμμα τον αριθμό 241, με διαφορετικούς τρόπους.

3 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ χρησιμοποιώντας υλικά, όπως κύβους Dienes, αριθμητήρια, εφαρμογίδια, λέξεις και σύμβολα. Αρ2.10 Χρησιμοποιούν διάφορους τρόπους εκτίμησης του πληθικού αριθμού ενός συνόλου. 3. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες, ώστε οι μαθητές να εκτιμούν τον πληθικό αριθμό ενός συνόλου μέχρι 100 στοιχεία. 4. Οι εκπαιδευτικοί, χρησιμοποιώντας εποπτικά μέσα ή εφαρμογίδια, βοηθούν τους μαθητές να σειροθετούν και να συγκρίνουν αριθμούς μέχρι το 1000 χρησιμοποιώντας τα σύμβολα =, <, >. Παράδειγμα απαγγελίας αριθμών: Να συμπληρώσεις τα βαγόνια του τρένου, προσθέτοντας κάθε φορά Ποιες λέξεις, σύμβολα ή συμβολικές εκφράσεις θα μπορούσα να γράψω; Τι σχέδια θα μπορούσα να κάνω για να δείξω τον αριθμό; 267 ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Παράδειγμα αναπαράστασης αριθμών μέχρι το 1000: Να χρησιμοποιήσεις το υλικό Dienes για να αναπαραστήσεις τους αριθμούς 127 και τριακόσια σαράντα δύο. Χρησιμοποιώ τα εργαλεία (υλικό Dienes) των μαθηματικών, για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Να χρησιμοποιήσεις 5 κομμάτια του υλικού Dienes (δεκάδες και μονάδες) και να φτιάξεις το μεγαλύτερο και τον μικρότερο διψήφιο αριθμό που μπορείς. Παράδειγμα εκτίμησης πληθικού αριθμού συνόλου μέχρι το 100: Να εκτιμήσεις και να γράψεις πόσες είναι οι φράουλες. Ποιους διψήφιους αριθμούς μπορώ να φτιάξω με 5 κομμάτια του υλικού Dienes; Πόσα κομμάτια από το κάθε είδος πρέπει να πάρω ώστε να φτιάξω τον μεγαλύτερο και τον μικρότερο διψήφιο αριθμό; 10 φράουλες

4 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Παραδείγματα σύγκρισης και διάταξης αριθμών: Να χρησιμοποιήσεις τα ψηφία 2, 3, 6, 7, μία φορά το καθένα, για να σχηματίσεις διψήφιους αριθμούς και να τους τοποθετήσεις στην πιο κάτω αριθμητική γραμμή. ΜΠ7 Δομή των μαθηματικών Διακρίνω και κατανοώ πώς οι αριθμοί είναι οργανωμένοι και αποτελούν μέρος ενός συνόλου. Αντιλαμβάνομαι τον τρόπο γραφής του δεκαδικού συστήματος και τις σχέσεις των αριθμών όπως φαίνονται οργανωμένοι στον πίνακα του 100. Να συμπληρώσεις τους αριθμούς 41, 51, 25, 54. < < < Παράδειγμα: Να ενώσεις τα πιο κάτω κομμάτια για να φτιάξεις τον πίνακα του 100. Αρ1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες και σύμβολα. Προαπαιτούμενες Γνώσεις: Σύνθεση και ανάλυση αριθμών μέχρι το 20 Νέες Έννοιες: Σύνθεση και ανάλυση αριθμών μέχρι το Ποια μοτίβα παρατηρώ στον πίνακα; Πώς μπορώ να ενώσω τα κομμάτια ώστε τα μοτίβα να συνεχίζονται; Από πού είναι πιο εύκολο να ξεκινήσω;

5 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Αρ2.4 Αναλύουν και συνθέτουν με διαφορετικούς τρόπους αριθμούς μέχρι το (με έμφαση μέχρι το 100) Αξία θέσης ψηφίου (εκατοντάδες, δεκάδες, μονάδες) 1. Οι εκπαιδευτικοί μέσω δραστηριοτήτων δίνουν ιδιαίτερη έμφαση στην ανάλυση και σύνθεση αριθμών μικρότερων του 100 με περισσότερους από έναν τρόπους. 2. Οι εκπαιδευτικοί, με τη χρήση του υλικού Dienes αναπτύσσουν δραστηριότητες, ώστε οι μαθητές να κατανοήσουν την αξία θέσης ψηφίου στους τριψήφιους αριθμούς. Παραδείγματα σύνθεσης και ανάλυσης αριθμών: Να χρωματίσεις με το ίδιο χρώμα τις κάρτες που αναπαριστούν τον ίδιο αριθμό Παράδειγμα αξίας θέσης ψηφίου: Να γράψεις την αξία των ψηφίων 1, 3 και 4 στους πιο κάτω αριθμούς.

6 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Αρ1.11 Εκτιμούν και υπολογίζουν το αποτέλεσμα μαθηματικών προτάσεων πρόσθεσης και αφαίρεσης με αριθμούς μέχρι το 20. Αρ1.12 Υπολογίζουν το άθροισμα και τη διαφορά αριθμών εντός της δεκάδας και αριθμών πολλαπλασίων του δέκα μέχρι το 100. Προαπαιτούμενες Γνώσεις: Πρόσθεση και αφαίρεση μέχρι το 10 με ευχέρεια Πρόσθεση και αφαίρεση μέχρι το 20 με στρατηγικές Πρόσθεση και αφαίρεση πολλαπλασίων του 10 μέχρι το 100 Νέες Έννοιες: Πρόσθεση και αφαίρεση μέχρι το 20 με ευχέρεια Πρόσθεση και αφαίρεση μέχρι το 100 με στρατηγικές Κατακόρυφος αλγόριθμος της πρόσθεσης μέχρι το 100 Πρόσθεση και αφαίρεση πολλαπλασίων του 10 μέχρι το 1000 ΜΠ1 Κατανόηση μέσω προβλήματος Διαβάζω το πρόβλημα, σκέφτομαι πώς θα το λύσω και ελέγχω κατά πόσο η απάντησή μου είναι λογική. Παράδειγμα: Ο Κώστας και ο Βασίλης παίζουν ένα ηλεκτρονικό παιχνίδι. Νικητής του παιχνιδιού είναι εκείνος που συγκεντρώνει συνολικά τους περισσότερους βαθμούς. Ο πιο κάτω πίνακας δείχνει πόσους βαθμούς συγκέντρωσε ο καθένας σε κάθε γύρο του παιχνιδιού. Βαθμολογία Παίκτης Κώστας Βασίλης 1 ος γύρος ος γύρος ος γύρος Ποιος νίκησε στο παιχνίδι και με πόσους βαθμούς διαφορά. Τι μπορώ να κάνω για να βρω τον νικητή; Ποιες μαθηματικές προτάσεις μπορώ να γράψω που θα με βοηθήσουν να λύσω το πρόβλημα;

7 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ 1. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να εφαρμόζουν με ευχέρεια πράξεις πρόσθεσης και αφαίρεσης μέχρι το 20 (νοεροί υπολογισμοί). 2. Οι εκπαιδευτικοί χρησιμοποιούν κατάλληλες δραστηριότητες, ώστε οι μαθητές να κάνουν νοερούς υπολογισμούς πρόσθεσης (διψήφιων αριθμών χωρίς και με υπερπήδηση δεκάδας) και αφαίρεσης (διψήφιων αριθμών χωρίς χάλασμα δεκάδας και μονοψήφιου από διψήφιο με χάλασμα δεκάδας) χρησιμοποιώντας στρατηγικές που βασίζονται: στην ανάλυση αριθμών (π.χ., = = 87, ή 93 4 = = 90 1 = 89) στη συμπλήρωση της δεκάδας για να προσθέσουν (π.χ., = = = 34) σε γνωστά αθροίσματα (π.χ., = = = 31) στις ιδιότητες των πράξεων (αντιμεταθετική και προσεταιριστική) = = = 76) στις σχέσεις της πρόσθεσης και της αφαίρεσης (π.χ., = 38, άρα = 25). ΜΠ2 Ποσοτική και αφηρημένη σκέψη Κατανοώ τη σημασία των ποσοτήτων και τις χρησιμοποιώ σε πράξεις. Δίνω προσοχή στη σημασία των ποσοτήτων και όχι μόνο στον υπολογισμό τους. Παράδειγμα: Να επιλύσεις την ακόλουθη μαθηματική πρόταση χρησιμοποιώντας την αριθμητική γραμμή και να γράψεις ένα πρόβλημα, το οποίο να επιλύεται με αυτή την μαθηματική πρόταση = Ποιον αριθμό να τοποθετήσω πρώτα στην αριθμητική γραμμή; Ποιον αριθμό να προσθέσω σε αυτόν ώστε να βρω εύκολα την απάντηση; ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Χρησιμοποιώ τα εργαλεία των μαθηματικών, για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Να χρησιμοποιήσεις τους κύβους Dienes, για να υπολογίσεις τη διαφορά 51 7 =. Να εξηγήσεις τον τρόπο που εργάστηκες.

