Δραστηριότητες για τη διδασκαλία των μαθηματικών Δημοτικού με τη χρήση εκπαιδευτικού λογισμικού

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δραστηριότητες για τη διδασκαλία των μαθηματικών Δημοτικού με τη χρήση εκπαιδευτικού λογισμικού"

Transcript

1 Δραστηριότητες για τη διδασκαλία των μαθηματικών Δημοτικού με τη χρήση εκπαιδευτικού λογισμικού Μαρία Κορδάκη Σχολική σύμβουλος Μαθηματικών Επ. καθ. (ΠΔ 407/80) Τμήμα Μηχ/κών Ηλ/κών Υπολογιστών και Πληροφορικής Παν/μίου Πατρών ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία παρουσιάζονται διαφορετικοί τύποι δραστηριοτήτων για τη μάθηση των Μαθηματικών στο Δημοτικό σχολείο σε περιβάλλον εκπαιδευτικού λογισμικού. Πιο συγκεκριμένα παρουσιάζονται 5 διαφορετικοί τύποι δραστηριοτήτων οι οποίες μπορούν να κατασκευαστούν για τη μάθηση μιας ποικιλίας γεωμετρικών εννοιών από μαθητές Δημοτικού σχολείου με τη χρήση των εργαλείων του εκπαιδευτικού λογισμικού Cabri-Geometry II. Στη συνέχεια παρουσιάζονται τα βήματα της εξελικτικής διαδικασίας δασκάλων όπως και οι προβληματισμοί τους προκειμένου για την εξοικείωσή τους και την κατασκευή δραστηριοτήτων για τη μάθηση γεωμετρικών εννοιών με τη χρήση του παραπάνω λογισμικού. ΕΙΣΑΓΩΓΗ Οι παραδοσιακές θεωρήσεις για τη γνώση και τη μάθηση (Skinner, 1968) δίνουν έμφαση στο ρόλο του δάσκαλου ως αυθεντία ο οποίος θεωρείται ως μεταδότης της γνώσης ενώ στο μαθητή αποδίδουν το ρόλο του παθητικού δέκτη πληροφοριών. Στα πλαίσια αυτών των θεωριών οι δραστηριότητες που λαμβάνουν χώρα κατά τη διάρκεια της μαθησιακής διαδικασίας είναι τύπου ασκησάρι δηλαδή δραστηριότητες που επιμένουν στην εκμάθηση τυποποιημένων διαδικασιών μηχανισμών με την οποία μπορούν να λυθούν ορισμένα τυποποιημένα προβλήματα. Συνήθως οι δραστηριότητες αυτές δεν ανήκουν στον κόσμο του μαθητή και τελικά καταντούν ανιαρές και χωρίς νόημα γι αυτόν. Ο ρόλος του δάσκαλου κυρίως εστιάζει στο να παρουσιάζει αρχικά την τυποποιημένη διαδικασία, στη συνέχεια να παρουσιάζει την εφαρμογή της διαδικασίας με ορισμένα παραδείγματα και τέλος να καλεί τους μαθητές του να εφαρμόσουν την προτεινόμενη διαδικασία σε παρεμφερείς ασκήσεις. Η παραπάνω διαδικασία ουσιαστικά ασκεί το μαθητή στη διαδικασία της 1

2 ανάκλησης πληροφορίας κάτι που κυρίως παραπέμπει σε αποστήθιση και σε αδιαφορία προς το μάθημα των μαθηματικών. Σύμφωνα με τις σύγχρονες κοινωνικές και εποικοδομιστικές θεωρήσεις για την κατασκευή της γνώσης (von Glasersfeld, 1987; Vygotsky, 1978), η μάθηση των μαθηματικών αποτελεί μια ενεργητική και κατασκευαστική διαδικασία η οποία είναι ιδιαίτερη για τον κάθε μαθητή. Επιπλέον, οι σύγχρονες θεωρήσεις δίνουν έμφαση στη σημασία της χρήσης εργαλείων για την κατασκευή της μαθηματικής γνώσης από τους μαθητές. Ανάμεσα στα διάφορα εργαλεία αναγνωρίζεται ως κεντρικός, ο ρόλος των υπολογιστικών εργαλείων τα οποία παρέχονται από ειδικά σχεδιασμένα περιβάλλοντα εκπαιδευτικού λογισμικού (Noss & Hoyles, 1996). Ο δάσκαλος σύμφωνα με τις σύγχρονες θεωρήσεις για τη γνώση και τη μάθηση έχει το ρόλο δημιουργού κατάλληλων μαθησιακών περιβαλλόντων μέσα στα οποία ο μαθητής είναι ενεργητικός, εκφράζει τις προσωπικές του ιδέες για τα μαθηματικά και κατασκευάζει γνώση σύμφωνα με τις ιδιαιτερότητές του. Για το σκοπό αυτό ο δάσκαλος παρέχει στους μαθητές του μια σειρά κατάλληλα εργαλεία προκειμένου να πραγματοποιήσουν τις μαθησιακές δραστηριότητες. Οι δραστηριότητες είναι αυτές που δημιουργούν το κίνητρο στο μαθητή να τις πραγματοποιήσει και ως εκ τούτου παίζουν κεντρικό ρόλο στη μάθηση (Nardi, 1996). Για το λόγο αυτό οι δραστηριότητες θα πρέπει αφ ενός μεν να έχουν σημασία για το μαθητή, δηλαδή να βρίσκονται στον κόσμο των ενδιαφερόντων του και αφ ετέρου θα πρέπει να τον ενεργοποιούν να διερευνά προκειμένου να κατασκευάζει τη γνώση του. Ανάμεσα στους τύπους δραστηριοτήτων σημαντικό ρόλο κατέχουν οι δραστηριότητες που μπορούν να επιλυθούν με πολλαπλούς τρόπους διότι επιτρέπουν στο μαθητή να εκφράσει διαφορετικά είδη γνώσης όπως, διαισθητική, εικονική και τυπική γνώση. Σε περιβάλλοντα εκπαιδευτικού λογισμικού οι πολλαπλές επιλύσεις μπορούν να πραγματοποιηθούν με τη χρήση διαφορετικών εργαλείων (Kordaki, 2003). Στο πλαίσιο των δραστηριοτήτων που προαναφέρθηκε ο δάσκαλος έχει το ρόλο του ερευνητή και του δημιουργού μοντέλων (Cobb & Steffe, 1983). Πιο συγκεκριμένα, κατά τη διάρκεια της μαθησιακής διαδικασίας ο δάσκαλος συνειδητά διαχωρίζει τα μαθηματικά που εκείνος γνωρίζει από τα μαθηματικά που οι μαθητές του κατασκευάζουν και είναι ευέλικτος ώστε κάθε στιγμή να δημιουργεί ένα μοντέλο για το σημείο στο οποίο βρίσκεται κάθε μαθητής του ώστε με κατάλληλες παρεμβάσεις να μπορεί να τον οδηγήσει να προχωρήσει ο ίδιος σε εξέλιξη της γνώσης του. 2

