Ζ. Κύκλος αναφοράς και περιστρεφόµενα διανύσµατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ζ. Κύκλος αναφοράς και περιστρεφόµενα διανύσµατα"

Transcript

1 Ζ. Κύκλος αναφοράς και περιστρεφόµενα διανύσµατα Δυο βήµατα µέχρι τον κύκλο, τρία µέχρι τα περιστρεφόµενα, ένα ακόµη βήµα ασταθές κι ένας πειρασµός.. Ο πειρασµός Τα παραπάνω βάζουν αρκετούς στον πειρασµό να µετατρέψουν τα πλάτη Α 1 και Α των δύο απλών αρµονικών ταλαντώσεων (και όχι µόνο) σε περιστρεφόµενα...διανύσµατα ενός κύκλου αναφοράς και να συνθέτουν απλές αρµονικές ταλαντώσεις απλώς συνθέτοντας (προσθέτοντας) διανύσµατα µε τον κανόνα του παραλληλογράµ- µου. Με δεδοµένο βέβαια ότι ο κανόνας του παραλληλογράµµου δεν είναι τίποτε περισσότερο από το νόµο των συνηµίτονων και των ηµίτονων, οι οποίοι βασικά δεν απαιτούν διανύσµατα, θα µπορούσαµε να συνθέτουµε ευθύγραµµα τµήµατα ΟΜ ή τις επιβατικές ακτίνες του κινητού Μ. υο τρεις λοιπόν τυχερές σχέσεις των µαθηµατικών κάνουν Σχήµα 5.9 τυχερά τα περιστρεφόµενα διανύσµατα, τα οποία, παρόλο ότι είναι ένα τρυκ, µπορούν σε κάποιες περιπτώσεις να δώσουν λύσεις, ακόµη και όταν δεν έχουµε απλές αρµονικές ταλαντώσεις, όπως π.χ. σε προβλήµατα κυκλωµάτων όπου ο διεγέρτης επιβάλλει τη συχνότητά του σε όλα σχεδόν τα µεγέθη του κυκλώµατος. Το πρόβληµα όµως που µπαίνει µετά από όλα αυτά είναι το εξής: Χρειάζονται κύκλοι αναφοράς και περιστρεφόµενα διανύσµατα κατά τη διδασκαλία της Λυκειακής Φυσικής; Κατά τη γνώµη µας όχι µόνο δε χρειάζονται, αλλά δηµιουργούν προβλήµατα! Ας επιχειρη- µατολογήσουµε: 1) Τα περιστρεφόµενα διανύσµατα δεν έχουν καµιά, απολύτως καµιά µαθηµατική δοµή και υποδοµή σαθρή διαθέτουν, αφενός µεν γιατί το επίπεδο στο οποίο περιστρέφονται δεν έχει καµιά σχέση µε το µιγαδικό επίπεδο και αφετέρου γιατί η υποτυπώδης τριγωνοµετρία τους στριµώχνεται στο χώρο και στις γωνίες ενός παραλληλογράµµου. Έτσι λοιπόν, όταν οι αρχικές φάσεις φ 1 και φ των εξισώσεων ταλάντωσης που πρόκειται να συντεθούν διαφέρουν µεταξύ τους περισσότερο από π rad, παραλληλόγραµµο µε γωνία φ 1 φ µεταξύ των πλατών-διανυσµάτων Α 1 και Α δε µπορεί να σχηµατιστεί και συνεπώς πρέπει ή να γίνει εισαγωγή καινούριων κανόνων (αλχηµείες) ώστε να σχηµατιστεί και να αξιοποιηθεί σώνει και καλά το παραλληλόγραµµο ή να καταφύγουµε σε τύπους ουσιαστικά αναπόδεικτους, χωρίς να σχηµατίσουµε παραλληλόγραµµο. Για τους µαθητές πάντως στην περίπτωση αυτή θα υπάρξει µπέρδεµα. ) Τα περιστρεφόµενα διανύσµατα δεν έχουν καµιά, απολύτως καµιά µαθηµατική δοµή και υποδοµή σαθρή διαθέτουν. Έτσι αν σε κάποιο φαινόµενο, αν σε κάποια άσκηση εµφανιστεί γινόµενο ταλαντώσεων π.χ. γινόµενο δύο ρευµάτων i 1 i, γινόµενο δύο αποµακρύνσεων x 1 x, γινόµενο δύο αρµονικών συναρτήσεων γενικά, όλο αυτό το σκηνικό µε τα δια- 1