8 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ 3. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές εφαρμόζουν τον κατακόρυφο αλγόριθμο της πρόσθεσης αριθμών μέχρι το 100 (όλες τις περιπτώσεις). Πώς μπορώ να αναπαραστήσω τον αριθμό 51, χρησιμοποιώντας το υλικό; Τι μπορώ να κάνω ώστε να αφαιρέσω τις 7 μονάδες; Αρκούν οι μονάδες του 51, ώστε να αφαιρέσω 7 μονάδες; 4. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να υπολογίζουν το άθροισμα και τη διαφορά αριθμών πολλαπλάσιων του 10 μέχρι και το 1000 (π.χ =700) Παράδειγμα πρόσθεσης και αφαίρεσης μέχρι το 20 (νοεροί υπολογισμοί): Να συμπληρώσεις, ώστε το άθροισμα οριζόντια, κατακόρυφα και διαγώνια να είναι 15. Παραδείγματα πρόσθεσης και αφαίρεσης μέχρι το 100 (νοεροί υπολογισμοί): Να βρεις το αποτέλεσμα στο μυαλό σου με όποιο τρόπο θέλεις. (α) = (β) 92 8 = ΜΠ6 Ακρίβεια Είμαι προσεκτικός και σαφής, όταν χρησιμοποιώ τα μαθηματικά, για να επικοινωνήσω με τους άλλους. Παράδειγμα: Ο Γιάννης ήθελε να κάνει τις πράξεις και στην υπολογιστική μηχανή. Να περιγράψεις ποιες λανθασμένες ενέργειες έκανε στην υπολογιστική μηχανή ώστε να καταλήξει στα πιο κάτω λανθασμένα αποτελέσματα. (α) = 70 (β) = 59 Αν πληκτρολογήσω σωστά τους αριθμούς στην υπολογιστική μηχανή, σε ποιο αποτέλεσμα θα καταλήξω; Ποιον αριθμό πρόσθεσε ο Γιάννης στο 50 για να φτάσει στο άθροισμα 70; Ποιον αριθμό αφαίρεσε ο Γιάννης από το 60 για να φτάσει στη διαφορά 59; ΜΠ8 Κανονικότητα σε επαναλαμβανόμενο συλλογισμό Αναγνωρίζω μοτίβα σε συλλογισμούς και κάνω γενικεύσεις, για να συντομεύσω διαδικασίες.

9 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Παράδειγμα κατακόρυφου αλγόριθμου πρόσθεσης αριθμών μέχρι το 100: Να υπολογίσεις τα αθροίσματα. Παράδειγμα πρόσθεσης και αφαίρεσης πολλαπλασίων του 10 μέχρι το 1000: Να χρωματίσεις με το ίδιο χρώμα τις κάρτες που δίνουν το ίδιο αποτέλεσμα. Παράδειγμα: Να συμπληρώσεις τις μαθηματικές προτάσεις = = = = = = = Τι παρατηρώ; Πώς υπολογίζω στα γρήγορα την απάντηση κάθε φορά; Πώς μπορώ να αξιοποιήσω τα πιο πάνω, για να υπολογίσω το Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης, χρησιμοποιώντας υλικό όπως κύβους Dienes, εικόνες, εφαρμογίδια και σύμβολα. Αρ2.12 Κατανοούν την προπαίδεια του Νέες Έννοιες: Πολλαπλασιασμός ως ομαδοποίηση, εμβαδόν και σύγκριση Διαίρεση ως μερισμός και ως επαναλαμβανόμενη αφαίρεση Πολλαπλασιασμός και διαίρεση μέχρι το 20 με ευχέρεια Πολλαπλασιασμός και διαίρεση μέχρι το 100 με στρατηγικές ΜΠ2 Ποσοτική και αφηρημένη σκέψη Κατανοώ τη σημασία των ποσοτήτων και τη σχέση τους σε ένα πρόβλημα. Παράδειγμα: Να σχεδιάσεις και να λύσεις το πιο κάτω πρόβλημα. Τα παιδιά στην τάξη της Μυρτώς σχημάτισαν 4 τριάδες και 2 τετράδες. Πόσα είναι όλα τα παιδιά στην τάξη της Μυρτώς; Πόσες ομάδες σχημάτισαν τα παιδιά; Πόσες ομάδες των τριών έφτιαξαν τα παιδιά; Πόσα παιδιά συνολικά μπήκαν στις ομάδες των τριών;

10 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ πολλαπλασιασμού και τη διαίρεση ως αντίστροφη πράξη του πολλαπλασιασμού. Αρ2.14 Χρησιμοποιούν σε πράξεις και προβλήματα: (α) το ένα ως ουδέτερο στοιχείο του πολλαπλασιασμού (β) το μηδέν ως το απορροφητικό στοιχείο του πολλαπλασιασμού (γ) την αντιμεταθετική ιδιότητα του πολλαπλασιασμού (δ) την προσεταιριστική ιδιότητα της πρόσθεσης και του πολλαπλασιασμού (ε) την επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση και την αφαίρεση. 1. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές χρησιμοποιούν: την έννοια του πολλαπλασιασμού ως ομαδοποίηση. την έννοια του πολλαπλασιασμού ως εμβαδόν. την έννοια του πολλαπλασιασμού ως πολλαπλασιαστική σύγκριση την έννοια της διαίρεσης ως μερισμό (γνωστός ο αριθμός των ομάδων και άγνωστο το μέγεθος κάθε ομάδας.) την έννοια της διαίρεσης ως επαναλαμβανόμενη αφαίρεση (γνωστό το μέγεθος κάθε ομάδας και άγνωστος ο αριθμός των ομάδων). τον πολλαπλασιασμό και τη διαίρεση μέχρι το 100 για να λύνουν προβλήματα πολλαπλασιαστικής δομής. 2. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να: αυτοματοποιήσουν πράξεις πολλαπλασιασμού και διαίρεσης δύο μονοψήφιων αριθμών μέχρι το 20. υπολογίζουν την τιμή του αγνώστου σε μαθηματικές προτάσεις πολλαπλασιασμού και διαίρεσης με αριθμούς μέχρι το 20 Πόσες ομάδες των τεσσάρων έφτιαξαν τα παιδιά; Πόσα παιδιά συνολικά μπήκαν στις ομάδες των τεσσάρων; Πώς μπορώ να υπολογίσω τον συνολικό αριθμό των παιδιών στην τάξη; ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Χρησιμοποιώ τα εργαλεία των μαθηματικών, για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Δώδεκα ψάρια θα μοιραστούν εξίσου σε τρεις γυάλες. Πόσα ψάρια θα μπουν σε κάθε γυάλα; Να χρησιμοποιήσεις κύβους, για να λύσεις το πρόβλημα; Πόσα ψάρια θέλω να μοιράσω; Σε πόσες γυάλες; Ποια διαδικασία να ακολουθήσω, για να μοιράσω τα ψάρια; ΜΠ7 Δομή των μαθηματικών Διακρίνω και κατανοώ πώς οι αριθμοί είναι οργανωμένοι και αποτελούν μέρος ενός συνόλου. Παράδειγμα: Να φτιάξεις μαθηματικές προτάσεις πολλαπλασιασμού και διαίρεσης χρησιμοποιώντας τους αριθμούς 42, 6 και 7. (α) = (γ) = (β) = (δ) =

11 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ (π.χ. 8 = 16). 3. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να υπολογίζουν το αποτέλεσμα πράξεων πολλαπλασιασμού και διαίρεσης δύο μονοψήφιων αριθμών μέχρι το 100 (μοτίβα πολλαπλασιασμού 1,2,3,4,5,6,10) εφαρμόζοντας: τις ιδιότητες των πράξεων στρατηγικές νοερών υπολογισμών (π.χ., διπλασιασμός) τη σχέση ανάμεσα στον πολλαπλασιασμό και τη διαίρεση. Παράδειγμα έννοιας πολλαπλασιασμού ως ομαδοποίηση: Να γράψεις μία μαθηματική πρόταση πολλαπλασιασμού για να βρεις πόσες είναι όλες οι πασχαλίτσες. Ποιοι αριθμοί είναι οι παράγοντες και ποιος είναι το γινόμενο Ποιοι αριθμοί είναι δυνατόν να εκφράζουν τον διαιρέτη; Παράδειγμα έννοιας πολλαπλασιασμού ως εμβαδόν: Να γράψεις μια μαθηματική πρόταση πολλαπλασιασμού για να βρεις πόσα πλακάκια χρειάστηκαν για να καλυφθεί το πάτωμα του δωματίου.