3 Σε περιβάλλοντα κατάλληλα σχεδιασμένου εκπαιδευτικού λογισμικού παρέχονται μια σειρά λειτουργίες οι οποίες είναι δυνατό να χρησιμοποιηθούν ώστε να σχεδιαστούν από το δάσκαλο και στη συνέχεια να πραγματοποιηθούν από τους μαθητές διερευνητικού τύπου δραστηριότητες. Στην παρούσα εργασία και στην επόμενη ενότητα παρουσιάζονται βασικές προδιαγραφές ποιότητας εκπαιδευτικού λογισμικού με τη χρήση του οποίου μπορούν να πραγματοποιηθούν δραστηριότητες με βάση τις σύγχρονες κοινωνικές και εποικοδομιστικές θεωρήσεις για τη γνώση και τη μάθηση. Ως παράδειγμα εκπαιδευτικού λογισμικού χρησιμοποιείται το πολύ γνωστό Cabri-Geometry II του οποίου και παρουσιάζονται οι βασικές δυνατότητες. Ακολουθεί η παρουσίαση βασικών προδιαγραφών σχεδιασμού διερευνητικών δραστηριοτήτων για τη γεωμετρία και δίνονται παραδείγματα δραστηριοτήτων τα οποία μπορούν να πραγματοποιηθούν με τη χρήση των εργαλείων του Cabri-Geometry II. Στη συνέχεια ακολουθεί η παρουσίαση των προβληματισμών εκπαιδευτικών της Α/μιας εκπαίδευσης προκειμένου να χρησιμοποιήσουν το παραπάνω εκπαιδευτικό λογισμικό στην τάξη τους για την πραγματοποίηση διερευνητικών δραστηριοτήτων στη διδασκαλία και τη μάθηση της γεωμετρίας. Ακόμη παρουσιάζονται τα βήματα της εξελικτικής διαδικασίας των εκπαιδευτικών αυτών στο σχεδιασμό δραστηριοτήτων για τη μάθηση γεωμετρικών εννοιών. Μια τέτοια μελέτη δεν έχει ακόμη αναφερθεί από ερευνητές. ΠΡΟΔΙΑΓΡΑΦΕΣ ΠΟΙΟΤΗΤΑΣ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ Με βάση μια σειρά ερευνών ένα κατάλληλο εκπαιδευτικό λογισμικό για τη μάθηση θα πρέπει να δίνει ευκαιρίες στο μαθητή να: είναι ενεργητικός εκφράζει τις ατομικές και ενδοατομικές του διαφορές στη μάθηση αναστοχάζεται κατασκευάζει γνώση και όχι να είναι κύρια θεατής πληροφοριών αυτοδιορθώνεται κάνει διερευνήσεις διατυπώνει υποθέσεις, γενικεύσεις, συμπεράσματα 3

4 Με πιο τεχνικούς όρους ένα κατάλληλο για μάθηση εκπαιδευτικό λογισμικό θα πρέπει να διαθέτει: υψηλού βαθμού αλληλεπιδραστικότητα άμεση διαχείριση μαθηματικών αντικειμένων εικονική ανατροφοδότηση αριθμητική ανατροφοδότηση ποικιλία εργαλείων για εννοιολoγική κατασκευή μαθηματικών εννοιών εργαλεία κυμαινόμενης διαφάνειας για επίλυση ποικιλίας σημαντικών προβλημάτων πολλαπλά αναπαραστασιακά συστήματα (εικονικά, γραφικές παραστάσεις, πινακοποίηση, εξισώσεις, υπολογισμοί) εργαλεία βοήθειας επεκτασιμότητα TO ΠΕΡΙΒΑΛΛΟΝ CABRI-GEOMETRY ΙΙ Το πρόγραμμα Cabri Geometry II αποτελεί ένα περιβάλλον λογισμικού το οποίο δεν περιορίζεται στο να υποστηρίξει απλά μια εναλλακτική διδασκαλία με τη χρήση υπολογιστή, αλλά υποστηρίζει την ανάπτυξη μιας διερευνητικής προσέγγισης στη διδασκαλία και τη μάθηση της Γεωμετρίας. Αποτελείται από ένα πακέτο ισχυρών και προσεκτικά κατασκευασμένων υπολογιστικών εργαλείων για τη δημιουργία Γεωμετρικών δραστηριοτήτων και εφαρμογών, η λειτουργία του οποίου βασίζεται στην αμφίδρομη σχέση με το χρήστη. Επιτρέπει τόσο την κατασκευή όσο και τη μελέτη γεωμετρικών αντικειμένων, δίνοντας με αυτό τον τρόπο κίνητρα στο μαθητή προκειμένου να επεκτείνει τις αναζητήσεις του στο χώρο της Γεωμετρίας. Το πρόγραμμα Cabri Geometry II, δημιουργήθηκε από τους Jean Marie Laborde και Frank Bellemain στο Institut d Informatique et Mathematiques Appliquees de Grenoble (IMAG), ένα ερευνητικό εργαστήριο στο Πανεπιστήμιο Joseph Fourier στη Grenoble της Γαλλίας, σε συνεργασία με το Centre National de la Recherche Scientifique (CNRS) καθώς και με την εταιρεία Texas Instruments. Το πρόγραμμα Cabri ΙΙ δημιουργήθηκε από ομάδα επιστημόνων που ανήκουν στο χώρο της πληροφορικής, των μαθηματικών όπως και της διδακτικής των μαθηματικών με στόχο να προσφέρει μια νέα δυναμική προσέγγιση στη μάθηση της Γεωμετρίας. Το πρόγραμμα Cabri διαθέτει κάποια βασικά πλεονεκτήματα σε σύγκριση με άλλα προγράμματα διδασκαλίας των Μαθηματικών και ιδιαίτερα της Γεωμετρίας. Πιο συγκεκριμένα : 4

5 Πρόκειται για ένα περιβάλλον το οποίο διαθέτει στοιχεία υψηλής αλληλεπίδρασης. Αποτελεί ένα δυναμικό περιβάλλον μάθησης από την άποψη του ότι οι μορφές των σχημάτων δύνανται να μεταβάλλονται ενώ ορισμένες ιδιότητές τους παραμένουν αμετάβλητες. Πιο συγκεκριμένα, ο δυναμικός χαρακτήρας του περιβάλλοντος αφορά στη δυνατότητα εμφάνισης στην οθόνη του υπολογιστή μιας απειρίας ψηφιακών γραφικών αναπαραστάσεων μιας γεωμετρικής κατασκευής που δημιουργείται από το συνδυασμό απλών στοιχειωδών κατασκευών που υπάρχουν στο περιβάλλον διεπαφής (interface) του μικρόκοσμου. Η απειρία αυτών των σχημάτων αποτελεί μια κλάση ισοδυναμίας σχημάτων τα οποία έχουν ορισμένες κοινές ιδιότητες. Εκπρόσωπο αυτής της κλάσης αποτελεί κάθε σχήμα το οποίο κατασκευάζεται στην οθόνη του υπολογιστή. Κάθε σχήμα είναι άμεσα διαχειρίσιμο από το μαθητή με χρήση του "συρσίματος" (dragging), το οποίο είναι διαθέσιμο από το πρόγραμμα. Μέσω της άμεσης διαχείρισης μια απειρία σχημάτων με κοινές ιδιότητες είναι δυνατό να απεικονίζονται γραφικά στην οθόνη του υπολογιστή δίνοντας την ευκαιρία στο μαθητή την ευκαιρία να κατασκευάσει αφηρημένες έννοιες που αφορούν σε αυτές τις ιδιότητες (Laborde, 1990). Οι ενέργειες του μαθητή συνοδεύονται στην πλειοψηφία τους από γραφική (εικονική) αλλά και αριθμητική ανατροφοδότηση. Ο ρόλος της εικόνας έχει αναφερθεί ως υποστηρικτικός στη δημιουργία νοερών εικόνων οι οποίες θεωρούνται ότι αποτελούν βασικό στοιχείο της νοητικής ανάπτυξης του ατόμου (Sutherland, 1995). Ειδικότερα, επισημαίνεται η αλληλεπίδραση της εικόνας με την έννοια στην ανάπτυξη της γεωμετρικής λογικής (Mariotti, 1995). Το πρόγραμμα Cabri ΙΙ αποτελεί ένα ανοικτό περιβάλλον μάθησης το οποίο διαθέτει εργαλεία στο μαθητή προκειμένου να μπορεί να επιλύει μια ποικιλία από γεωμετρικά προβλήματα. Η σημασία της επίλυσης προβλημάτων στην ανάπτυξη της μαθηματικής σκέψης των παιδιών έχει αναφερθεί (von Glasersfeld, 1987). Η δυνατότητα του περιβάλλοντος να καταγράφει βήμα-βήμα το ιστορικό των ενεργειών του χρήστη αποτελεί ένα επιπλέον ισχυρό εργαλείο για το δάσκαλο, το μαθητή αλλά και τον ερευνητή, προκειμένου να βγάλουν συμπεράσματα για τη διαδικασία της μάθησης η οποία πιθανό συντελέστηκε σε αυτό το περιβάλλον και 5