2 νυσµατοποιηθέντα βαθµωτά µεγέθη, που τόσα µαθήµατα επί µαθηµάτων χρειάστηκε για να στηθεί στα µάτια των µαθητών, θα καταρρεύσει σε δευτερόλεπτα. 3) Μια τυχερή συγκυρία, µια συνωµοσία θα λέγαµε των Μαθηµατικών έκανε να λειτουργήσει αυτό το τρυκ των περιστρεφόµενων διανυσµάτων. Όµως αυτό ξεχνιέται και αλλοιώνεται τελείως η εικόνα και της προέλευσης και των δυνατοτήτων των περιστρεφόµενων διανυσµάτων. Γρήγορα ο εκτροχιασµός είναι πλήρης, αφού ρόλοι αντιστρέφονται και αποδείξεις κακοποιούνται. εν είναι δυνατό να λανσάρεται ως σοβαρή µαθηµατική απόδειξη, η απόδειξη µε περιστρεφόµενα διανύσµατα, σχέσεων τύπου A = A1 + A + A1 Aσυνϕ και Aηµϕ εϕϑ = (5.107) A + A συνϕ Αυτού του είδους οι σχέσεις, που αφορούν τις αρµονικές ταλαντώσεις και που αποδείχθηκαν µε µαθηµατικά ότι είναι έτσι και ότι αφορούν όντως αυτές τις ταλαντώσεις, αυτές ακριβώς οι σχέσεις συνωµότησαν για να υπάρξουν τα περιστρεφόµενα διανύσµατα ως τρυκ και µόνο ως τρυκ. Με άλλα λόγια δηλαδή, δεν αποδεικνύεται µε περιστρεφόµενα διανύσµατα ότι η σύνθεση δύο απλών αρµονικών ταλαντώσεων είναι επίσης απλή αρµονική ταλάντωση, µε πλάτος και αρχική φάση που δίνονται από σχέσεις όπως οι (5.107), αλλά αντίθετα, σχέσεις τύπου (5.107), που αποδεικνύονται µε αυστηρά µαθηµατικά (διαφορικές, τριγωνοµετρία κ.λ.π.) ότι είναι έτσι και ότι όντως αφορούν απλές αρµονικές ή γενικότερα αρµονικές ταλαντώσεις, θυ- µίζουν κανόνα παραλληλογράµµου, µε αποτέλεσµα να στηρίζουν για λίγα µόνο βήµατα την ιδέα των περιστρεφόµενων διανυσµάτων. ίνοντας όµως στα µάτια των παιδιών τέτοιας έκτασης προτεραιότητα σε περιστρεφόµενα διανύσµατα, αλλάζει η σειρά, χαλιούνται συλλογισµοί, κρύβεται η ουσία των πραγµάτων. ε χρειάζονται που δε χρειάζονται τα περιστρεφόµενα, να ανάγονται όµως και σε σοβαρό µαθηµατικό εργαλείο απόλυτης προτεραιότητας, είναι άδικο για τα παιδιά που προσπαθούν να δοµήσουν µια σοβαρή σκέψη. Άδικο όµως και για τα Μαθηµατικά τους που φαντάζουν ανίκανα να λειτουργήσουν και αποστασιοποιηµένα από τις ανάγκες, ακόµη και µιας λυκειακής Φυσικής. Πώς να το πούµε; Όταν δίνουµε τόση σηµασία στα περιστρεφόµενα χαλάει η σειρά των πραγµάτων!!! Αδικούνται τα µαθηµατικά των παιδιών και η Φυσική τους στέκεται µετέωρη και γεµάτη αλχηµείες. 4) Στα µάτια αρκετών από αυτούς που δουλεύουν µε κύκλους αναφοράς και µε περιστρεφόµενα, η ταλάντωση παύει να είναι κίνηση αυτοδύναµη και γίνεται απόλυτα υποβοηθούµενη από την οµαλή κυκλική κίνηση, η οποία στο τέλος παίρνει τη θέση της ταλάντωσης. Αρκετοί νοµίζουν ότι δεν µπορεί να υπάρξει µελέτη µιας ταλάντωσης αν δεν ζωγραφιστούν κύκλοι. Ακούνε ταλάντωση και σκέφτονται κύκλους. Ακούνε γωνιακή συχνότητα και σκέφτονται γωνιακές ταχύτητες. Ακούνε φάση και σκέφτονται γωνίες. Έχουµε και εδώ αναστροφή των προτεραιοτήτων, καθώς, αντί να δοθεί προτεραιότητα στην ταλάντωση, δίνεται στην οµαλή κυκλική κίνηση, που στο κάτω κάτω η εξίσωση κίνησής της µπορεί να θεωρηθεί επαλληλία των εξισώσεων κίνησης δύο αρµονικών ταλαντώσεων οι οποίες εξελίσσονται σε κάθετες διευθύνσεις. Με άλλα λόγια, ενώ οι ταλαντώσεις µπορούν να περιγράψουν την οµαλή κυκλική κίνηση και όχι το αντίθετο, αποκτά κυρίαρχο ρόλο η κυκλική κίνηση. Και κάτι ακόµη πιο οδυνηρό. Η γωνιακή ταχύτητα κορυφαίο διανυσµατικό µέγεθος κυρίαρχο στη µελέτη της κίνησης ενός στερεού, συγκρίνεται, παραλληλίζεται και στο 1