12 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Παράδειγμα επίλυσης προβλήματος πολλαπλασιαστικής σύγκρισης: Ο Γιώργος είναι 6 χρονών. Η αδερφή του η Μυρτώ έχει τη διπλάσια ηλικία από το Γιώργο. Πόσων χρονών είναι η Μυρτώ; Παράδειγμα διαίρεσης ως μερισμός: Να μοιράσεις 18 καραμέλες σε 3 κουτιά. Πόσες καραμέλες θα μπουν σε κάθε κουτί, αν κάθε κουτί χωρεί τον ίδιο αριθμό καραμέλων; Παράδειγμα διαίρεσης ως επαναλαμβανόμενη αφαίρεση: Η Ιωάννα έχει 10. Πόσα τετράδια μπορεί να αγοράσει αν το κάθε τετράδιο στοιχίζει 2; Παράδειγμα αυτοματοποίησης πράξεων πολλαπλασιασμού και διαίρεσης μέχρι το 20: Να συμπληρώσεις τον πιο κάτω πίνακα πολλαπλασιασμού. Παραδείγματα υπολογισμού πράξεων πολλαπλασιασμού και διαίρεσης μέχρι το 100: Να συμπληρώσεις. (α) 10 5 = 10 = (β) 4 = 4 = Να υπολογίσεις τα γινόμενα και να εξηγήσεις τη σκέψη σου.

13 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ (α) 1 6 = (γ) 4 6 = (β) 2 6 = (δ) 8 6 = Αρ. 1.7 Αναπαριστούν εναδικά κλάσματα ( 1 2, 1 3, 1 4, 1 6, 1 8 ) ενός συνόλου αντικειμένων ή μιας επιφάνειας, χρησιμοποιώντας αντικείμενα, εικόνες και εφαρμογίδια. Νέες Έννοιες: Kλάσματα της μορφής 1, όπου α < 10 α (εναδικά κλάσματα) 1. Οι εκπαιδευτικοί, με τη βοήθεια πραγματικών αντικειμένων, εικόνων και εφαρμογιδίων, δίνουν την ευκαιρία στους μαθητές να: κατανοήσουν ότι το κλάσμα 1 εκφράζει το α 1 από τα α ίσα μέρη στα οποία χωρίζουμε μια ποσότητα. ΜΠ2 Ποσοτική και αφηρημένη σκέψη Κατανοώ τη σημασία των ποσοτήτων και δίνω έμφαση στη δημιουργία αναπαραστάσεων για την κατανόηση της έννοιας του κλάσματος. Παράδειγμα: Να δείξεις με διαφορετικούς τρόπους το 1 4. Μπορώ να χρησιμοποιήσω σχέδιο; Μπορώ να χρησιμοποιήσω κύκλους ή ράβδους κλασμάτων; αναπαριστούν εναδικά κλάσματα ως μέρος μιας επιφάνειας αναπαριστούν εναδικά κλάσματα ως μέρος ενός συνόλου αντικειμένων ΜΠ3 Ανάπτυξη ισχυρισμών και κρίση συλλογισμού Επεξηγώ τη σκέψη μου και λαμβάνω υπόψη μου τη γνώμη των άλλων. Παραδείγματα έννοιας εναδικών κλασμάτων: Να βάλεις σε κύκλο τα σχήματα που έχουν σκιασμένο το 1 2 της επιφάνειάς τους. Παράδειγμα: Ο Μιχάλης υποστηρίζει ότι η σκιασμένη επιφάνεια στις δύο πιο κάτω εικόνες δείχνει το 1 του κάθε ορθοργωνίου. 4 Συμφωνείς ή διαφωνείς με την άποψη του Μιχάλη; Να εξηγήσεις.

14 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Να σκιάσεις το μέρος που αντιπροσωπεύει κάθε κλάσμα. Να σκιάσεις το 1 της κάθε ομάδας 3 αντικειμένων. Να εξηγήσεις τον τρόπο με τον οποίο εργάστηκες. Από πόσα κομμάτια αποτελείται το κάθε ορθογώνιο; Είναι ίσα τα κομμάτια του κάθε ορθογωνίου; Πόσα κομμάτια είναι σκιασμένα σε κάθε ορθογώνιο; Τι μέρος του κάθε ορθογωνίου είναι σκιασμένο; ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Χρησιμοποιώ τα εργαλεία των μαθηματικών, για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Να χρησιμοποιήσεις το πλέγμα (ή το εφαρμογίδιo) και: (α) να χρωματίσεις με κόκκινο χρώμα το 1 της πιο κάτω επιφάνειας και 2 με πράσινο χρώμα το 1 της επιφάνειας. 4 (β) να επαναλάβεις τη διαδικασία, για να δημιουργήσεις όσο το δυνατόν περισσότερες επιφάνειες.

15 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Από πόσα τετραγωνάκια αποτελείται η επιφάνεια; Με ποιους τρόπους μπορώ να βρω το 1 2 της επιφάνειας; Με ποιους τρόπους μπορώ να βρω το 1 της επιφάνειας; 4 Αρ Αντιλαμβάνονται διαισθητικά την έννοια του δεκαδικού αριθμού μέσα από καταστάσεις της καθημερινής ζωής. Νέες Έννοιες: Δεκαδικοί αριθμοί 1. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να γράφουν χρηματικά ποσά χρησιμοποιώντας δεκαδικούς αριθμούς (π.χ. 1,50). Παράδειγμα γραφής ποσών μέσα από το νομισματικό σύστημα: Να αντιστοιχίσεις τα κέρματα με την αξία τους, όπως στο παράδειγμα. 1,20 1,50 1,10 ΜΠ1 Κατανόηση μέσω προβλήματος Διαβάζω το πρόβλημα, σκέφτομαι πώς θα το λύσω και ελέγχω κατά πόσο η απάντησή μου είναι λογική. Παράδειγμα: Να υπολογίσεις και να γράψεις το χρηματικό ποσό που έχει στον κουμπαρά της η Αντωνία. Ο κουμπαράς έχει μέσα κέρματα των 50 σεντ και των 10 σεντ. Έχει 6 κέρματα. Ο αριθμός των κερμάτων των 50 σεντ είναι ο ίδιος με τον αριθμό των κερμάτων των 10 σεντ. Πόσα κέρματα έχει μέσα ο κουμπαράς; Πόσα κέρματα των 50 σεντ έχει μέσα ο κουμπαράς; Πόση είναι η συνολική τους αξία; Πόσα κέρματα των 10 σεντ έχει μέσα ο κουμπαράς; Πόση είναι η συνολική τους αξία;

16 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Αρ2.8 Αναγνωρίζουν και ορίζουν τους άρτιους και περιττούς αριθμούς. Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος, διαιρέτης, διαιρετέος, υπόλοιπο, παράγοντας. Νέες Έννοιες: Αναγνώριση άρτιων και περιττών αριθμών Αναγνώριση και ορθή χρήση των όρων: άθροισμα, διαφορά, γινόμενο, πηλίκο. 1. Οι εκπαιδευτικοί βοηθούν τους μαθητές να αναγνωρίζουν αν ένας αριθμός μέχρι το 100 είναι άρτιος ή περιττός. 2. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να αναγνωρίζουν και να χρησιμοποιούν ορθά τους όρους άθροισμα, διαφορά, γινόμενο, πηλίκο. ΜΠ7 Δομή των μαθηματικών Διακρίνω και κατανοώ πώς οι αριθμοί είναι οργανωμένοι και αποτελούν μέρος ενός συνόλου (άρτιοι και περιττοί αριθμοί). Παράδειγμα: Να βάλεις σε κύκλο τις εικόνες που δείχνουν άρτιους αριθμούς, χωρίς να μετρήσεις των αριθμό των τετραγώνων. Παράδειγμα αναγνώρισης άρτιων και περιττών αριθμών: Να γράψεις τους αριθμούς στην κατάλληλη στήλη. Πότε ένας αριθμός είναι άρτιος; Πώς μπορώ να εξηγήσω αν μια εικόνα δείχνει άρτιο αριθμό; ΜΠ6 Ακρίβεια Είμαι προσεκτικός και σαφής, όταν χρησιμοποιώ τα μαθηματικά, για να επικοινωνήσω με τους άλλους. Παράδειγμα: Να βάλεις στην κατάλληλη στήλη του πίνακα, για να δείξεις πώς ονομάζεται το αποτέλεσμα της κάθε μαθηματικής πρότασης.