6 ως εκ τούτου δίνει νέες δυνατότητες διαμεσολάβησης μεταξύ δάσκαλου και μαθητή (Mariotti & Bussi, 1998). Το περιβάλλον Cabri ΙΙ λόγω της ανοικτότητάς του μπορεί να υποστηρίξει τη διεπιστημονική προσέγγιση στη μάθηση της Γεωμετρίας. Η σημασία της διεπιστημονικής προσέγγισης όπως και γενικότερα του πλαισίου συμφραζομένων στο οποίο συντελείται η μάθηση έχει αναφερθεί (Clements, 1989; Noss & Hoyles, 1992). Στο περιβάλλον Cabri ΙΙ είναι δυνατό ο μαθητής να προσεγγίζει γεωμετρικά θέματα με έναν ποιοτικό τρόπο δηλαδή χωρίς τη χρήση αριθμών. Αυτή η δυνατότητα τον βοηθά να προσεγγίσει αρχικά τις έννοιες ποιοτικά και στη συνέχεια να προχωρήσει σε πιο ποσοτικές προσεγγίσεις. Το περιβάλλον Cabri ΙΙ χωρίς να διαθέτει ένα σύστημα ελέγχου της ορθότητας των απαντήσεων του μαθητή του παρέχει εργαλεία (εικονική και αριθμητική ανατροφοδότηση) τα οποία μπορεί να χρησιμοποιήσει για αυτοδιόρθωση. Το πρόγραμμα Cabri ΙΙ δεν απομένει στατικό περιβάλλον αλλά μπορεί να εξελίσσεται παράλληλα με το χρήστη. Η εξέλιξη αυτή είναι δυνατή μέσα από τη δημιουργία νέων λειτουργιών (μακροκατασκευών) η οποία δίνει στο περιβάλλον μια δυναμική διάσταση διότι το εμπλουτίζει κάθε φορά με νέα εργαλεία τα οποία κατασκευάζονται από το χρήστη (δάσκαλο ή/και μαθητή). Τα εργαλεία αυτά μπορούν να τοποθετούνται μόνιμα ως νέες δυνατότητες στο περιβάλλον διεπαφής του μικρόκοσμου. Με τις λειτουργίες αυτές μπορεί να υλοποιείται μια μαθηματική γεωμετρική κατασκευή αυτόματα, όπως για παράδειγμα η διάμεσος ή η τομή των υψών ενός τριγώνου. Αυτή η κατασκευή φυλάσσεται από τον υπολογιστή ως μια γενική διαδικασία η οποία μπορεί να επαναλαμβάνεται σε άλλα σχήματα του ίδιου τύπου με τα αρχικά. H «διερεύνηση ιδιοτήτων» που διαθέτει το πρόγραμμα Cabri ΙΙ επιτρέπει τη λύση προβλημάτων, οι οποίες βασίζονται στα πέντε Ευκλείδια αξιώματα. Το πρόγραμμα επιτρέπει στο δάσκαλο να αποφασίσει την κατάλληλη διάταξη των περιεχομένων, έτσι ώστε να εμφανίζονται μόνο τα σχετικά με την εκάστοτε εφαρμογή εργαλεία. Τα εργαλεία τα οποία παρέχονται μπορούν να χρησιμοποιηθούν για πραγματοποίηση δραστηριοτήτων για τη μάθηση γεωμετρικών εννοιών σε όλο το εύρος του αναλυτικού προγράμματος του Δημοτικού σχολείου. 6

7 ΠΡΟΔΙΑΓΡΑΦΕΣ ΣΧΕΔΙΑΣΜΟΥ ΔΙΕΡΕΥΝΗΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΓΙΑ ΤΗ ΓΕΩΜΕΤΡΙΑ Παρακάτω παρατίθενται βασικοί παράγοντες που πρέπει να λαμβάνονται υπόψη κατά τη σχεδίαση διερευνητικών δραστηριοτήτων: ο επιστημονικός ορισμός του προς μάθηση αντικειμένου με ποιες βασικές δραστηριότητες μπορεί να δομηθεί το αντικείμενο μάθησης πως οι μαθητές μαθαίνουν το μαθησιακό αντικείμενο πιο είναι το προφίλ των μαθητών πως θα αναπτύσσεται εσωτερικό κίνητρο στο μαθητή (δραστηριότητες από την καθημερινή ζωή, παιχνίδια, να δίνεται η ευκαιρία στο μαθητή να μελετά τα δικά του αντικείμενα) πως θα ενθαρρύνουν το μαθητή να: μπαίνει στη θέση του ερευνητή εκφράσει τις ατομικές και ενδο-ατομικές του διαφορές στη μάθηση εξελίσσεται αυτo-διορθώνεται επαληθεύει εικασίες επαληθεύει σχέσεις συνεργάζεται πως θα δίνουν δυνατότητες στο μαθητή να εκμεταλλευτεί τις δυνατότητες του εκπαιδευτικού λογισμικού όπως : αλληλεπιδραστικότητα άμεση διαχείριση μαθηματικών αντικειμένων εικονική ανατροφοδότηση, εμφάνιση ίχνους αριθμητική ανατροφοδότηση ποικιλία εργαλείων για εννοιολογική κατασκευή διαφόρων μαθηματικών εννοιών εργαλεία κυμαινόμενης διαφάνειας για επίλυση ποικιλίας σημαντικών προβλημάτων πολλαπλά αναπαραστασιακά συστήματα (γραφικά, πινακοποίηση, εξισώσεις, υπολογισμοί) εργαλεία βοήθειας επεκτασιμότητα ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΠΟΥ ΜΠΟΡΟΥΝ ΝΑ ΠΡΑΓΜΑΤΟΠΟΙΗΘΟΥΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ CABRI-GEOMETRY ΙΙ 7