3 τέλος ταυτίζεται µε τη γωνιακή συχνότητα της ταλάντωσης, ένα απλό µονόµετρο µέγεθος. Ας συνοψίσουµε: Η απλή αρµονική ταλάντωση είναι κίνηση ανεξάρτητη, αυτοδύναµη και ευθύγραµ- µη. εν έχει ανάγκη και σχέση ούτε µε κύκλους, ούτε µε ακτίνες, ούτε µε γωνίες και γωνιακές ταχύτητες. Το να εξωθούµε το µαθητή να βλέπει κύκλους και γωνίες σε µια ευθύγραµµη κίνηση είναι επικίνδυνο για τη λογική του. Ό,τι υπάρχει µέσα στον τριγωνοµετρικό αριθµό της εξίσωσης κίνησης µιας α.α.τ. είναι η φάση και δεν είναι γωνία κάποιας κίνησης ή κάποιας περιστροφής. Καλό είναι λοιπόν να τη λέµε µε το όνοµά της, φάση και όχι γωνία. Άλλο φάση και άλλο γωνία!! D Το σύµβολο ω είναι µια συντοµογραφία της ποσότητας που παρουσιάζεται σε m όλες τις σχέσεις της α.α.τ. Το ω επιλέχτηκε θετικό και η αξία του αντλείται από το γεγονός ότι συνδέεται µε την περίοδο της κίνησης. Είναι µια µονόµετρη ποσότητα, ένα απλό όνοµα. εν είναι γωνιακή ταχύτητα και δεν έχει καµιά σχέση µε αυτό το κορυφαίο διανυσµατικό µέγεθος το οποίο πουθενά στην αντιµετώπιση του φαινοµένου δεν υπεισέρχεται. Θα µπορούσαµε αντί του ω να συµβολίζαµε την ποσότητα D µε οποιοδήποτε γράµµα π.χ. γ (βλέπε σελίδες 3 και 413) m εν είναι ανησυχητικό που ελάχιστοι έως κανένας µαθητής δε µας ρώτησε να του σχεδιάσουµε πάνω στην πραγµατική κίνηση, πάνω στη ταλάντωση δηλαδή, την γωνιακή ταχύτητα; εν είναι ανησυχητικό που ελάχιστοι έως κανένας µαθητής δε µας ρώτησε να του σχεδιάσουµε πάνω στην πραγµατική κίνηση τη γωνία που υπάρχει µέσα στο ηµίτονο; Που είναι αυτή η γωνία και που είναι το επίπεδο για να ζωγραφίσει την ω. Γιατί του χαλάµε τη λογική του που πάει µόλις τώρα να φτιάξει µε αυστηρότητα; Με ποιες λογικές άµυνες και ποια συλλογιστικά φίλτρα θα δεχτεί να του ανακατέψουµε µια ευθύγραµµη κίνηση µε κυκλικές κινήσεις φαντασµάτων; Πόσο αλώβητος θα µείνει µετά; 5) Υπάρχουν πολλοί άλλοι τρόποι αυστηρότατοι, πολύ πιο σύντοµοι και πλήρως κατανοητοί από τους µαθητές, που λειτουργώντας θαυµάσια σε όλες τις δυνατές περιπτώσεις σύνθεσης ταλαντώσεων καθιστούν περιττή την καταφυγή στα περιστρεφόµενα.(βλέπε σελίδα 377) 6) Κατά τη διδασκαλία των κύκλων αναφοράς και των περιστρεφόµενων, χρησιµοποιώντας µια τελείως λανθασµένη και µεθοδολογία και ορολογία, µπαίνουν σε αµφισβήτηση ή αποσαθρώνονται έννοιες, ορισµοί και δοµές τόσο της Φυσικής όσο και των Μαθηµατικών. Και είναι ορατός ο κίνδυνος να χαλάσει η σκέψη των µαθητών. Οι ενδείξεις πολλές. Πρώτη ένδειξη: Οι φυσικοί µιλάνε δική τους µαθηµατική διάλεκτο Είναι αδύνατο να κατανοήσει ο µαθηµατικός τι προσπαθεί να κάνει ένας µαθητής του, ό- ταν για να προσθέσει δυο ηµίτονα, τον βλέπει να αφήνει την τριγωνοµετρία που του έµαθε, να µετατρέπει απλούς θετικούς αριθµούς σε διανύσµατα, να τα ζωγραφίζει µαζί µε κύκλους και να τα κάνει να περιστρέφονται. Όσες φορές έδωσα σε µαθηµατικό να διαβάσει κείµενο από εξωσχολικά βοηθήµατα που αναφερόταν σε περιστρεφόµενα διανύσµατα, ο άνθρωπος σταυροκοπιότανε. οκιµάστε το! εύτερη ένδειξη: Χαλιούνται ορισµοί Φυσικής Αρκετές φορές, για να µην πούµε όλες, γράφεται το εξής: Η προβολή Μ στον άξονα y, του άκρου Μ του περιστρεφόµενου διανύσµατος εκτελεί απλή αρµονική ταλάντωση. 3