17 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Παράδειγμα αναγνώρισης και χρησιμοποίησης των όρων άθροισμα, διαφορά, γινόμενο, πηλίκο: Να βρεις δύο αριθμούς που δίνουν άθροισμα 70 και διαφορά 30. Μαθηματική πρόταση = 60 60: 2 = = 48 8 Χ 7 = 56 Άθροισμα Διαφορά Γινόμενο Πηλίκο Αρ2.17 Διατυπώνουν και επιλύουν προβλήματα διαδικασίας και λεκτικά προβλήματα με περισσότερες από μία πράξεις και ελέγχουν τη λογικότητα της απάντησής τους. Νέες Έννοιες: Επίλυση λεκτικών προβλημάτων μίας πράξης (αθροιστικής και πολλαπλασιαστικής δομής) Κατασκευή προβλημάτων Επίλυση προβλημάτων διαδικασίας 1. Οι εκπαιδευτικοί εμπλέκουν τους μαθητές σε καταστάσεις επίλυσης λεκτικών προβλημάτων μίας πράξης. ΜΠ4 Μοντελοποίηση Χρησιμοποιώ μαθηματικά μοντέλα (π.χ. συμβολικές εκφράσεις, σχέδια), για να αναπαραστήσω καταστάσεις της καθημερινής ζωής. Παράδειγμα: Να κάνεις ένα σχέδιο, για λύσεις το πιο κάτω πρόβλημα. Ένα σαλιγκάρι βρίσκεται μέσα σε ένα πηγάδι βάθους 10 m. Κάθε μέρα σκαρφαλώνει 3 m, ενώ το βράδυ γλιστρά προς τα πίσω 1m. Σε πόσες μέρες θα καταφέρει να βγει από το πηγάδι; 2. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να κατασκευάσουν λεκτικά προβλήματα, συμπληρώνοντας τους αριθμούς που ταιριάζουν. συμπληρώνοντας την ερώτηση που ταιριάζει στα δεδομένα. Ποια είναι η ερώτηση; Ποια είναι τα δεδομένα του προβλήματος; Πώς το σχέδιο με βοηθά να λύσω το πρόβλημα; με βάση δοσμένη μαθηματική πρόταση ή πληροφορίες από πίνακα.

18 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ 3. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες λύσης προβλημάτων διαδικασίας (π.χ. λογική σκέψη, ανάδρομη πορεία, οργανωμένος κατάλογος, δοκιμή και έλεγχος, αναπαράσταση με αντικείμενα, πίνακα, μοτίβο, σχέδιο, απλοποίηση του προβλήματος ). Παράδειγμα επίλυσης προβλήματος μίας πράξης: Να βρεις τη μαθηματική πρόταση που ταιριάζει με το πρόβλημα. Η Μαρία πλένει τα δόντια της 3 φορές την ημέρα. Πόσες φορές θα πλύνει τα δόντια της η Μαρία σε μία εβδομάδα; 3 5 = = 7 3 = Παράδειγμα κατασκευής προβλήματος: Να συμπληρώσεις την ερώτηση και να λύσεις το πρόβλημα. Η κυρία Έλλη αγόρασε 4 ψηφιακούς δίσκους και πλήρωσε συνολικά 20. Παράδειγμα επίλυσης προβλήματος διαδικασίας (στρατηγική ανάδρομη πορεία): Να βρεις πόσα ζώα από το κάθε είδος υπάρχουν στο ζωολογικό κήπο. - Οι πιγκουίνοι είναι 5 λιγότεροι από τους παπαγάλους. - Οι παπαγάλοι 16 περισσότεροι από τους πιθήκους. - Οι πίθηκοι είναι 25.

19 ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Αρ2.15 Χρησιμοποιούν και διατυπώνουν στρατηγικές εκτέλεσης νοερών υπολογισμών με αριθμούς μέχρι το Αρ 2.16 Εκτιμούν το αποτέλεσμα μιας πράξης, εφαρμόζοντας στρατηγικές στρογγυλοποίησης ακέραιων αριθμών στην πλησιέστερη δεκάδα, εκατοντάδα και χιλιάδα. Στη Β τάξη γίνεται εισαγωγή των δεικτών Αρ2.7, Αρ2.15 και Αρ2.16. Η διδασκαλία τους είναι απαραίτητη και αποτελεί προϋπόθεση για την επίτευξη των δεικτών αυτών στη Γ τάξη ή σε επόμενες τάξεις.

20 ΜΕΤΡΗΣΗ Δείκτες Επιτυχίας Δείκτες Επάρκειας Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Μ2.3 Χρησιμοποιούν συμβατικές μονάδες μέτρησης του μήκους (cm και m), της μάζας (kg και g) και της χωρητικότητας (L). Μ2.5 Μετρούν το μήκος ενός αντικειμένου με ακρίβεια εκατοστόμετρου. Προαπαιτούμενες Γνώσεις: Άμεση και έμμεση σύγκριση αντικειμένων Νέες Έννοιες: Μέτρηση μήκους σε εκατοστόμετρα με τη χρήση κατάλληλων εργαλείων Μέτρο Κιλό ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Χρησιμοποιώ τα εργαλεία των μαθηματικών (π.χ. χάρακα, μετροταινία), για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Να εκτιμήσεις και να μετρήσεις το μήκος των πιο κάτω, χρησιμοποιώντας τα κατάλληλα εργαλεία. Μήκος της μεγάλης πλευράς της τάξης ΕΚΤΙΜΩ ΜΕΤΡΩ 1. Οι εκπαιδευτικοί οργανώνουν δραστηριότητες στις οποίες οι μαθητές έχουν την ευκαιρία να εκτιμήσουν και να μετρήσουν το μήκος αντικειμένων σε μέτρα ή εκατοστόμετρα, χρησιμοποιώντας κατάλληλα εργαλεία. 2. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να χρησιμοποιήσουν το κιλό ως μονάδα μέτρησης της μάζας κατά την επίλυση προβλημάτων. Το πλάτος της πόρτας της τάξης Ποια εργαλεία θα χρησιμοποιήσω για κάθε μέτρηση; Πώς μπορώ να ελέγξω τη λογικότητα της εκτίμησής μου;

21 ΜΕΤΡΗΣΗ Παράδειγμα εκτίμησης μήκους αντικειμένων σε μέτρα: Να συμπληρώσεις τον πίνακα με αντικείμενα της τάξης σου να που έχουν μήκος: (α) μικρότερο του 1 m (β) μεγαλύτερο του 1 m Μικρότερο από 1 m Μεγαλύτερο από 1 m Παράδειγμα χρήσης της έννοιας του κιλού: Να βάλεις σε κύκλο τα αντικείμενα που ζυγίζουν περισσότερο από ένα κιλό. Μ1.3 Εκτιμούν και υπολογίζουν την περίμετρο απλών δισδιάστατων σχημάτων με μη συμβατικές και συμβατικές μονάδες μέτρησης (cm). Μ2.2 Εκτιμούν και υπολογίζουν την περίμετρο και το Νέες Έννοιες: Περίμετρος απλών ευθυγράμμων σχημάτων Έννοια εμβαδού 1. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές χρησιμοποιούν υλικά για να: κατανοήσουν την έννοια της περιμέτρου ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Χρησιμοποιώ τα εργαλεία των μαθηματικών (χάρακας), για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Να χρησιμοποιήσεις τον χάρακα, για να υπολογίσεις την περίμετρο του βιβλίου σου.

22 ΜΕΤΡΗΣΗ εμβαδόν του τετραγώνου, του ορθογωνίου και του ορθογώνιου τριγώνου, χρησιμοποιώντας κατάλληλες μονάδες μέτρησης. τετραπλεύρων (π.χ., ορθογωνίου) και να την υπολογίζουν χρησιμοποιώντας την πράξη της πρόσθεσης ή/και του πολλαπλασιασμού. κατανοήσουν την έννοια του εμβαδού ως κάλυψη επιφάνειας και να την υπολογίζουν με τη χρήση τετραγωνικών μονάδων. Ποιες πλευρές του βιβλίου χρειάζεται να μετρηθούν; Με ποιο τρόπο πρέπει να τοποθετηθεί ο χάρακας σε κάθε πλευρά του βιβλίου; Παράδειγμα χρήσης της έννοιας της περιμέτρου: Να μετρήσεις το μήκος των πλευρών του πιο κάτω ορθογωνίου και να υπολογίσεις την περίμετρό του. Α Β Δ Γ Παράδειγμα χρήσης της έννοιας του εμβαδού: Να υπολογίσεις το εμβαδόν του κάθε σχήματος σε τετραγωνικές μονάδες.