8 Παρακάτω παρατίθενται 5 βασικοί τύποι δραστηριοτήτων που μπορούν να σχεδιαστούν και να πραγματοποιηθούν με τη βοήθεια των λειτουργιών του Cabri- Geometry II : 1 α. Διατύπωσης εικασίας με βάση την μεταβαλλόμενη εικόνα. Για παράδειγμα εάν ο μαθητής σχεδιάσει ένα τρίγωνο και τα ύψη του και σύρει τις κορυφές του στην οθόνη του υπολογιστή μπορεί να διατυπώσει την εικασία ότι και τα τρία ύψη τέμνονται σε ένα σημείο το οποίο είναι εσωτερικό του τριγώνου στο οξυγώνιο τρίγωνο, εξωτερικό του τριγώνου στο αμβλυγώνιο και πάνω στην ορθή γωνία στο ορθογώνιο τρίγωνο. 1 β. Διατύπωσης εικασίας με βάση τα μεταβαλλόμενα αριθμητικά δεδομένα Για παράδειγμα εάν ο μαθητής σχεδιάσει ένα τρίγωνο και μετρήσει το εμβαδόν και την περίμετρό του και στη συνέχεια σύρει τις κορυφές του τριγώνου στην οθόνη του υπολογιστή μπορεί να διατυπώσει την εικασία ότι η περίμετρος και το εμβαδόν αποτελούν διαφορετικές έννοιες. 2 α. Επαλήθευσης εικασίας με βάση την μεταβαλλόμενη εικόνα. Για παράδειγμα εάν ο μαθητής υποθέτει ότι οι διάμεσοι ενός τριγώνου ενδεχομένως να τέμνονται στο ίδιο σημείο μπορεί να σχεδιάσει ένα τρίγωνο και τις διαμέσους του και στη συνέχεια να σύρει τις κορυφές του τριγώνου στην οθόνη του υπολογιστή οπότε θα επαληθεύσει την υπόθεσή του με μια απειρία εμπειρικών εικονικών δεδομένων. 2 β. Επαλήθευσης εικασίας με βάση τα μεταβαλλόμενα αριθμητικά δεδομένα. Για παράδειγμα εάν ο μαθητής κατασκευάσει δύο κατακορυφήν γωνίες και υποθέτει ότι είναι ίσες (με το μάτι) μπορεί να επαληθεύσει την εικασία του μετρώντας αυτές τις δύο γωνίες για κάθε θέση των δύο τεμνομένων ευθειών. 3. Επαλήθευσης σχέσης με βάση τα μεταβαλλόμενα αριθμητικά δεδομένα σε συνδυασμό με την μεταβαλλόμενη εικόνα. Για παράδειγμα εάν ο μαθητής γνωρίζει ότι το άθροισμα των γωνιών ενός τριγώνου είναι 180 μοίρες μπορεί να το επαληθεύσει σχεδιάζοντας ένα τρίγωνο, μετρώντας τις γωνίες του, υπολογίζοντας το άθροισμά τους και στη συνέχεια πινακοποιώντας τις τιμές των γωνιών και του αθροίσματός τους ενώ μεταβάλλει τη μορφή του τριγώνου στην οθόνη του υπολογιστή. 4. Μαύρο κουτί-αιτιολόγηση του τι συμβαίνει σε μια γεωμετρική κατασκευή. Για παράδειγμα ο μαθητής μπορεί να προβληματιστεί προκειμένου να αιτιολογήσει το γιατί όταν μετρήσει αυτόματα την επιφάνεια δύο ή/και 8

9 περισσοτέρων τριγώνων με κοινή βάση και των οποίων η κορυφή βρίσκεται σε μια ευθεία παράλληλη προς τη βάση αυτή έχουν το ίδιο εμβαδόν. 5. Πολλαπλών επιλύσεων. Για παράδειγμα ο μαθητής μπορεί να προσπαθήσει να σχεδιάσει ισεμβαδικά τρίγωνα χρησιμοποιώντας το πλέγμα, τους τύπους υπολογισμού, το σύρσυμο των κορυφών του τριγώνου στην οθόνη του υπολογιστή, την αντιγραφή και επικόλληση κ.α. ΕΚΠΑΙΔΕΥΤΙΚΟΙ ΤΗΣ Α/ΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΕΝΤΑΞΗ ΤΟΥ CABRI-GEOMETRY II ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Στα πλαίσια επιμορφωτικών συναντήσεων (25 ώρες), με 15 εκπαιδευτικούς της Α/μιας εκπαίδευσης (ΠΕΚ) παρουσιάστηκαν οι δυνατότητες του εκπαιδευτικού λογισμικού Cabri-Geometry II μέσα από δραστηριότητες τις οποίες και αυτοί πραγματοποιούσαν σε υπολογιστές. Η πλειοψηφεία των εκπαιδευτικών που δοκίμασαν το πρόγραμμα ενθουσιάστηκαν και εξέφρασαν ενδιαφέρον για να το χρησιμοποιήσουν στην τάξη τους. Βασικοί προβληματισμοί και δυσκολίες που εξέφρασαν αφορούν στην: α) έλλειψη της απαραίτητης υποδομής, β) έλλειψη έτοιμων δραστηριοτήτων, γ) δυσκολία διαχείρισης μιας τάξης εργαστηρίου, δ) αναγκαιότητα επιμόρφωσής τους στις ΝΤ, ε) στην ύπαρξη προσωπικού υπολογιστή. Οι παραπάνω εκπαιδευτικοί έως ότου μπορέσουν να κατασκευάσουν μόνοι τους δραστηριότητες πέρασαν από τα παρακάτω στάδια: α) φόβος και δισταγμός μήπως δεν τα καταφέρουν λόγω του ότι δεν είναι μαθηματικοί, β) εξοικείωση με βασικές λειτουργίες (ευθείες, σχήματα), γ) σχεδιασμός δραστηριοτήτων με χρήση του Cabri ως εργαλείου σχεδίασης (εύκολη κατασκευή σχημάτων, χρώματα), δ) σχεδιασμός διερευνητικών δραστηριοτήτων (με καθοδήγηση του επιμορφωτή), ε) αυτενέργεια στο σχεδιασμό διερευνητικών δραστηριοτήτων, στ) δοκιμή στην τάξη και ενθουσιασμός από την θετική αντιμετώπιση των μαθητών. ΣΥΜΠΕΡΑΣΜΑΤΑ Στην παρούσα έρευνα παρουσιάστηκαν βασικές προδιαγραφές ποιότητας εκπαιδευτικού λογισμικού για τη μάθηση των μαθηματικών σύμφωνα με τις σύγχρονες κοινωνικές και εποικοδομιστικές θεωρήσεις για την κατασκευή της γνώσης. Ως παράδειγμα παρουσιάστηκε το εκπαιδευτικό λογισμικό Cabri-Geometry II. Επιπλέον, διατυπώθηκαν βασικές προδιαγραφές για σχεδιασμό δραστηριοτήτων με τη χρήση εκπαιδευτικού λογισμικού και παρουσιάστηκαν 5 βασικές κατηγορίες 9

10 δραστηριοτήτων που μπορούν να πραγματοποιηθούν με τη χρήση του εκπαιδευτικού λογισμικού Cabri-Geometry II. Στη συνέχεια παρουσιάστηκαν πρωταρχικές δυσκολίες εκπαιδευτικών της Α/μιας εκπ/σης για την ένταξη του παραπάνω λογισμικού στη διδακτική τους πράξη. Τέλος παρουσιάστηκαν τα βήματα της εξέλιξης των εκπαιδευτικών αυτών έως να φτάσουν στο σημείο να δουλεύουν μόνοι τους με το πρόγραμμα και να σχεδιάζουν δραστηριότητες διερευνητικού τύπου. ΑΝΑΦΟΡΕΣ Clements, D. H. (1989). Computers in elementary mathematics education. NJ: Prentice- Hall. Cobb, P., & Steffe, L. P. (1983). The constructivist Researcher as teacher and model builder. Journal for Research in Mathematics Education, 14(2), Kordaki, M. (2003). The effect of tools of a computer microworld on students strategies regarding the concept of conservation of area. Educational Studies in Mathematics, 52, Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings: Learning Cultures and Computers. Dordrecht : Kluwer Academic Publishers. Νoss, R., & Hoyles, C. (1992). Looking Back and Looking Forward. In C. Hoyles and R. Noss (eds), Learning Mathematics and Logo (pp ). Cambridge, Ma: MIT Press. Mariotti, M., A. (1995). Images and concepts in geometrical reasoning. In R. Sutherland & J. Mason (Eds), Exploiting Mental imagery with Computers in Mathematics Education (pp ). Berlin: Springer-Verlag. Mariotti, M.,A. and Bussi, B. (1998). From drawing to construction : teacher's mediation within the Cabri environment. In A.Olivier and K. Newstead (Eds). 22nd PME Conference, 3 (pp ). Stellenbosch, South Africa. Laborde, J-M. (1990). Cabri-Geometry [Software]. France: Universite de Grenoble. Nardi, B.A. (1996). Studying context: A comparison of activity theory, situated action models, and distributed cognition. In B.A. Nardi (Ed.), Context and consciousness: Activity theory and human-computer interaction, Cambridge, MA: MIT Press. Skinner, B. F. (1968). The Technology of Teaching, New York : Appleton, Sutherland, R. (1995). Mediating mathematical action. In R. Sutherland & J. Mason (Eds), Exploiting Mental imagery with Computers in Mathematics Education (pp ). Berlin: Springer-Verlag. von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Eds), Problems of representation in teaching and learning of mathematics (pp.3-18). London: Lawrence Erlbaum. Vygotsky, L. (1978). Mind in Society. Cambridge: Harvard University Press. 10