4 Όµως όλοι ξέρουµε ότι οι σκιές και τα φαντάσµατα δεν κάνουν απλές αρµονικές ταλαντώσεις. Ώρα είναι να γράψουµε για δαύτα και κανένα νόµο του Νεύτωνα. Η συντεταγµένη µιας προβολής µπορεί να δίνεται από κάποια συνάρτηση του χρόνου. Να κάνει όµως απλή αρµονική ταλάντωση είναι κρίµα για τη Φυσική που βλέπει έναν ορισµό της, στηριγµένο σε ειδική κατηγορία δυνάµεων και διαφορικών εξισώσεων, να αποσαθρώνεται. Τρίτη ένδειξη: Χαλιούνται συλλογισµοί και διαλύονται άµυνες Λένε στους µαθητές ότι το πλάτος παριστάνεται µε διάνυσµα, ενώ µόλις χθες τους είχανε πει ότι είναι µονόµετρο θετικό µέγεθος και µετά µια σελίδα του σχολικού βιβλίου, όταν οι συχνότητες των ταλαντώσεων δε θα είναι πια ίδιες, τους ξανάλενε ότι το πλάτος είναι µονό- µετρο µέγεθος και να µη το παριστάνουνε πια ως διάνυσµα, αλλά να χρησιµοποιήσουν τριγωνοµετρία. Ελάχιστοι έως κανένας µαθητής από αυτούς που ακούνε αυτές τις παλινωδίες δεν αντιδρά. Και αυτό είναι πολύ ανησυχητικό! Και το χειρότερο νοµίζουν ότι η Φυσική δεν έχει σχέση µε τα Μαθηµατικά. Μεταφέρω τα λόγια ενός από αυτούς τους µαθητές που ρώτησα γιατί δέχονται τέτοια ρευστά πράµατα. Να τι µου είπε: Το πλάτος ταλάντωσης και µερικά άλλα µεγέθη όπως φορτίο, ένταση ρεύµατος, τάση κ.λ.π. δεν είναι µονόµετρα όπως τα άλλα µονόµετρα µεγέθη π.χ. η µάζα. Έχουν τη δυνατότητα να αντιµετωπίζονται όχι ως διανύσµατα των µαθηµατικών αλλά ως περιστρεφόµενα διανύσµατα. Η Φυσική δεν έχει σχέση µε τα Μαθηµατικά και δεν έχει την αυστηρότητα των Μαθηµατικών. Άλλο τα διανύσµατα των Μαθηµατικών και άλλα τα διανύσµατα της Φυσικής. Στη Φυσική είναι πιο ελαστικά τα πράµατα. Αν κάτι µας βολεύει ως µονόµετρο το ορίζουµε ως µονόµετρο, αν µας βολεύει ως διανυσµατικό το ορίζουµε ως διανυσµατικό. Είναι θέµα ορισµού δηλαδή και κυρίως τι µας βολεύει 7) Κύκλοι αναφοράς και περιστρεφόµενα δεν περιέχονται στο σχολικό βιβλίο Φυσικής Κατεύθυνσης Γ Λυκείου και κατά συνέπεια, µιλώντας κυριολεκτικά, θεωρούνται εκτός ύ- λης. Και είναι ρίσκο η χρήση των περιστρεφοµένων αν δεν υπάρξει οδηγία κατάλληλη από την επιτροπή των εξετάσεων. 8) Η έννοια του περιστρεφόµενου διανύσµατος προσθέτει στους µαθητές πολλές επιπλέον ώρες διδασκαλίας, ατέλειωτες σηµειώσεις και σελίδες εξωσχολικών βοηθηµάτων για διάβασµα, χωρίς να υπάρχει κανένας λόγος. Έτσι πέρα από την οικολογική ζηµιά που γίνεται µε αυτό το ατέλειωτο χαρτοµάνι, οι µαθητές χάνουν ώρες από τη ζωή τους για να διδαχτούν και να αρκετές φορές να πληρώσουν πράγµατα που δε τους χρειάζονται. Είναι τόσο περιορισµένη η εφαρµογή των περιστρεφόµενων και τόσο µεγάλη η απόστασή τους από τη µαθηµατική αυστηρότητα, που δεν αξίζουν ούτε τις ώρες που απαιτεί η διδασκαλία τους, ούτε το χαρτί που σπαταλιέται για δαύτα, ούτε τα χρήµατα που πιθανώς δίνονται. Ουσιαστικά αφορούν µια µόνο σελίδα του σχολικού (σύνθεση απλών αρµονικών ταλαντώσεων ίδιας συχνότητας), αφού στη επόµενη κιόλας σελίδα του σχολικού οι µαθητές θα εξαναγκαστούν να τρέξουν πάλι πίσω στην τριγωνοµετρία τους. Αν όµως ήταν να ξανατρέξουν πίσω στα µαθηµατικά του σχολείου τους, γιατί τα παράτησαν; Άξιζε όλη αυτή η ταλαιπωρία για µια µόνο σελίδα Φυσικής; 9) Με τα περιστρεφόµενα δεν επιλύεται κανένα µα κανένα πρόβληµα Φυσικής που δεν επιλύεται και µε τις σχέσεις που ήδη υπάρχουν στο σχολικό βιβλίο (το δείξαµε στη σελ. 378 κατά την παρουσίαση του 3ου τρόπου σύνθεσης α.α.τ.) ή µε τα µαθηµατικά που ήδη οι µαθητές ξέρουν από το Σχολείο τους. 4