23 ΜΕΤΡΗΣΗ Μ2.7 Μοντελοποιούν και επιλύουν προβλήματα αναπαριστώντας, προσθέτοντας και αφαιρώντας ποσά χρημάτων. Νέες Έννοιες: Αναγνώριση κερμάτων, χαρτονομισμάτων 1. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές επιλύουν προβλήματα, χρησιμοποιώντας χαρτονομίσματα και νομίσματα. ΜΠ1 Κατανόηση μέσω προβλήματος Διαβάζω το πρόβλημα, σκέφτομαι πώς θα το λύσω και ελέγχω κατά πόσο η απάντησή μου είναι λογική. Παράδειγμα: Ο Στέλιος αγόρασε μία ηλεκτρική συσκευή 65 και πλήρωσε το ακριβές ποσό χρησιμοποιώντας μόνο χαρτονομίσματα. Ποια χαρτονομίσματα μπορεί να χρησιμοποίησε; Να δώσεις περισσότερες από μία λύσεις. Παράδειγμα χρήσης νομισματικού συστήματος: Πόσα στοίχιζε η συσκευή που αγόρασε ο Στέλιος; Να συμπληρώσεις τον πίνακα, για να δείξεις με τέσσερις διαφορετικούς τρόπους πώς θα πληρώσεις το ποσό των 30 σεντ. Ποια χαρτονομίσματα μπορεί να χρησιμοποίησε; Ποια άλλη λύση μπορώ να δώσω;

24 ΜΕΤΡΗΣΗ Μ2.8 Διαβάζουν και γράφουν ημερομηνίες με διάφορους τρόπους, διακρίνοντας τη θέση της ημέρας, του μήνα και του έτους και απαντούν ερωτήσεις σχετικές με ημερολόγιο. Μ2.9 Διαβάζουν και γράφουν την ώρα, χρησιμοποιώντας ψηφιακά και αναλογικά ρολόγια. Μ2.10 Σειροθετούν γεγονότα με βάση τη χρονική διάρκεια πραγματοποίησής τους και τη λογική. Προαπαιτούμενες Γνώσεις: Μέρες, Μήνες, Εποχές Ανάγνωση και γραφή ολόκληρης ώρας Νέες Έννοιες: Ημερομηνία Ανάγνωση και γραφή της ώρας σε αναλογικά και ψηφιακά ρολόγια Σειροθέτηση γεγονότων με βάση τη χρονική τους διάρκεια 1. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές: γράφουν τις ημερομηνίες, δείχνουν την ώρα σε αναλογικά ρολόγια, σχεδιάζοντας τον λεπτοδείκτη και τον ωροδείκτη και γράφουν την ώρα στα ψηφιακά ρολόγια με τη σωστή μορφή (π.χ. 06:15) ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Χρησιμοποιώ τα εργαλεία των μαθηματικών (ρολόι, ημερολόγιο), για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Να χρησιμοποιήσεις αναλογικά ή/και ψηφιακά ρολόγια για να δείξεις την ώρα τρεις και τριάντα. Ποιος είναι ο ωροδείκτης και πού πρέπει να δείχνει; Ποιος είναι ο λεπτοδείκτης και πού πρέπει να δείχνει; σειροθετούν τα γεγονότα με βάση τη χρονική τους διάρκεια Παράδειγμα σωστής γραφής ημερομηνίας: Να γράψεις για καθεμιά από τις πιο κάτω η- μερομηνίες τον μήνα και το έτος που αναφέρονται.

25 ΜΕΤΡΗΣΗ Ημερομηνία Μήνας Έτος 26/01/07 30/03/11 Παράδειγμα ανάγνωσης και γραφής της ώρας: Να γράψεις κάτω από κάθε ρολόι την ώρα που δείχνει. Μ2.4 Χρησιμοποιούν τη γωνία των 90 ο, για να συγκρίνουν, να ταξινομούν και να κάνουν εκτιμήσεις γωνιών. Παράδειγμα σειροθέτησης γεγονότων: Να βάλεις σε σειρά τα γεγονότα: ---- Ο Άκης άρχισε έρχεται στο σχολείο στις 7:30 Το κουδούνι του σχολείου κτυπά στις 7:45. Ο φίλος του ο Φώτης έρχεται 10 λεπτά μετά τις 7. Ο φίλος του ο Ηρακλής έρχεται στο σχολείο 10 λεπτά πριν κτυπήσει το κουδούνι. Στη Β τάξη γίνεται εισαγωγή των δεικτών M2.4, M2.6, M2.11 και Μ2.12. Η διδασκαλία τους είναι απαραίτητη και αποτελεί προϋπόθεση για την επίτευξη των δεικτών αυτών στη Γ τάξη.

26 ΜΕΤΡΗΣΗ Μ2.6 Μετατρέπουν μέτρα σε εκατοστόμετρα και αντίστροφα. Μ2.11 Αναγνωρίζουν τις σχέσεις μεταξύ των μονάδων μέτρησης του χρόνου. Μ2.12 Διαβάζουν, γράφουν και εκτιμούν τη θερμοκρασία, χρησιμοποιώντας θερμόμετρα.

27 ΓΕΩΜΕΤΡΙΑ Δείκτες Επιτυχίας Δείκτες Επάρκειας Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Γ1.3 Διερευνούν και κατανοούν τις βασικές ιδιότητες των ευθύγραμμων σχημάτων (τρίγωνο, τετράγωνο, παραλληλόγραμμο, ορθογώνιο) και του κύκλου. Προαπαιτούμενες Γνώσεις: Αναγνώριση και ονομασία βασικών δισδιάστατων σχημάτων Νέες Έννοιες: Αναγνώριση, ονομασία και κατασκευή σχημάτων με συγκεκριμένα χαρακτηριστικά Ιδιότητες ορθογωνίου και τετραγώνου ΜΠ6 Ακρίβεια Είμαι προσεκτικός και σαφής, όταν χρησιμοποιώ τα μαθηματικά, για να επικοινωνήσω με τους άλλους (γωνίες, πλευρές). Παράδειγμα: Να εξηγήσεις ποια είναι και ποια δεν είναι τρίγωνα. 1. Οι εκπαιδευτικοί μέσω κατάλληλων δραστηριοτήτων, βοηθούν τους μαθητές να αναγνωρίζουν και να κατασκευάζουν (χρησιμοποιώντας κατάλληλα εργαλεία) σχήματα με συγκεκριμένα χαρακτηριστικά (όπως αριθμό γωνιών ή πλευρών) και να αναγνωρίζουν τρίγωνα, τετράπλευρα, πεντάγωνα, εξάγωνα και κύκλους. 2. Οι εκπαιδευτικοί οργανώνουν δραστηριότητες διερεύνησης των βασικών ιδιοτήτων του ορθογωνίου (ίσες γωνίες, ίσες απέναντι πλευρές) και του τετραγώνου (ίσες γωνίες, ίσες πλευρές). Ποια χαρακτηριστικά έχουν τα τρίγωνα; Ποια από τα ποιο πάνω σχήματα έχουν αυτά τα χαρακτηριστικά;

28 ΓΕΩΜΕΤΡΙΑ Παραδείγματα αναγνώρισης και κατασκευής σχημάτων με συγκεκριμένα χαρακτηριστικά: Να βάλεις σε κύκλο τα σχήματα που: (α) έχουν περισσότερες από 3 πλευρές. (β) έχουν ορθές γωνίες. Παραδείγματα διερεύνηση ιδιοτήτων ορθογωνίου και τετραγώνου: Να μετρήσεις το μήκος των πλευρών των σχημάτων και να γράψεις τι παρατηρείς.

29 ΓΕΩΜΕΤΡΙΑ Γ2.2 Αναγνωρίζουν γωνίες και ονομάζουν ορθές γωνίες. Νέες Έννοιες: Αναγνώριση και ονομασία ορθών γωνιών 1. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να αναγνωρίζουν και να ονομάζουν ορθές γωνίες. Παράδειγμα αναγνώρισης και ονομασίας ορθών γωνιών: ΜΠ5 Στρατηγική χρήση κατάλληλων εργαλείων Χρησιμοποιώ τα εργαλεία των μαθηματικών (ορθή γωνιά), για να εξερευνώ και να αντιλαμβάνομαι τον κόσμο. Παράδειγμα: Να χρησιμοποιήσεις την ορθή γωνία και να σημειώσεις τις ορθές γωνίες στα σήματα τροχαίας. Να βάλεις σε κύκλο την ορθή γωνία. Γ1.4 Ονομάζουν, περιγράφουν ταξινομούν και κατασκευάζουν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, σφαίρα, κύλινδρο, κώνο) και τα συσχετίζουν με αντικείμενα του περιβάλλοντος. Γ1.10 Αναγνωρίζουν και Νέες Έννοιες: Τρισδιάστατα σχήματα 1. Οι εκπαιδευτικοί χρησιμοποιούν κατάλληλα μέσα και υλικά ώστε οι μαθητές να: ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα: κύβο, κύλινδρο, ορθογώνιο παραλληλεπίπεδο, κώνο, σφαίρα. συσχετίζουν τα τρισδιάστατα σχήματα με αντικείμενα του περιβάλλοντός τους. ΜΠ3 Ανάπτυξη ισχυρισμών και κρίση του συλλογισμού άλλων Επεξηγώ τη σκέψη μου και λαμβάνω υπόψη μου τη γνώμη των άλλων. Παράδειγμα: Ο Πάνος χώρισε τα πιο κάτω σχήματα σε δύο ομάδες. Να βρεις ποια σχήματα έβαλε σε κάθε ομάδα και ποιο κριτήριο χρησιμοποίησε.