Η µοντελοποίηση στο σχεδιασµό δραστηριοτήτων για τη µάθηση του θεωρήµατος του Θαλή στο περιβάλλον Cabri- Geometry II

Η µοντελοποίηση στο σχεδιασµό δραστηριοτήτων για τη µάθηση του θεωρήµατος του Θαλή στο περιβάλλον Cabri- Geometry II Η µοντελοποίηση στο σχεδιασµό δραστηριοτήτων για τη µάθηση του θεωρήµατος του Θαλή στο περιβάλλον Cabri- Geometry II Μαρία Κορδάκη Εντ. Επίκ. Καθηγήτρια (Π. 407/80) τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών

Διαβάστε περισσότερα

VccSSe Virtual Community Collaborating Space for Science Education. Εικονικά Εργαλεία στη Διδακτική των Θετικών Επιστημών. Επιμορφωτικό Υλικό

VccSSe Virtual Community Collaborating Space for Science Education. Εικονικά Εργαλεία στη Διδακτική των Θετικών Επιστημών. Επιμορφωτικό Υλικό Επιμορφωτικό Υλικό Βασικά Θέματα Διδακτικής της Ευκλείδιας Γεωμετρίας στο πλαίσιο των εργαλείων που παρέχονται από το εκπαιδευτικό λογισμικό Cabri Η δύναμη της τεχνολογίας που διαμορφώνει τα μαθηματικά,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Διδακτική της Πληροφορικής Η Πληροφορική ως αντικείμενο και ως εργαλείο μάθησης

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας

Η ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Η ανάλυση της κριτικής διδασκαλίας Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Διαδικασία η γνώση ως ανάπτυξη υψηλών νοητικών λειτουργιών (

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία Διδακτικές προσεγγίσεις στην Πληροφορική Η εποικοδομιστική προσέγγιση για τη γνώση ως ενεργητική και όχι παθητική διαδικασία ως κατασκευή και όχι ως μετάδοση ως αποτέλεσμα εμπειρίας και όχι ως μεταφορά

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

Μαρία Ι. Κορδάκη, Ph. D, M.Ed. Σχολική Σύμβουλος Μαθηματικών, e-mail: kordaki@cti.gr

Μαρία Ι. Κορδάκη, Ph. D, M.Ed. Σχολική Σύμβουλος Μαθηματικών, e-mail: kordaki@cti.gr Υποστηρίζοντας το Ρόλο της Τεχνολογίας στη Διδασκαλία και τη Μάθηση των Μαθηματικών : Η Περίπτωση της Ιδρυσης Κέντρων Μαθηματικών και Τεχνολογίας (ΚΕ.ΜΑ.Τ) Μαρία Ι. Κορδάκη, Ph. D, M.Ed. Σχολική Σύμβουλος

Διαβάστε περισσότερα

Ο ΥΠΟΛΟΓΙΣΤΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΜΑΘΗΣΗΣ

Ο ΥΠΟΛΟΓΙΣΤΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΜΑΘΗΣΗΣ Ο ΥΠΟΛΟΓΙΣΤΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΜΑΘΗΣΗΣ ηµήτρης Καλαµαράς Παρουσιαση του 7 ου κεφαλαιου του βιβλίου της Μαρίας Κορδάκη «Εκπαιδευτικη Τεχνολογια και ιδακτικη της Πληροφορικής Ι» Οι δυνατότητες των Τεχνολογιών

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις υποψηφίων καθηγητών Πληροφορικής

Διδακτικές προσεγγίσεις υποψηφίων καθηγητών Πληροφορικής Διδακτικές προσεγγίσεις υποψηφίων καθηγητών Πληροφορικής Μαρία Κορδάκη 1. Εισαγωγή Η διερεύνηση των διδακτικών προσεγγίσεων που αναπτύσσονται από τους καθηγητές σε κάθε γνωστικό αντικείμενο καθώς και των

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Μαλλιάκας Κώστας Μαθηματικός Δ/θμιας Εκπ/σης

Μαλλιάκας Κώστας Μαθηματικός Δ/θμιας Εκπ/σης 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 185 «ΔΙΔΑΣΚΟΝΤΑΣ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΔΗΜΟΣΙΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ CABRI-GEOMETRY II: Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ: ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ

Διαβάστε περισσότερα

Ένα περιβάλλον πολλαπλών αναπαραστάσεων για τη μάθηση εννοιών που αφορούν στον αλγόριθμο ταξινόμησης φυσαλίδας (Bubble sort)

Ένα περιβάλλον πολλαπλών αναπαραστάσεων για τη μάθηση εννοιών που αφορούν στον αλγόριθμο ταξινόμησης φυσαλίδας (Bubble sort) Ένα περιβάλλον πολλαπλών αναπαραστάσεων για τη μάθηση εννοιών που αφορούν στον αλγόριθμο ταξινόμησης φυσαλίδας (Bubble sort) Γεώργιος Βλαχογιάννης, Βασίλειος Κεκάτος, Μιχάλης Mιατίδης, Ιωάννης Μισεδάκης,

Διαβάστε περισσότερα

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών

Διαβάστε περισσότερα

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης Βασικές παραδοχές : Η πραγματικότητα έχει την ίδια σημασία για όλους Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Αυτοί που δεν καταλαβαίνουν είναι ανίκανοι,

Διαβάστε περισσότερα

Μαρία Κορδάκη, Σχολική Σύμβουλος Μαθηματικών,

Μαρία Κορδάκη, Σχολική Σύμβουλος Μαθηματικών, ΔΥΝΑΜΙΚΕΣ ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΕΠΙΦΑΝΕΙΑΣ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΕΝΟΣ ΜΙΚΡΟΚΟΣΜΟΥ ΚΑΙ Ο ΡΟΛΟΣ ΤΟΥΣ ΣΤΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΠΟΥ ΑΝΑΠΤΥΧΘΗΚΑΝ ΑΠΟ ΜΑΘΗΤΕΣ Μαρία Κορδάκη, Σχολική Σύμβουλος

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Γνωστικές αλληλεπιδράσεις στις κατασκευές μέσω του λογισμικού δυναμικής γεωμετρίας geometer s sketchpad

Γνωστικές αλληλεπιδράσεις στις κατασκευές μέσω του λογισμικού δυναμικής γεωμετρίας geometer s sketchpad Γνωστικές αλληλεπιδράσεις στις κατασκευές μέσω του λογισμικού δυναμικής γεωμετρίας geometer s sketchpad Σ.Πατσιομίτου Εκπ/κός Δ/θμιας Εκπ/σης, Med Διδακτικής και Μεθοδολογίας Μαθηματικών ΕΚΠΑ, Υπ. Διδάκτωρ

Διαβάστε περισσότερα

Τμήμα Μηχ/κών Ηλ/κών Υπολογιστών & Πληροφορικής Παν/μίου Πατρών, ΕΑΙΤΥ,

Τμήμα Μηχ/κών Ηλ/κών Υπολογιστών & Πληροφορικής Παν/μίου Πατρών, ΕΑΙΤΥ, Προσεγγίσεις μαθητών στην εγγραφή μιας κλάσης ισοδυνάμων τριγώνων σε ορθογώνιο και μελέτη της σχέσης επιφάνειας και περιμέτρου τους με τη χρήση εργαλείων του Cabri-Geometry II Μαρία Κορδάκη 1 και Αθανασία

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

Πλαίσιο αξιολόγησης της μαθησιακής διαδικασίας βασικών εννοιών προγραμματισμού σε γλώσσα C μέσω εκπ/κού λογισμικού

Πλαίσιο αξιολόγησης της μαθησιακής διαδικασίας βασικών εννοιών προγραμματισμού σε γλώσσα C μέσω εκπ/κού λογισμικού Πλαίσιο αξιολόγησης της μαθησιακής διαδικασίας βασικών εννοιών προγραμματισμού σε γλώσσα C μέσω εκπ/κού λογισμικού Κωνσταντίνα Ζηκούλη 1 και Μαρία Κορδάκη 2 1 ΜΔΕ Μηχ/κών Ηλεκτρονικών Υπολογιστών 2 Εντ.

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Η δραστηριότητα ως βασικό δοµικό στοιχείο σχεδιασµού πληροφοριακού υλικού για τη µάθηση βασικών εννοιών προγραµµατισµού σε γλώσσα C

Η δραστηριότητα ως βασικό δοµικό στοιχείο σχεδιασµού πληροφοριακού υλικού για τη µάθηση βασικών εννοιών προγραµµατισµού σε γλώσσα C Η δραστηριότητα ως βασικό δοµικό στοιχείο σχεδιασµού πληροφοριακού υλικού για τη µάθηση βασικών εννοιών προγραµµατισµού σε γλώσσα C Κωνσταντίνα Ζηκούλη 1 και Μαρία Κορδάκη 2 1 Μ Ε Μηχ/κών Ηλεκτρονικών

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

Ένα Διαδικτυακό Περιβάλλον Πολλαπλών Αναπαραστάσεων για τη Μάθηση Εννοιών που Αφορούν στα Αρχεία και στα Περιφερειακά Μέσα Αποθήκευσης

Ένα Διαδικτυακό Περιβάλλον Πολλαπλών Αναπαραστάσεων για τη Μάθηση Εννοιών που Αφορούν στα Αρχεία και στα Περιφερειακά Μέσα Αποθήκευσης Ένα Διαδικτυακό Περιβάλλον Πολλαπλών Αναπαραστάσεων για τη Μάθηση Εννοιών που Αφορούν στα Αρχεία και στα Περιφερειακά Μέσα Αποθήκευσης Περικλής Βενάκης, Γιάννης Γιαννακόπουλος, Μυρτώ Πυρλή, Μαρία Κορδάκη

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

Εκπαιδευτική Τεχνολογία και Διδακτική της Πληροφορικής στο τμήμα Μηχ/κών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πανεπιστημίου Πατρών

Εκπαιδευτική Τεχνολογία και Διδακτική της Πληροφορικής στο τμήμα Μηχ/κών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πανεπιστημίου Πατρών Εκπαιδευτική Τεχνολογία και Διδακτική της Πληροφορικής στο τμήμα Μηχ/κών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πανεπιστημίου Πατρών Μαρία Κορδάκη Διδ. επ. καθ. (ΠΔ.407/80) Τμήμα Μηχ/κών Ηλεκτρονικών

Διαβάστε περισσότερα

Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας

Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 3ο, 20-30, 2014 Διδασκαλία των ιδιοτήτων του ορθικού τριγώνου με χρήση λογισμικού δυναμικής γεωμετρίας Ανδρέας Κουλούρης akoulouris13@gmail.com

Διαβάστε περισσότερα

Μεθοδολογίες αξιολόγησης εκπαιδευτικού. λογισμικού

Μεθοδολογίες αξιολόγησης εκπαιδευτικού. λογισμικού Μεθοδολογίες αξιολόγησης εκπαιδευτικού λογισμικού 1 Βασικά ερωτήματα σχεδιασμού μελετών αξιολόγησης εκπαιδευτικού λογισμικού Ο χαρακτήρας της αξιολόγησης τεχνικός εκπαιδευτικός ή συνδυασμός των δύο (Squires

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Νέες προοπτικές στη διδασκαλία της γεωµετρίας: Η περίπτωση του εµβαδού πολυγώνων

Νέες προοπτικές στη διδασκαλία της γεωµετρίας: Η περίπτωση του εµβαδού πολυγώνων Νέες προοπτικές στη διδασκαλία της γεωµετρίας: Η περίπτωση του εµβαδού πολυγώνων Πιττάλης Μ., Μουσουλίδης Ν., & Χρίστου Κ. Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου m.pittalis@ucy.ac.cy, n.mousoulides@ucy.ac.cy,

Διαβάστε περισσότερα

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων

Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ. Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων Διδάσκοντας Φυσικές Επιστήμες με την υποστήριξη των ΤΠΕ Καθηγητής T. A. Μικρόπουλος Πανεπιστήμιο Ιωαννίνων 1. Οι ψηφιακές τεχνολογίες ως γνωστικά εργαλεία στην υποστήριξη της διδασκαλίας και της μάθηση

Διαβάστε περισσότερα

Μαρία Κορδάκη Τµήµα Μηχανικών Η/Υ και Πληροφορικής Παν/µίου Πατρών kordaki@cti.gr

Μαρία Κορδάκη Τµήµα Μηχανικών Η/Υ και Πληροφορικής Παν/µίου Πατρών kordaki@cti.gr Το Μοντέλο των Στρατηγικών Επίλυσης ενός Προγραµµατιστικού Προβλήµατος σε ένα Περιβάλλον Πολλαπλών Αναπαραστάσεων για τη Μάθηση του Προγραµµατισµού σε γλώσσα C Μαρία Κορδάκη Τµήµα Μηχανικών Η/Υ και Πληροφορικής

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD

Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD 422 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Η ΔΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΚΛΙΜΑΚΑΣ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ «ΚΛΙΜΑΚΟΥΠΟΛΗ» - ΜΑΘΗΜΑΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ SKETCHPAD Λυκοσκούφη Ειρήνη Καθηγήτρια

Διαβάστε περισσότερα

Εφαρμογές πολυμέσων για τη διδασκαλία των Μαθηματικών

Εφαρμογές πολυμέσων για τη διδασκαλία των Μαθηματικών Εφαρμογές πολυμέσων για τη διδασκαλία των Μαθηματικών Μεταπτυχιακό Πρόγραμμα Σπουδών «Γραφικές Τέχνες Πολυμέσα» Θεματική Ενότητα «Πληροφορική Πολυμέσα» ΓΤΠ61 Δούκα Δέσποινα 26/4/2015 Τι είναι τα πολυμέσα

Διαβάστε περισσότερα

Μαθηματικής Εκπαίδευσης; Χρυσάνθη Σκουμπουρδή, Πανεπιστήμιο Αιγαίου,

Μαθηματικής Εκπαίδευσης; Χρυσάνθη Σκουμπουρδή, Πανεπιστήμιο Αιγαίου, Το Εκπαιδευτικό Υλικό 1 στη σχέση Διδακτικής Μαθηματικών και Μαθηματικής Εκπαίδευσης Χρυσάνθη Σκουμπουρδή, Πανεπιστήμιο Αιγαίου, kara@aegean.gr Η προσπάθεια περιγραφής και αξιολόγησης της σχέσης της Διδακτικής