5 10) Από τα παιδιά που θα ακούσουν για περιστρεφόµενα διανύσµατα ελάχιστα έως κανένα δε θα τα χρειαστεί στο πανεπιστήµιο. Πρώτο γιατί οι πιο πολλοί από τους µαθητές που θα ακούσουν για περιστρεφόµενα θα περάσουν σε σχολές που δεν έχουν σχέση µε αυτά. εύτερο γιατί όσοι περάσουν σε σχολή που έχει στο αναλυτικό της πρόγραµµα κυκλώµατα ή συνθέσεις, θα χρησιµοποιήσουν µιγάδες. Και βέβαια αφού έχουν ξεκαθαρίσει στο µυαλό τους και κατανοήσει απόλυτα µε ποιο τρόπο, µε ποιες συµφωνίες και µε ποιες αντιστοιχίες η µελέτη των κυκλωµάτων και των συνθέσεων µπορεί να υποβοηθηθεί από την πανίσχυρη µαθηµατική δοµή των µιγαδικών συναρτήσεων. Έτσι θα ξέρει ο φοιτητής πλέον, ποια είναι τα όρια αυτής της βοήθειας, που αρχίζει και που τελειώνει το τρυκ. Μου φαίνεται απίθανο να υπάρχει σχολή που να αγνοεί την παρουσίαση µε µιγάδες και να χρησιµοποιεί περιστρεφόµενα. Με άλλα λόγια, αν χρειαστεί κάτι σε µια σχολή, δε θα είναι τίποτε από τα περιστρεφόµενα διανύσµατα, αλλά µιγάδες και τριγωνοµετρία. Γιατί λοιπόν να µην ενισχύσουµε το µαθηµατικό τους υπόβαθρο εφαρµόζοντας την τριγωνοµετρία του σχολείου σε παραδείγµατα Φυσικής; 11) Τα παιδιά που παίρνουν ηλεκτρολογία και που αναγκαστικά λόγω... του ανεκδιήγητου και αχαρακτήριστου σχολικού τους βιβλίου θα ακούσουν για περιστρεφόµενα διανύσµατα στα κυκλώµατα εναλλασσόµενων τάσεων. ηλαδή σε εξαναγκασµένες ταλαντώσεις. Όµως Ο αριθµός των παιδιών που επιλέγουν ηλεκτρολογία είναι συντριπτικά µικρότερος από τον αριθµό των παιδιών που δεν επιλέγουν ηλεκτρολογία. ε χρειάζεται τα περιστρεφόµενα να καθιερωθούν στη συνείδηση αυτών των λίγων, έστω, παιδιών και µέσα από τη Φυσική. Πρέπει να τους τονίζονται τα όρια εφαρµογής των περιστρεφόµενων και ο προσδιορισµός τους ως τρυκ. Κατά τη χρησιµοποίηση των περιστρεφόµενων διανυσµάτων στην Ηλεκτρολογία, δε δίνεται ούτε η έκταση, ούτε η σοβαροφάνεια που τους δίνεται στη Φυσική και συνεπώς ο κίνδυνος εκτροχιασµού είναι σαφώς µειωµένος. 1) Παρόλο που δεν νοµίζουµε ότι χρειάζεται, αν θέλαµε να δώσουµε αποδείξεις των σχέσεων που ισχύουν για το πλάτος και την αρχική φάση της συνισταµένης ταλάντωσης, µπορούσαµε να κάνουµε την τριγωνοµετρική απόδειξη της σελ Στο κάτω κάτω είναι µαθηµατικά αυστηρή µε όλους τους απαραίτητους και σωστούς περιορισµούς, είναι απόλυτα κατανοητή από τους µαθητές, καλύπτει όλες τις περιπτώσεις αρχικών φάσεων, είναι πολύ πιο σύντοµη από τις αντίστοιχες αποδείξεις των περιστρεφόµενων διανυσµάτων και το κυριότερο δε χρειάζεται οι µαθητές ούτε να αλλάζουν από µέρα σε µέρα τα µονόµετρα µεγέθη σε διανυσµατικά, ούτε να διδάσκονται καινούρια πράµατα, χωρίς καµιά ουσιαστική αξία. Έτσι κι αλλιώς διδάσκοντας σύνθεση απλών αρµονικών ταλαντώσεων δεν διδάσκουµε κάποιο φυσικό φαινόµενο, αλλά µαθηµατικά παιχνίδια. Προσθέσεις ηµίτονων και συνηµίτονων διδάσκουµε. Ας τις διδάξουµε συνεπώς µε την αίγλη των µαθηµατικών και την αυστηρότητα που αξίζει σε µια άσκηση µαθηµατικών (γιατί άσκηση µαθηµατικών διδάσκουµε κατά βάθος) και όχι µε το τρυκ των περιστρεφόµενων διανυσµάτων (Από το βιβλίο «Θέµατα Φυσικής-Παρανοήσεις και προτάσεις υπέρβασής τους») 5