30 ΓΕΩΜΕΤΡΙΑ ομαδοποιούν όμοια δισδιάστατα και τρισδιάστατα σχήματα και αντικείμενα του περιβάλλοντος. Παράδειγμα ονομασίας τρισδιάστατων σχημάτων: Να συμπληρώσεις, όπως στο παράδειγμα. Ποια στερεά είχε ο Πάνος; Υπάρχουν στερεά που έχουν κοινά χαρακτηριστικά μεταξύ τους; Σφαίρα: Α, Δ, Λ Κύβος: Κύλινδρος: Ορθογώνιο Παραλληλεπίπεδο: Παράδειγμα αναγνώρισης τρισδιάστατων σχημάτων και συσχέτισης τους με αντικείμενα του περιβάλλοντός: Ποια από τα πιο κάτω στερεά είναι ορθογώνια παραλληλεπίπεδα; Να τα βάλεις σε κύκλο. Γ1.7 Αναγνωρίζουν δισδιάστατα σχήματα Στη Β τάξη γίνεται εισαγωγή των δεικτών Γ1.7, Γ1.8, Γ1.9, Γ1.11, Γ2.1, και Γ2.3. Η

31 ΓΕΩΜΕΤΡΙΑ καθώς και σχήματα του περιβάλλοντος, που έχουν έναν άξονα συμμετρίας (κατακόρυφο ή οριζόντιο). Γ1.8 Κατασκευάζουν συμμετρικά σχήματα, χρησιμοποιώντας υλικά και λογισμικά. Γ1.9 Διερευνούν μετασχηματισμούς (μεταφορά, περιστροφή, ανάκλαση) δισδιάστατων και τρισδιάστατων σχημάτων με τη χρήση υλικών και λογισμικών. Γ1.11 Συνθέτουν και διαχωρίζουν δισδιάστατα σχήματα σε άλλα επιμέρους σχήματα (π.χ. διαχωρίζουν ένα τραπέζιο σε ένα ορθογώνιο και δύο τρίγωνα). Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, διδασκαλία τους είναι απαραίτητη και αποτελεί προϋπόθεση για την επίτευξη των δεικτών αυτών στη Γ τάξη.

32 ΓΕΩΜΕΤΡΙΑ ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες) με διάφορα μέσα και λογισμικά. Γ2.3 Ονομάζουν, περιγράφουν, συγκρίνουν, αναλύουν, ταξινομούν και κατασκευάζουν ευθύγραμμα σχήματα με βάση τις γωνίες και τις πλευρές τους, με διάφορα μέσα και λογισμικά.

33 ΑΛΓΕΒΡΑ Δείκτες Επιτυχίας Δείκτες Επάρκειας Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αλ. 2.1 Αναγνωρίζουν, περιγράφουν και επεκτείνουν μοτίβα. Aλ. 2.2 Κατασκευάζουν μοτίβα χρησιμοποιώντας διαφορετικά μέσα αναπαράστασης. Νέες Έννοιες: Αναγνώριση, περιγραφή και επέκταση μοτίβων Κατασκευή μοτίβων χρησιμοποιώντας διαφορετικά μέσα αναπαράστασης 1. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές: αναγνωρίζουν, περιγράφουν και επεκτείνουν μοτίβα κατασκευάζουν μοτίβα χρησιμοποιώντας διαφορετικά μέσα αναπαράστασης ΜΠ3 Ανάπτυξη ισχυρισμών και κρίση συλλογισμού Επεξηγώ τη σκέψη μου και λαμβάνω υπόψη μου τη γνώμη των άλλων. Παράδειγμα: Να εξηγήσεις τη σκέψη σου κάθε φορά: (α) Σε ποια από τα πιο κάτω μοτίβα θα εμφανιστεί ο αριθμός 60; 1,2,3,4,5, 2,4,6,8,10, 1,3,5,7,9, 5,10,15,20, 10, 20, 30, (β) Να βρεις τρεις αριθμούς μεγαλύτερους από το 60 που θα εμφανιστούν στα πιο κάτω μοτίβα. Παράδειγμα αναγνώρισης, περιγραφής και επέκτασης μοτίβων: Να σχεδιάσεις τους επόμενους δύο όρους του μοτίβου και να βρεις ποιον αριθμό αναπαριστά το δέκατο στη σειρά σχήμα. 2,4,6,8,10,..,..,.. 5,10,15,20,..,..,.. (γ) Ο Νίκος ισχυρίζεται ότι και στα δύο πιο πάνω μοτίβα μπορεί να γράψει τον αριθμό 90. Συμφωνείς; Ναι ή όχι και γιατί;

34 ΑΛΓΕΒΡΑ Ποιος είναι ο κανόνας του κάθε μοτίβου; Ποιους αριθμούς βρίσκω σε κάθε μοτίβο; Παράδειγμα κατασκευής μοτίβων χρησιμοποιώντας διαφορετικά μέσα αναπαράστασης: Να χρησιμοποιήσεις σχήματα ιδιοτήτων, για να κατασκευάσεις ένα επαναλαμβανόμενο μοτίβο χρησιμοποιώντας τρία χρώματα και δύο σχήματα. ΜΠ8 Κανονικότητα σε επαναλαμβανόμενο συλλογισμό Αναγνωρίζω μοτίβα σε συλλογισμούς και κάνω γενικεύσεις, για να συντομεύσω διαδικασίες. Παράδειγμα: Ο πιο κάτω πίνακας δείχνει πόσα μέτρα διάνυσε η χελώνα και ο λαγός σε διαφορετικές χρονικές στιγμές. Λαγός Α Χελώνα Β Γ (α) Ποιος αριθμός υπάρχει στο τετράγωνο Β; (γ) Ποια σχέση υπάρχει μεταξύ των αριθμών που βρίσκονται στα τετράγωνα Α και Γ; Ποιο μοτίβο παρουσιάζεται στον πίνακα όταν κινείσαι οριζόντια; Ποιο μοτίβο παρουσιάζεται στον πίνακα όταν κινείσαι κατακόρυφα; Ποια σχέση υπάρχει μεταξύ των μέτρων που τρέχει ο λαγός και η χελώνα; Αλ. 1.5 Κατανοούν την έννοια της ισότητας και Νέες Έννοιες: ΜΠ3 Ανάπτυξη ισχυρισμών και κρίση του συλλογισμού άλλων Επεξηγώ τη σκέψη μου και λαμβάνω υπόψη μου τη γνώμη των

35 ΑΛΓΕΒΡΑ ανισότητας σε διαφορετικά πλαίσια και χρησιμοποιούν τα σύμβολα =, >, <. Αλ. 1.7 Υπολογίζουν την τιμή της μεταβλητής σε εξισώσεις και προβλήματα. Αλ. 2.3 Χρησιμοποιούν λεκτικές και αλγεβρικές εκφράσεις, για να αναπαραστήσουν αθροιστικές σχέσεις. Αλ. 2.5 Χρησιμοποιούν κατάλληλα τα σύμβολα της ισότητας και ανισότητας, συμπληρώνουν, ερμηνεύουν και εκφράζουν ισότητες, για να δείξουν αριθμητικές σχέσεις. Αλ. 2.6 Κατασκευάζουν εξισώσεις για την επίλυση προβλημάτων και ε- πιλύουν απλές εξισώσεις στις οποίες η μεταβλητή αναπαρίσταται με διαφορετικούς τρόπους (π.χ. τετράγωνο, κενό). Αλ. 2.8 Επιλύουν προβλήματα ρουτίνας χρη- Επίλυση απλών εξισώσεων Το ουδέτερο στοιχείο στην πρόσθεση (0) Το ουδέτερο στοιχείο στον πολλαπλασιασμό (1) 1. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες, ώστε οι μαθητές να: κατανοήσουν την έννοια της ισότητας και να επιλύουν απλές εξισώσεις. χρησιμοποιούν κατάλληλα τα σύμβολα της ισότητας για να δείξουν αριθμητικές σχέσεις. 2. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές επιλύουν προβλήματα μιας πράξης. 3. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να κατανοήσουν την έννοια του ουδέτερου στοιχείου της πρόσθεσης (μηδέν) και του ουδέτερου στοιχείου του πολλαπλασιασμού (ένα). άλλων. Παράδειγμα: Να εξηγήσεις ποιο σχήμα ζυγίζει περισσότερο. Ποια σχέση υπάρχει μεταξύ της μάζας του κίτρινου και του ροζ σχήματος; Ποια σχέση υπάρχει μεταξύ της μάζας του κόκκινου και του ροζ σχήματος;

36 ΑΛΓΕΒΡΑ σιμοποιώντας ποικιλία στρατηγικών. Αλ Κατασκευάζουν προβλήματα χρησιμοποιώντας δεδομένα από πίνακες, εικόνες και γραφικές παραστάσεις. Παράδειγμα κατανόησης της ισότητας και επίλυσης εξισώσεων: Να βρεις την αξία του κάθε σχήματος. 15+= = +20 Να συμπληρώσεις: 20 =2 3=18 Παράδειγμα χρήσης κατάλληλων συμβόλων ισότητας για να δείξουν αριθμητικές σχέσεις: Ποια μαθηματική πρόταση αναπαριστά την πιο κάτω κατάσταση; Η Βάσω έγραψε 15 προσκλήσεις για τα γενέθλιά της. Πόσες χρειάζεται να γράψει ακόμη, αν θα καλέσει 38 άτομα; Παράδειγμα χρήσης ουδέτερου στοιχείου πρόσθεσης: Να βρεις τα πιο κάτω αθροίσματα. Τι παρατηρείς; = = =