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο

6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο 6.5 Ανάπτυξη, εφαρμογή και αξιολόγηση εκπαιδευτικών σεναρίων και δραστηριοτήτων ανά γνωστικό αντικείμενο Το εκπαιδευτικό σενάριο Η χρήση των Τ.Π.Ε. στην πρωτοβάθμια εκπαίδευση θα πρέπει να γίνεται με οργανωμένο

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΕΣ ΓΙΑ ΤΗ ΜΑΘΗΜΑΤΙΚΗ ΠΑΙΔΕΙΑ ΑΠΟ ΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΤΩΝ ΨΗΦΙΔΩΝ

ΠΡΟΟΠΤΙΚΕΣ ΓΙΑ ΤΗ ΜΑΘΗΜΑΤΙΚΗ ΠΑΙΔΕΙΑ ΑΠΟ ΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΤΩΝ ΨΗΦΙΔΩΝ ΠΡΟΟΠΤΙΚΕΣ ΓΙΑ ΤΗ ΜΑΘΗΜΑΤΙΚΗ ΠΑΙΔΕΙΑ ΑΠΟ ΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΤΩΝ ΨΗΦΙΔΩΝ Χ. Κυνηγός, Τομέας Παιδαγωγικής, ΦΠΨ, Φιλοσοφική Σχολή Πανεπιστημίου Αθηνών, και Ινστιτούτο Τεχνολογίας Υπολογιστών Η αρχιτεκτονική

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. Εξερευνώντας τα τρίγωνα. Νικόλαος Μπαλκίζας - Ιωάννα Κοσμίδου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. Εξερευνώντας τα τρίγωνα. Νικόλαος Μπαλκίζας - Ιωάννα Κοσμίδου Νικόλαος Μπαλκίζας - Ιωάννα Κοσμίδου M.C. Escher. Απελευθέρωση, λιθογραφία, 1955 43.5x20cm Σε μια ομοιόμορφα γκρι επιφάνεια, επάνω σε μια ξεδιπλούμενη λωρίδα χαρτιού, συντελείται μια ταυτόχρονη ανάπτυξη

Διαβάστε περισσότερα

Μαρία Κορδάκη Σχολική Σύμβουλος Μαθηματικών Διδ. Επ. καθ. (ΠΔ 407) τμήμα Μηχ. Ηλ/κών Υπολογιστών & Πληροφορικής Παν/μίου Πατρών

Μαρία Κορδάκη Σχολική Σύμβουλος Μαθηματικών Διδ. Επ. καθ. (ΠΔ 407) τμήμα Μηχ. Ηλ/κών Υπολογιστών & Πληροφορικής Παν/μίου Πατρών Ο ρόλος των ανοικτών περιβαλλόντων μάθησης σε υπολογιστή στην έκφραση των ατομικών και ενδο-ατομικών διαφορών των μαθητών στη μάθηση γεωμετρικών εννοιών Μαρία Κορδάκη Σχολική Σύμβουλος Μαθηματικών Διδ.

Διαβάστε περισσότερα

Η Γεωμετρία κάνει παρέα με την Άλγεβρα

Η Γεωμετρία κάνει παρέα με την Άλγεβρα Η Γεωμετρία κάνει παρέα με την Άλγεβρα Τζούμπα Δήμητρα 1, Μαυρουδής Σπύρος 2 1 Καθηγήτρια Μαθηματικών, MSc Ρομποτική & Αυτόματος Έλεγχος, Υποδιευθύντρια Γυμνασίου Αμπελακίων Σαλαμίνας dtzoumpa@gmail.com

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

H Εισαγωγή της Πληροφορικής στην Α/μια και Β/μια εκπ/ση: Προβληματισμοί και Προτάσεις

H Εισαγωγή της Πληροφορικής στην Α/μια και Β/μια εκπ/ση: Προβληματισμοί και Προτάσεις H Εισαγωγή της Πληροφορικής στην Α/μια και Β/μια εκπ/ση: Προβληματισμοί και Προτάσεις Μαρία Κορδάκη Διδ. Επ. καθ. (Π.Δ. 407/80) Τμήμα Μηχ/κών Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν/μίου Πατρών e-mail:kordaki@cti.gr

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 169 Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών - Τεύχος 1 (Γενικό Μέρος) Ενότητα 3.6.2 Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 1. Εισαγωγή Στο παρόν κεφάλαιο περιγράφονται

Διαβάστε περισσότερα

Γεωµετρικές Έννοιες και Τεχνολογία στις Μικρές Ηλικίες: Σχεδιασµός έργων και αξιολόγηση στην πράξη ενός περιβάλλοντος δυναµικής γεωµετρίας

Γεωµετρικές Έννοιες και Τεχνολογία στις Μικρές Ηλικίες: Σχεδιασµός έργων και αξιολόγηση στην πράξη ενός περιβάλλοντος δυναµικής γεωµετρίας Γεωµετρικές Έννοιες και Τεχνολογία στις Μικρές Ηλικίες: Σχεδιασµός έργων και αξιολόγηση στην πράξη ενός περιβάλλοντος δυναµικής γεωµετρίας Άννα Χρονάκη ΠΤΠΕ, Πανεπιστήµιο Θεσσαλίας H παρούσα εργασία συζητάει

Διαβάστε περισσότερα

Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών

Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών Η χρήση γεωμετρικών μετασχηματισμών με DGS, ως μέθοδος επίλυσης προβλημάτων γεωμετρικών τόπων και κατασκευών Ειρήνη Περυσινάκη peririni@hotmail.com Δρ. Πανεπιστημίου UCL Επιμορφώτρια Β Επιπέδου Πειραματικό

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

Εικονικό εργαστήριο στο ηλεκτρικό κύκλωμα

Εικονικό εργαστήριο στο ηλεκτρικό κύκλωμα Εικονικό εργαστήριο στο ηλεκτρικό κύκλωμα ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Ευάγγελος Κολτσάκης, ΠΕ0401 ΣΧΟΛΕΙΟ Καλλιτεχνικό Σχολείο Αμπελοκήπων Θεσσαλονίκη, 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής

Διαβάστε περισσότερα

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 495 H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ Τσιπουριάρη Βάσω Ανώτατη Σχολή Παιδαγωγικής

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Η LOGO ΩΣ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΚΥΚΛΟΥ

Η LOGO ΩΣ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΚΥΚΛΟΥ 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 677 Η LOGO ΩΣ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΚΥΚΛΟΥ Καρατράντου Ανθή Δρ. Πληροφορικής, Εκπαιδευτικός ΠΕ19 Ε-mail: a.karatrantou@eap.gr Αλιμήσης Δημήτρης

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε.

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Στάσεις απέναντι στα Μαθηματικά Τι σημαίνουν τα μαθηματικά για εσάς; Τι σημαίνει «κάνω μαθηματικά»;

Διαβάστε περισσότερα

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία.

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία. Το πιλοτικό πρόγραμμα σπουδών στο γυμνάσιο: Μετασχηματισμοί Δημήτρης Διαμαντίδης 2 ο Πρότυπο Πειραματικό Γυμνάσιο Φιλήμονος 38 & Τσόχα, Αθήνα dimdiam@sch.gr Περίληψη Στο κείμενο περιγράφεται μια διδακτική

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Εικονική πραγματικότητα και εκπαίδευση: Εκπαιδευτικά εικονικά περιβάλλοντα και κόσμοι

Εικονική πραγματικότητα και εκπαίδευση: Εκπαιδευτικά εικονικά περιβάλλοντα και κόσμοι Εικονική πραγματικότητα και εκπαίδευση: Εκπαιδευτικά εικονικά περιβάλλοντα και κόσμοι Αναστάσιος Μικρόπουλος Εργαστήριο Εφαρμογών Εικονικής Πραγματικότητας στην Εκπαίδευση Πανεπιστήμιο Τεχνολογίες μάθησης

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS

BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS Effandi Zakaria and Norulpaziana Musiran The Social Sciences, 2010, Vol. 5, Issue 4: 346-351 Στόχος της

Διαβάστε περισσότερα

Ένα περιβάλλον πολλαπλών αναπαραστάσεων για την εισαγωγή των μαθητών στην έννοια του αλγορίθμου και σε βασικές αλγοριθμικές δομές

Ένα περιβάλλον πολλαπλών αναπαραστάσεων για την εισαγωγή των μαθητών στην έννοια του αλγορίθμου και σε βασικές αλγοριθμικές δομές Ένα περιβάλλον πολλαπλών αναπαραστάσεων για την εισαγωγή των μαθητών στην έννοια του αλγορίθμου και σε βασικές αλγοριθμικές δομές Γρηγόρης Τσώνης 1,2, Γιάννης Παλιανόπουλος 1, Αρης Κατής 1 & Μαρία Κορδάκη

Διαβάστε περισσότερα

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο:

Τμήμα: ευτεροβάθμιας Ευβοίας. Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: Τμήμα: ευτεροβάθμιας Ευβοίας Φορέας ιεξαγωγής: ΠΕΚ Λαμίας Συντονιστής: ημητρακάκης Κωνσταντίνος Τηλέφωνο: 2231081842 Χώρος υλοποίησης: 3 ο ημοτικό Σχολείο Χαλκίδας Υπεύθυνος: Σιέκρη Φρειδερίκη Τηλέφωνο

Διαβάστε περισσότερα

Εκπαιδευτικό πολυμεσικό σύστημα διδασκαλίας των μαθηματικών (Εφαρμογή στη δευτεροβάθμια εκπαίδευση)

Εκπαιδευτικό πολυμεσικό σύστημα διδασκαλίας των μαθηματικών (Εφαρμογή στη δευτεροβάθμια εκπαίδευση) Εκπαιδευτικό πολυμεσικό σύστημα διδασκαλίας των μαθηματικών (Εφαρμογή στη δευτεροβάθμια εκπαίδευση) Γ. Γρηγορίου, Γ. Πλευρίτης Περίληψη Η έρευνα μας βρίσκεται στα πρώτα στάδια ανάπτυξης της. Αναφέρεται

Διαβάστε περισσότερα

Ο ρόλος του γεωμετρικού σχήματος στην επίλυση μαθηματικού προβλήματος. Μιχαήλ Παρασκευή Πανεπιστήμιο Κύπρου

Ο ρόλος του γεωμετρικού σχήματος στην επίλυση μαθηματικού προβλήματος. Μιχαήλ Παρασκευή Πανεπιστήμιο Κύπρου Ο ρόλος του γεωμετρικού σχήματος στην επίλυση μαθηματικού προβλήματος Μιχαήλ Παρασκευή Πανεπιστήμιο Κύπρου Περίληψη Στην παρούσα έρευνα εξετάζεται ο ρόλος του γεωμετρικού σχήματος στην επίλυση μαθηματικού

Διαβάστε περισσότερα

Εξερευνώντας γεωμετρικές έννοιες με μαθητές Γ Γυμνασίου χρησιμοποιώντας το λογισμικό Geogebra σε αντιδιαστολή με το χαρτί και το μολύβι

Εξερευνώντας γεωμετρικές έννοιες με μαθητές Γ Γυμνασίου χρησιμοποιώντας το λογισμικό Geogebra σε αντιδιαστολή με το χαρτί και το μολύβι Έρκυνα, Επιθεώρηση Εκπαιδευτικών Επιστημονικών Θεμάτων, Τεύχος 1ο, 233-243, 2014 Εξερευνώντας γεωμετρικές έννοιες με μαθητές Γ Γυμνασίου χρησιμοποιώντας το λογισμικό Geogebra σε αντιδιαστολή με το χαρτί

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

το σύστηµα ελέγχει διαρκώς το µαθητή,

το σύστηµα ελέγχει διαρκώς το µαθητή, Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)...... 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ)

ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ) ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΟΥ ΑΦΟΡΑ ΤΗ ΔΙΕΡΕΥΝΗΤΙΚΗ ΜΑΘΗΣΗ (ΔΙΑΤΥΠΩΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ ΜΕΣΩ ΔΙΑΔΙΚΑΣΙΩΝ ΔΙΕΡΕΥΝΗΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΣΜΟΥ) Σπύρος Φερεντίνος, Σχολικός Σύμβουλος ΠΕ03 ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση

Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση Από τη σχολική συμβατική τάξη στο νέο υβριδικό μαθησιακό περιβάλλον: εκπαίδευση από απόσταση για συνεργασία και μάθηση Δρ Κώστας Χαμπιαούρης Επιθεωρητής Δημοτικής Εκπαίδευσης Συντονιστής Άξονα Αναλυτικών

Διαβάστε περισσότερα

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων

Αξιοποίηση Διαδραστικού Πίνακα στη. Συναρτήσεων - Γραφικών παραστάσεων 2ο ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ - ΠΑΤΡΑ 28-30/4/2011 1283 Αξιοποίηση Διαδραστικού πίνακα στη διδασκαλία Συναρτήσεων - Γραφικών παραστάσεων Σ. Παπαδημητρίου Διεύθυνση Εκπαιδευτικής Ραδιοτηλεόρασης, ΥΠΔΒΜΘ, sofipapadi@gmail.com

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

ΑΠΟΣΤΟΛΟΣ ΤΣΙΛΟΜΗΤΡΟΣ ΠΕ70 ΔΗΜ.ΣΧ.ΑΧΛΑΔΙΑΣ ΤΑΞΗ Ε ΚΩΝ/ΝΟΣ ΓΚΑΛΜΠΕΝΗΣ ΠΕ70 8ο ΔΗΜ. ΣΧ. ΤΑΞΗ Ε ΕΥΘΥΜΙΑ ΧΑΛΒΑΝΤΖΗ ΠΕ70 ΔΗΜ.ΣΧ.

ΑΠΟΣΤΟΛΟΣ ΤΣΙΛΟΜΗΤΡΟΣ ΠΕ70 ΔΗΜ.ΣΧ.ΑΧΛΑΔΙΑΣ ΤΑΞΗ Ε ΚΩΝ/ΝΟΣ ΓΚΑΛΜΠΕΝΗΣ ΠΕ70 8ο ΔΗΜ. ΣΧ. ΤΑΞΗ Ε ΕΥΘΥΜΙΑ ΧΑΛΒΑΝΤΖΗ ΠΕ70 ΔΗΜ.ΣΧ. ΣΕΝΑΡΙΟ ΕΡΓΑΣΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΤΠΕ ΜΑΘΑΙΝΩ ΓΙΑ ΤΗΝ ΠΕΡΙΜΕΤΡΟ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ 1. ΤΙΤΛΟΣ ΔΙΔΑΚΤΙΚΟΥ ΣΕΝΑΡΙΟΥ «Περίμετρος γεωμετρικών σχημάτων» 2. ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ Για

Διαβάστε περισσότερα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης

Μαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας

Διαβάστε περισσότερα