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος;

Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Είναι το ηλεκτρικό ρεύµα διανυσµατικό µέγεθος; Για να εξετάσουµε το κύκλωµα LC µε διδακτική συνέπεια νοµίζω ότι θα πρέπει να τηρήσουµε τους ορισµούς που δώσαµε στα παιδιά στη Β Λυκείου. Ας ξεκινήσουµε

Διαβάστε περισσότερα

Ορισµοί και εξισώσεις κίνησης

Ορισµοί και εξισώσεις κίνησης Ορισµοί και εξισώσεις κίνησης Σκοπός του κειµένου είναι να υποστηριχθούν οι παρακάτω θέσεις εν έχουν κανένα απολύτως νόηµα φράσεις του τύπου «η φάση της ταλάντωσης είναι» ή «η αρχική φάση της ταλάντωσης

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες εξελίσσονται γύρω από την ίδια δέση ισορροπίας Έστω ότι ένα σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση;

Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Εξαρτάται η συχνότητα από τη µάζα στην Απλή Αρµονική Ταλάντωση; Ξεκινώντας θα ήθελα να θυµίσω κάποια στοιχεία που σχετίζονται µε τον ορισµό της συχνότητας σε ένα περιοδικό φαινόµενο, άρα και στην ΑΑΤ.

Διαβάστε περισσότερα

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικό διαγώνισµα Φυσικής Κατεύθυνσης Γ λυκείου 009 ΘΕΜΑ 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σώµα

Διαβάστε περισσότερα

Α. Η ιδιαιτερότητα της απλής αρµονικής ταλάντωσης

Α. Η ιδιαιτερότητα της απλής αρµονικής ταλάντωσης Η «σύνθεση απλών αρµονικών ταλαντώσεν ίδιας διεύθυνσης και ίδιας συχνότητας» είναι µια απλή πρόσθεση αρχικών συνθηκών (δ µέρος) Α. Η ιδιαιτερότητα της απλής αρµονικής ταλάντσης Πρόταση 1: «Η επαλληλία

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν.

Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως και να ήταν. Ένα όνειρο που ονειρεύεσαι μόνος είναι απλά ένα όνειρο. Ένα όνειρο που ονειρεύεσαι με άλλους μαζί είναι πραγματικότητα. John Lennon Κάπως έτσι ονειρεύτηκα την Γραμμική Αρμονική Ταλάντωση!!! Μπορεί όμως

Διαβάστε περισσότερα

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του

Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του A A N A B P Y T A ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΠΕΔΑ ΑΠΛΑ ΑΡΜΟΝΙΚΑ ΚΥΜΑΤΑ 9 5 0 Προσδιορισμός ενός επίπεδου απλού αρμονικού κύματος από τις ταλαντώσεις σημείων του Περιεχόμενα Εισαγωγή και παραδείγματα

Διαβάστε περισσότερα

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1

Σ 1 γράφεται ως. διάνυσµα στο Σ 2 γράφεται ως. Σ 2 y Σ 1 Στη συνέχεια θεωρούµε ένα τυχαίο διάνυσµα Σ 1 γράφεται ως, το οποίο στο σύστηµα Το ίδιο διάνυσµα µπορεί να γραφεί στο Σ 1 ως ένας άλλος συνδυασµός τριών γραµµικώς ανεξαρτήτων διανυσµάτων (τα οποία αποτελούν

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Παρατηρήσεις στη Φυσική Κατεύθυνσης Γ Λυκείου

Παρατηρήσεις στη Φυσική Κατεύθυνσης Γ Λυκείου Παρατηρήσεις στη Φυσική Κατεύθυνσης Γ Λυκείου 1) Στο θέµα Α 3, η Κεντρική Επιτροπή Εξετάσεων ενώ αρχικά ενέκρινε ως σωστή την επιλογή Α3γ, αργότερα έδωσε ως σωστή επιλογή και την Α3β. Με οδηγία λοιπόν

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεών σας τον αριθµό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

5 Σύνθεση Ταλαντώσεων

5 Σύνθεση Ταλαντώσεων Πρόχειρες Σηµειώσεις 011-01 5 Σύνθεση Ταλαντώσεων Ενα σώµα µπορει να εκτελεί ταυτόχρονα δυο αρµονικές ταλαντώσεις, οι οποίες µπορεί να έχουν οποιαδήποτε διεύθυνση. Το αποτέλεσµα είναι, γενικά, µια πολύπλοκη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Ο χώρος. 1.Μονοδιάστατη κίνηση

Ο χώρος. 1.Μονοδιάστατη κίνηση Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 25 ΑΠΡΙΛΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 5 ΑΠΡΙΛΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs.

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs. Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός hp://www.perifysikhs.com Αναζητώντας την αιτία των κινήσεων Η µελέτη των κινήσεων,

Διαβάστε περισσότερα

ΟΠΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων;

ΟΠΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; Σύνθεση ταλαντώσεων ΚΕΦΑΛΑΙΟ 1 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; 4.2 Να γίνει η σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας, ίδιας διεύθυνσης, διαφοράς φάσης μεταξύ τους φ,

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 11 ΙΟΥΛΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο

Διαβάστε περισσότερα

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό.

ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα φυσικά µεγέθη από τη Στήλη Ι και, δίπλα σε καθένα, τη µονάδα της Στήλης ΙΙ που αντιστοιχεί σ' αυτό. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο 1.1 Να γράψετε στο τετράδιό σας τα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Α. Σηµεία γενικότερου προβληµατισµού

Α. Σηµεία γενικότερου προβληµατισµού Εξαναγκασµένος αρµονικός ταλαντωτής χωρίς απόσβεση Το καλοκαίρι που πέρασε, η «περιπέτεια» της φθίνουσας κλόνισε την πίστη µου στην αυθεντία των πανεπιστηµιακών µας βιβλίων. Σοκαρίστηκα διαπιστώνοντας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 9 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 6 : Τηλ.: 076070 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΥΚΕΙΟΥ 009 ΘΕΜΑ Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ Θέμα Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Στις

Διαβάστε περισσότερα

ΘΕΜΑ 1o. , τότε η ένταση του ρεύµατος στο κύκλωµα γίνεται µέγιστη τη χρονική στιγµή: T t= γ. 4. T 2 Μονάδες 5

ΘΕΜΑ 1o. , τότε η ένταση του ρεύµατος στο κύκλωµα γίνεται µέγιστη τη χρονική στιγµή: T t= γ. 4. T 2 Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 11 ΙΟΥΛΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Θέμα 1 Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Θέμα 1 Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Θέμα 1 Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1. Αν σε ένα ελεύθερο σώμα που είναι αρχικά ακίνητο ασκηθεί δύναμη