37 ΑΛΓΕΒΡΑ Αλ. 1.6 Κατανοούν και χρησιμοποιούν την αντιμεταθετική ιδιότητα στην πρόσθεση και στον πολλαπλασιασμό. Αλ. 2.7 Χρησιμοποιούν τις ιδιότητες των πράξεων (αντιμεταθετική, προσεταιριστική, επιμεριστική), για να απλοποιήσουν νοερούς υπολογισμούς και να ελέγχουν τα αποτελέσματά τους. Νέες Έννοιες: Αντιμεταθετική ιδιότητα στην πρόσθεση και στον πολλαπλασιασμό 1. Οι εκπαιδευτικοί δίνουν την ευκαιρία στους μαθητές να: χρησιμοποιούν την αντιμεταθετική ιδιότητα στην πρόσθεση και στον πολλαπλασιασμό Παράδειγμα χρήσης αντιμεταθετικής ιδιότητας στον πολλαπλασιασμό: Οι μαθητές χρησιμοποιούν την αντιμεταθετική ιδιότητα, για να υπολογίσουν πιο εύκολα το γινόμενο 6 2 = 2 6 = 12. ΜΠ2 Ποσοτική και αφηρημένη σκέψη Χρησιμοποιώ αριθμούς και γραπτό ή προφορικό λόγο, για να κατανοήσω προβλήματα. (α) βάζω αριθμούς σε ένα πλαίσιο και (β) αποπλαισιώνω τους αριθμούς και εργάζομαι μαθηματικά Παράδειγμα: Να γράψεις δύο μαθηματικές προτάσεις, για να δείξεις πόσα κομμάτια παζλ θα υπάρχουν, όταν το κάθε παζλ συμπληρωθεί. (α) (β) Πόσες σειρές και πόσες στήλες θα υπάρχουν σε κάθε παζλ όταν συμπληρωθεί;

38 ΣΤΑΤΙΣΤΙΚΗ - ΠΙΘΑΝΟΤΗΤΕΣ Δείκτες Επιτυχίας Δείκτες Επάρκειας Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές ΣΠ2.1 Καταγράφουν, οργανώνουν και παρουσιάζουν δεδομένα σε πίνακες και γραφικές παραστάσεις (ραβδόγραμμα, εικονόγραμμα). ΣΠ2.2 Αναπαριστούν τα ίδια δεδομένα με περισσότερους από έναν τρόπο (ραβδόγραμμα, εικονόγραμμα, πίνακα). ΣΠ2.4 Απαντούν και θέτουν ερωτήματα σχετικά με ένα σύνολο δεδομένων. Προαπαιτούμενες Γνώσεις: Ερμηνεία δεδομένων που παρουσιάζονται σε απλή ομαδοποίηση και σε εικονόγραμμα Νέες Έννοιες: Oργάνωση και παρουσίαση δεδομένων σε πίνακα, εικονόγραμμα και ραβδόγραμμα Ερμηνεία δεδομένων σε πίνακα, εικονόγραμμα και ραβδόγραμμα και επίλυση προβλημάτων με βάση τη γραφική παράσταση Αναπαράσταση δεδομένων με περισσότερους από ένα τρόπους ΜΠ2 Ποσοτική και αφηρημένη σκέψη Χρησιμοποιώ αριθμούς και γραπτό ή προφορικό λόγο, για να κατανοήσω προβλήματα. Παράδειγμα: Στην τάξη του Χριστόδουλου τα παιδιά δήλωσαν το αγαπημένο τους ζώο. Να χρησιμοποιήσεις τον πίνακα, για να κατασκευάσεις τη γραφική παράσταση. 1. Οι εκπαιδευτικοί αναπτύσσουν δραστηριότητες στις οποίες οι μαθητές οργανώνουν και παρουσιάζουν δεδομένα σε πίνακα, εικονόγραμμα και ραβδόγραμμα, ονομάζοντας τους άξονες και δίνοντας τίτλο. = παιδιά 2. Οι εκπαιδευτικοί αξιοποιούν δραστηριότητες στις οποίες οι μαθητές Σε τι αναφέρονται οι πληροφορίες του πίνακα; Ποιος είναι ο τίτλος της γραφικής παράστασης;

39 ΣΤΑΤΙΣΤΙΚΗ & ΠΙΘΑΝΟΤΗΤΕΣ ερμηνεύουν δεδομένα που παρουσιάζονται σε μορφή πίνακα, εικογράμματος ή ραβδογράμαμτος και επιλύουν προβλήματα που στηρίζονται στα δεδομένα της γραφικής παράστασης. 3. Οι εκπαιδευτικοί δίνουν στους μαθητές δεδομένα τα οποία μεταφράζουν από μια μορφή αναπαράστασης σε άλλη (π.χ. από πίνακα σε ραβδόγραμμα). Παράδειγμα οργάνωσης δεδομένων: Να μετρήσεις το μήκος δέκα προσωπικών σου αντικειμένων (π.χ. βιβλίο, σβηστήρι, τετράδιο) και να παρουσιάσεις τα δεδομένα σου. Σε πόσους μαθητές θα αντιστοιχεί το κάθε τετραγωνάκι της γραφικής παράστασης; Παράδειγμα ερμηνείας δεδομένων: Να απαντήσεις στα δεδομένα με βάση τη γραφική παράσταση. ΓΕΝΕΘΛΙΑ ΜΑΘΗΤΩΝ ΤΑΞΗΣ ΑΝΑ ΜΗΝΑ Ι Φ Μ Α Μ Ι Ι Α Σ Ο Ν Δ (α) Ποιο μήνα έχουν οι περισσότεροι μαθητές τα γενέθλιά τους;

40 ΣΤΑΤΙΣΤΙΚΗ & ΠΙΘΑΝΟΤΗΤΕΣ (β) Πόσοι μαθητές έχουν τα γενέθλιά τους το καλοκαίρι; (γ) Πόσοι περισσότεροι μαθητές έχουν τα γενέθλιά τους το φθινόπωρο σε σχέση με την άνοιξη; Παράδειγμα μετάφρασης δεδομένων από μια αναπαράστασης σε άλλη: Να κατασκευάσεις ραβδόγραμμα, με βάση τα δεδομένα του πίνακα. Είδη παιχνιδιών Κρυφτό Αγάλματα Μουσικές καρέκλες Σχοινάκι

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100

ΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,

Διαβάστε περισσότερα

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 2 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Αριθμοί μέχρι το 20. -Αξία θέσης ψηφίου - Έννοια δεκάδας και μονάδας. -Πρόσθεση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6

ΕΝΟΤΗΤΑ 10 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΟ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 6 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 4 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΑΦΑΙΡΕΣΗ ΜΕ ΧΑΛΑΣΜΑ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ

ΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και Εκτίμηση Αρ3.12 Εκτιμούν και υπολογίζουν το άθροισμα, τη διαφορά, το γινόμενο και το πηλίκο αριθμών μέχρι το 100 000 και επαληθεύουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας

ΕΝΟΤΗΤΑ 6. Μονοψήφια διαίρεση Προβλήματα αναλογίας Μονοψήφια διαίρεση Προβλήματα αναλογίας ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.13 Αναπτύσσουν και εφαρμόζουν αλγόριθμους της πρόσθεσης, της αφαίρεσης, του πολλαπλασιασμού με τριψήφιους

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2

ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100. Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Δ ΤΑΞΗ ΔΗΜΟΤΙΚΟΥ Δείκτες Επιτυχίας ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επάρκειας ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 1 A ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 2 ΕΝΟΤΗΤΑ 1 ΚΑΝΩ ΟΜΑΔΕΣ, ΜΟΤΙΒΑ, ΑΝΤΙΣΤΟΙΧΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Ομαδοποίηση αντικειμένων με διαφορετικούς τρόπους. -Εντοπισμός ομοιοτήτων και

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΠΡΑΞΕΙΣ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΕΝΟΤΗΤΑ 1 ΠΡΑΞΕΙΣ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΑΞΕΙΣ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 100 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.8 Αναγνωρίζουν και ορίζουν τους άρτιους, τους περιττούς,

Διαβάστε περισσότερα

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Φεβρουάριος 2013. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 21/2/2013 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Φεβρουάριος 2013 2 Β ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 7 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ 3 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000

ΕΝΟΤΗΤΑ 1 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 10 000. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ

ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΕΝΟΤΗΤΑ 14 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 100 ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΛΑΠΛΑΣΙΑ ΤΟΥ 10 ΚΑΙ ΕΝΤΟΣ ΤΗΣ ΔΕΚΑΔΑΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΔΙΑΙΡΕΣΗ. Αρ2.12 Κατανοούν την προπαίδεια του πολλαπλασιασμού και τη διαίρεση ως αντίστροφη πράξη του πολλαπλασιασμού.

ΕΝΟΤΗΤΑ 13 ΔΙΑΙΡΕΣΗ. Αρ2.12 Κατανοούν την προπαίδεια του πολλαπλασιασμού και τη διαίρεση ως αντίστροφη πράξη του πολλαπλασιασμού. ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ2.11 Αναπαριστούν καταστάσεις πρόσθεσης, αφαίρεσης, πολλαπλασιασμού, τέλειας και ατελούς διαίρεσης, χρησιμοποιώντας υλικό όπως κύβους Dienes,

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000

ΕΝΟΤΗΤΑ 12 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 1000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 1000. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα.

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει τους διαμερισμούς και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΔΗΜΟΤΙΚΗ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΔΗΜΟΤΙΚΗ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΔΗΜΟΤΙΚΗ ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ ΑΡΙΘΜΟΙ ΚΑΙ ΠΡΑΞΕΙΣ Δείκτες Επιτυχίας Δείκτες Επάρκειας Επίπεδο Δραστηριοτήτων Μαθηματικές Πρακτικές Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΤΟΣ-ΔΕΚΑΕΤΙΑ-ΑΙΩΝΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 10 000 ΛΥΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΕΝΟΤΗΤΑ 4 ΕΤΟΣ-ΔΕΚΑΕΤΙΑ-ΑΙΩΝΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 10 000 ΛΥΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΠΡΟΒΛΗΜΑΤΟΣ ΕΤΟΣ-ΔΕΚΑΕΤΙΑ-ΑΙΩΝΑΣ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 10 000 ΛΥΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΠΡΟΒΛΗΜΑΤΟΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Φεβρουάριος /2/2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Φεβρουάριος /2/2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Φεβρουάριος 2013 Α ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΕΝΟΤΗΤΑ 9 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 20 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ -Επέκταση της έννοιας του αριθμού μέχρι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών. Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών. Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Σεπτέμβριος 2015 Συγγραφική ομάδα: Ακαδημαϊκοί Συνεργάτες για Δημοτική

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 15. Πρόσθεση και αφαίρεση μέχρι το 100. Διατυπώνουν και επιλύουν προβλήματα διαδικασίας και λεκτικά προβλήματα μίας και δύο πράξεων.

ΕΝΟΤΗΤΑ 15. Πρόσθεση και αφαίρεση μέχρι το 100. Διατυπώνουν και επιλύουν προβλήματα διαδικασίας και λεκτικά προβλήματα μίας και δύο πράξεων. Πρόσθεση και αφαίρεση μέχρι το 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ1.12 Υπολογίζουν το άθροισμα και τη διαφορά αριθμών εντός της δεκάδας και αριθμών πολλαπλασίων του δέκα μέχρι το

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 10 000

ΕΝΟΤΗΤΑ 7 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 10 000 ΑΡΙΘΜΟΙ ΜΕΧΡΙ ΤΟ 10 000 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το. Αρ2.2 Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 ΑΡΙΘΜΟΙ 6-10. Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς μέχρι το 100.

ΕΝΟΤΗΤΑ 3 ΑΡΙΘΜΟΙ 6-10. Συγκρίνουν και διατάσσουν τους φυσικούς αριθμούς μέχρι το 100. ΕΝΟΤΗΤΑ 3 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡΙΘΜΟΙ 6-10 Αρ1.1 Απαγγέλλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών μέχρι το 100. Αρ1.2 Συγκρίνουν και διατάσσουν τους φυσικούς

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών. Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών. Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Κωνσταντίνος Χρίστου Αρετή Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Σεπτέμβριος 2015 Συγγραφική ομάδα: Ακαδημαϊκοί Συνεργάτες για Δημοτική

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ

1. Εισαγωγή ΜΑΘΗΜΑΤΙΚΑ . Εισαγωγή Κύριος στόχος του Προγράμματος Σπουδών των Μαθηματικών είναι να προετοιμάσει τους μαθητές με τον καλύτερο δυνατό τρόπο ώστε να αγαπήσουν τα Μαθηματικά και να κεντρίσει το ενδιαφέρον και την

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού

Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Λογισμικό: Μαθηματικά Α ΣΤ Δημοτικού Κατηγορία αναπηρίας: Κώφωση Βαρηκοΐα Μάθημα: Μαθηματικά Τάξη/εις: Α Στ Δημοτικού Παρουσίαση Λογισμικού: Κατερίνα Αραμπατζή Προμηθευτής: Postscriptum Advanced Communication

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Φεβρουάριος 2015 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης:

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών). ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),

Διαβάστε περισσότερα

Προϋποθέσεις Διδασκαλίας & Μάθησης

Προϋποθέσεις Διδασκαλίας & Μάθησης Νέα Αναλυτικά Προγράμματα Μαθηματικών Επιμόρφωση Μάχιμων Εκπαιδευτικών 2 η συνάντηση εκέμβριος 2010 Κωνσταντίνος Χρίστου Δήμητρα Πίττα ΠανταζήΠανταζή Ρίτα Παναούρα Μάριος Πιττάλης Προϋποθέσεις Διδασκαλίας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΙΘΑΝΟΤΗΤΕΣ ΚΥΚΛΙΚΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΚΤΟΙ ΑΡΙΘΜΟΙ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΕΚΑΔΙΚΩΝ ΑΡΙΘΜΩΝ ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΕΝΟΤΗΤΑ 12 ΠΙΘΑΝΟΤΗΤΕΣ ΚΥΚΛΙΚΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΚΤΟΙ ΑΡΙΘΜΟΙ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΕΚΑΔΙΚΩΝ ΑΡΙΘΜΩΝ ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ ΚΥΚΛΙΚΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΚΤΟΙ ΑΡΙΘΜΟΙ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΕΚΑΔΙΚΩΝ ΑΡΙΘΜΩΝ ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Στ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Στ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Sample 2 ΜΕΡΟΣ A ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Σε αυτό το μέρος υπάρχουν 15 ερωτήσεις. Να απαντήσετε ΟΛΕΣ τις ερωτήσεις. Σε κάθε ερώτηση η σωστή απάντηση είναι ΜΟΝΟ ΜΙΑ. Να βάλετε σε ΚΥΚΛΟ τη σωστή απάντηση.

Διαβάστε περισσότερα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα

Τι είναι: μονάδα, δεκάδα και εκατοντάδα Α ΠΕΡΙΟ ΟΣ - ΕΝΟΤΗΤΑ 1 η Κεφάλαιο 1ο Παιχνίδια στην κατασκήνωση Υπενθύμιση τάξης Τι είναι: μονάδα, δεκάδα και εκατοντάδα Τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 αντιστοιχούν στις μονάδες, λέμε δηλαδή ανήκουν

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Η Διδασκαλια των Εξισωσεων ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ

Η Διδασκαλια των Εξισωσεων ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Η Διδασκαλια των Εξισωσεων ΣΤΟ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ Στόχοι Υποστόχοι Δραστηριότητες Πετράκη Ζαχαρούλα Προύντζου Δέσποινα Χριστοπούλου Ευθαλεία Κανονικότητες Συναρτήσεις Αλγεβρικές Παραστάσεις Ισότητα Ανισότητα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8 ΠΡΑΞΕΙΣ ΚΛΑΣΜΑΤΩΝ ΚΑΙ ΜΙΚΤΩΝ, ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ, ΣΤΕΡΕΑ

ΕΝΟΤΗΤΑ 8 ΠΡΑΞΕΙΣ ΚΛΑΣΜΑΤΩΝ ΚΑΙ ΜΙΚΤΩΝ, ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ, ΣΤΕΡΕΑ ΠΡΑΞΕΙΣ ΚΛΑΣΜΑΤΩΝ ΚΑΙ ΜΙΚΤΩΝ, ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ, ΣΤΕΡΕΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και εκτίμηση Αρ3.15 Εκτελούν πράξεις πολλαπλασιασμού, όταν ένας παράγοντας είναι ακέραιος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Γ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 01, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα:

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Α τάξη Β τάξη Γ τάξη Παρατηρούν μετατοπίσεις και στροφές (90 ο, 180 ο, 360 ο ) και μπορούν αν προβλέψουν το αποτέλεσμα. Αναγνωρίζουν συμμετρικά

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΙΚΩΝ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ A ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Δείκτες Επιτυχίας Α3.2 Κατανοούν την έννοια της μεταβλητής, ερμηνεύουν και επεξηγούν σχέσεις μεταξύ μεταβλητών.

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ

ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ1.1 Περιγράφουν και κατασκευάζουν διάφορα είδη γραμμών (ανοιχτές, κλειστές, ευθείες, καμπύλες) και δισδιάστατα

Διαβάστε περισσότερα