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β 1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β 1.4.1. Σύνθεση ταλαντώσεων ίδιας συχνότητας Ένα σώμα εκτελεί ταυτόχρονα δύο ταλαντώσεις της ίδιας διεύθυνσης, γύρω από την ίδια θέση ισορροπίας με εξισώσεις: y 1 =0,2

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση:

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) Θέμα 1 ο 1100 11 -- 001111 1. α. γ 3. β 4. γ 5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ 1. Α. ΣΣωωσσττόό ττοο αα.. Θέμα ο Η ιδιοσυχνότητα του συστήματος

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

0 0 30 π/6 45 π/4 60 π/3 90 π/2

0 0 30 π/6 45 π/4 60 π/3 90 π/2 Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Τα δύο

Διαβάστε περισσότερα

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. http://www.perifysikhs.com

Επαλληλία Αρµονικών Κυµάτων. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. http://www.perifysikhs.com Επαλληλία Αρµονικών Κυµάτων - εκέµβρης 2014 Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://www.perifysikhs.com 1. Θέµα Α - Ερωτήσεις πολλαπλής επιλογής 1.1. ύο σύγχρονες κυµατικές πηγές Α και

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση: Αρμονικό κύμα ΚΕΦΑΛΑΙΟ 2 51 Κατά τη διάδοση ενός κύματος σε ένα ελαστικό μέσο: α μεταφέρεται ύλη, β μεταφέρεται ενέργεια και ύλη, γ όλα τα σημεία του ελαστικού μέσου έχουν την ίδια φάση την ίδια χρονική

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύµατα. Οµάδα.

2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1.41. Κάποια ερωτήµατα πάνω σε µια κυµατοµορφή. Ένα εγκάρσιο αρµονικό κύµα, πλάτους 0,2m, διαδίδεται κατά µήκος ενός ελαστικού γραµµικού µέσου, από αριστερά προς τα δεξιά

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

R I. Το άθροισµα των ρευµάτων

R I. Το άθροισµα των ρευµάτων Το άθροισµα των ρευµάτων Το άρθρο 2 απευθύνεται σε συναδέλφους και η έκφραση : «διαρρέεται συγχρόνως από δύο συνεχή ρεύµατα» είναι συντοµευµένη έκφραση. Εγώ κατάλαβα : «ιαρρέεται από ηλεκτρικό ρεύµα Ι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr

NTÙÍÉÏÓ ÃÊÏÕÔÓÉÁÓ - ÖÕÓÉÊÏÓ www.geocities.com/gutsi1 -- www.gutsias.gr Έστω µάζα m. Στη µάζα κάποια στιγµή ασκούνται δυο δυνάµεις. ( Βλ. σχήµα:) Ποιά η διεύθυνση και ποιά η φορά κίνησης της µάζας; F 1 F γ m F 2 ιατυπώστε αρχή επαλληλίας. M την της Ποιό φαινόµενο ονοµάζουµε

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σώµα

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 25 ΜΑÏΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 28 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Για τις ημιτελείς

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 6-0- ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύματα. Ομάδα Δ.

2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1 Τρέχοντα Κύματα. Ομάδα Δ. 2.1.41. Κάποια ερωτήματα πάνω σε μια κυματομορφή. Α d B Γ d Δ t 0 E Ένα εγκάρσιο αρμονικό κύμα, πλάτους 0,2m, διαδίδεται κατά μήκος ενός ελαστικού γραμμικού μέσου, από αριστερά

Διαβάστε περισσότερα

α. n 1 > n 2 β. n 2 > n 1. γ. n 1 = n 2 δ. n 2 = 2n 1. β. 2u cm. http://www.epil.gr

α. n 1 > n 2 β. n 2 > n 1. γ. n 1 = n 2 δ. n 2 = 2n 1. β. 2u cm. http://www.epil.gr ΘΕΜΑ 1ο ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 11 ΙΟΥΛΙΟΥ 2005 ΕΞΕTΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Να γράψετε στο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10. Ταλαντώσεις

ΚΕΦΑΛΑΙΟ 10. Ταλαντώσεις ΚΕΦΑΛΑΙΟ 0 Ταλαντώσεις Στο Παράδειγµα 9 είδαµε τη µελέτη της κίνησης υλικού σηµείου µάζας, που βρίσκεται στο ένα άκρο ελατηρίου µε το άλλο άκρο του ελατηρίου σταθερό Θα επανεετάσοµε το ίδιο πρόβληµα εδώ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα