Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ"

Transcript

1 ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός 1. Την εστιακή απόσταση ενός λεπτού συγκλίνοντα φακού από τη γραµµική µεγέθυνση του ειδώλου. 2. Να συγκρίνουμε την τιμή της εστιακής απόστασης που θα υπολογίσουμε με τη τιμή που δίνει ο κατασκευαστής. 3. Το δείκτη διάθλασης του διαφανούς υλικού απο το οποίο αποτελείται ο δακός Το Θεωρητικό πλαίσιο της δραστηριότητας - Σχεδιασμός της πειραματικής διαδικασίας Στην άσκηση θα μελετήσουμε τις ιδιότητες ενός λεπτού συμμετρικού σφαιρικού φακού. Ο φακός μας αποτελείται από ένα κομμάτι γυαλιού που περιορίζεται από δύο σφαιρικές επιφάνειες ίσης ακτίνας R. Ο δείκτης διάθλασης του γυαλιού είναι n. Τα βασικά γεωμετρικά χαρακτηριστικά του φακού φαίνονται στο Σχήμα1. Σχήμα 1 ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 1

2 Με την λέξη «λεπτός» εννοούμε ότι το πάχος D του φακού είναι πολύ μικρότερο της ακτίνας του R: D<<R. Στο σχήμα 1.α φαίνονται οι γεωμετρικές λεπτομέρειες του φακού: Σχήμα 1.α Κάθε λεπτή φωτεινή δέσμη που έχει διεύθυνση παράλληλη με τον κύριο άξονα του φακού, αφού διαθλασθεί, διέρχεται από ένα συγκεκριμένο σημείο Ε1 του κύριου άξονα που ονομάζεται κύρια εστία του φακού (σχήμα 2). Σχήμα 2 Ο φακός έχει δύο κύριες εστίες που βρίσκονται σε συμμετρικές θέσεις ως προς το κέντρο Ο του φακού (Ε1 και Ε2). Η απόσταση κάθε κύριας εστίας από το Ο ονομάζεται εστιακή απόσταση (f) του φακού και αποτελεί χαρακτηριστικό του γνώρισμα. ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 2

3 Η εστιακή απόσταση f του λεπτού φακού σχετίζεται με την ακτίνα R και το δείκτη διάθλασης n. Μπορεί να αποδειχθεί θεωρητικά ότι ισχύει η σχέση: R n 1 2 f (1) Η (1) ονομάζεται «εξίσωση του κατασκευαστή» του φακού. Παρατηρούμε ότι αν μετρήσουμε την ακτίνα R των σφαιρικών επιφανειών του φακού και την εστιακή απόσταση f, τότε από την «εξίσωση του κατασκευαστή» μπορούμε να υπολογίσουμε πειραματικά το δείκτη διάθλασης n του γυαλιού από το οποίο έχει κατασκευαστεί ο φακός (Πείραμα 2). Σχηματισμός ειδώλου, σχετική θέση αντικειμένου-ειδώλου. Η εικόνα ενός φωτεινού αντικειμένου που σχηματίζεται από ένα φακό ονομάζεται είδωλο. Αν είναι δυνατό να προβάλλουμε το είδωλο πάνω σε μια οθόνη (πέτασμα), τότε το ονομάζουμε πραγματικό. Αντίθετα, αν είναι αδύνατη η προβολή του σε οθόνη, τότε λέγεται φανταστικό. Για να σχηματιστεί από το φακό μας πραγματικό είδωλο, πρέπει να τοποθετήσουμε το φωτεινό αντικείμενο σε σημείο του κύριου άξονα που απέχει από το κέντρο Ο του φακού απόσταση α μεγαλύτερη της εστιακής (α>f). Τότε μπορούμε να δούμε με ευκρίνεια το ανεστραμμένο είδωλο πάνω σε μία οθόνη που τοποθετούμε σε κατάλληλη θέση από την άλλη πλευρά του φακού. Με μια μετροταινία μπορούμε να μετρήσουμε την απόσταση β του ειδώλου από το κέντρο Ο του φακού. Αν το αντικείμενο βρίσκεται σε πολύ μεγάλη απόσταση από το φακό (α ), τότε το είδωλο σχηματίζεται πάνω στην κύρια εστία του φακού. Για παράδειγμα, το είδωλο του ηλιακού δίσκου σχηματίζεται πάνω στην κύρια εστία του φακού. ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 3

4 Αν τοποθετήσουμε ένα μικρό φωτεινό αντικείμενο -για παράδειγμα ένα κεράκι- πάνω στον κύριο άξονα του φακού, σε απόσταση α από το κέντρο του Ο (α>f), τότε σε ποια απόσταση β από το Ο, από την άλλη πλευρά του φακού, πρέπει να τοποθετήσουμε μια οθόνη για να δούμε με ευκρίνεια το είδωλο της φλόγας του κεριού; Ορίζουμε σαν Γραμμική Μεγένθυση Μ το λόγο. Αποδεικνύεται θεωρητικά ότι μεταξύ των α, β και f ισχύει η ακόλουθη σχέση: f Οπότε έχουμε (2) Θέτουμε 1 f και (Γραμμική μεγένθυση) (3) 1 1 f (4) Η (4) είναι της μορφής: mx b με κλίση: Άρα σχεδιάζοντας τη γραφική παράσταση της γραμμικής μεγένθυσης Μ με την απόσταση β και υπολογίζοντας τη κλίση βρίσκω την εστιακή απόσταση του φακού. Όργανα και υλικά 1) Λεπτός σφαιρικός συμμετρικός φακός 2) Παχύμετρο/Διαστημόμετρο 3) Μετροταινία 4) Κεράκι σε αλουμινένιο δοχείο και βάση ύψους 1-2cm 5) Χαρτονένια οθόνη /πέτασμα 6) Χαρτί 7) Χάρακας 30cm 8) Χαρτί μιλιμετρέ 9) Αριθμομηχανή 10)Κομμάτια πλαστελίνη για στήριγμα του πετάσματος 1 f ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 4

5 Πειραματική δραστηριότητα 1 η (Μέτρηση εστιακής απόστασης f) Είναι δυνατό να προσδιορίσουµε την εστιακή απόσταση f ενός συγκλίνοντα φακού µε διάφορους τρόπους. Στη συγκεκριµένη διαδικασία θ αναπτύξουµε µια µέθοδο γραφικού προσδιορισµού της f από τις ποσότητες Μ (γραµµική µεγέθυνση) και β (απόσταση ειδώλου/οθόνης φακού). Πιο συγκεκριµένα: Σχήμα 3: Η πειραµατική διάταξη για τον προσδιορισµό της εστιακής απόστασης f του φακού Για τη χάραξη της χαρακτηριστικής Μ β θα απαιτηθούν 8-10 ζεύγη τιµών α, β 1. Εξασφαλίζουµε ότι όλα τα στοιχεία (κεράκι φακός οθόνη/πέτασµα) βρίσκονται στο ίδιο ύψος και στην ίδια ευθεία και ότι το επίπεδο του φακού είναι κάθετο προς το κερί. Οθόνη και κεράκι βρίσκονται εκατέρωθεν του φακού. Προσέχουμε το είδωλο να εμφανίζεται στο κέντρο του φακού. 2. Τοποθετήστε το κερί σε απόσταση α απο το φακό. ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 5

6 3. Μετακινήστε εµπρός πίσω το πέτασμα µέχρι να εµφανιστεί πανω του καθαρό το είδωλο της φλόγας του κεριού και ανεστραμμένο. Στηρίξτεε το πέτασμα με τη πλαστελίνη ανα χρειαστεί. 4. Μετρήστε την απόσταση (φακός πέτασμα ) β με τη μετροταινία και καταχωρίστε τη στον Πίνακα 1. 5.Να επαναλάβετε την εργασία 2 έως 4 για άλλα 8 10 ζεύγη τιµών α και β. Πίνακας 1 α/α α (cm) β (cm) Μ (β/α) Τοποθετήστε τα πειραματικά σημεία ( β και β/α=μ) σε ορθογώνιο σύστημα αξόνων. 7.Χαράξτε τη χαρακτηριστική Μ(τεταγμένη) β(τετμημένη) (την βέλτιστη ευθεία). 8.Να προεκτείνετε την ευθεία που χαράξατε και να βρείτε το σημείο που αυτή τέμνει τον οριζόντιο άξονα. Χ=... ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 6

7 9. Να υπολογίσετε την κλίση της ευθείας με το γνωστό τρόπο (κλίση = m = 1/f). Από αυτή την τιµή υπολογίστε την f Πειραματική δραστηριότητα 2 η (Υπολογισμός δείκτη διάθλασης του φακού) Για να υπόλογίσουμε το δείκτη διάθλασης του φακού θα χρησιμοποιήσουμε τη σχέση (1) R n 1 2 f 1. Μετρήστε το πάχος D του φακού. 2. Μετρήστε τη διάμετρο L του δίσκου του φακού. 3. Υπολογίστε την ακτίνα R του φακού με βάση το σχήμα 1.α. Οι μετρήσεις σας να γίνουν σε cm, με προσέγγιση 2ου δεκαδικού ψηφίου. D= cm L= cm R= cm Αντικαταστήστε στη σχέση (1)για να υπολογίσετε το δείκτη διάθλασης n ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 7

8 n R 1 2 f = 4.Αφού ολοκληρώσετε τη διαδικασία να μετακινηθείτε στο Εργαστήριο Πληροφορικής 5.Ανοίξτε ένα αρχείο στο Excel σε έναν υπολογιστή. 6.Να μεταφέρετε τις στήλες β και Μ σε ένα πίνακα τιμών (πρώτη στήλη το β και δεύτερη το Μ=β/α). 7.Στη συνέχεια να σχεδιάσετε το διάγραμμα β-μ. Να εφαρμόσετε τη γραμμή τάσης και να γράψετε τη κλίση του διαγράμματος. Κλίση =... 8.Να τη συγκρίνετε με αυτή που βρήκατε στο διάγραμμά σας στο χαρτί μιλιμέτρ Να αποθηκεύσετε το αρχείο σας με τον αριθμό της ομάδας σας (ΟΜΑΔΑ...) ΕΡΩΤΗΣΕΙΣ 1.Τι είδους σφάλματα πιστεύετε ότι εισέρχονται στη διαδικασία και σε ποια σημεία της. ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 8

9 ΕΠΙΜΕΛΕΙΑ: ΦΥΤΤΑΣ Γ. - ΦΥΣΙΚΟΣ 9

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoira.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I. ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005. Μαίρη Τζιράκη, Κουνής Γεώργιος

ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I. ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005. Μαίρη Τζιράκη, Κουνής Γεώργιος ΕΡΓΑΣΤΗΡΙΟ 1 ΦΥΣΙΟΛΟΓΙΚΗ ΟΠΤΙΚΗ ΚΑΙ ΕΦΑΡΜΟΓΕΣ I ΤΙΤΛΟΣ: ΣΦΑΙΡΙΚΟΙ & ΚΥΛΙΝ ΡΙΚΟΙ ΦΑΚΟΙ Πέµπτη, 10 Μαρτίου 2005 Μαίρη Τζιράκη, Κουνής Γεώργιος Σκοπός της εργαστηριακής άσκησης είναι η µελέτη των εξισώσεων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2016 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr

ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr ιατµηµατικό µεταπτυχιακό πρόγραµµα «Οπτική και Όραση» Ασκήσεις Οπτική Ι ιδάσκων: ηµήτρης Παπάζογλου Email: dpapa@iesl.forth.gr 1. Να σχεδιάσετε την διάδοση των ακτίνων στα παρακάτω οπτικά συστήµατα F F

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η ικανότητα χρήσης καθρέφτη και πηγής laser. Η κατανόηση

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

Σφάλματα φακών (Σφαιρικό - Χρωματικό).

Σφάλματα φακών (Σφαιρικό - Χρωματικό). O12 Σφάλματα φακών (Σφαιρικό - Χρωματικό). 1. Σκοπός Στην άσκηση αυτή υπολογίζονται πειραματικά δυο από τα πιο σημαντικά οπτικά σφάλματα (η αποκλίσεις) που παρουσιάζονται όταν φωτεινές ακτίνες διέλθουν

Διαβάστε περισσότερα

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014

Προκριματικός διαγωνισμός για την 13 η EUSO 2015 στην Φυσική Σάββατο 6/12/2014 ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ Προκριματικός διαγωνισμός για την 13 η EUSO 015 στην Φυσική Σάββατο 6/1/014 Ονοματεπώνυμα μελών ομάδας 1) ) 3) Σχολείο: ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΗ

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Λυκείου 1 Μαρτίου 11 Θέμα 1 ο Α. Η οκτάκωπος είναι μια μακρόστενη λέμβος κωπηλασίας με μήκος 18 m. Στα κωπηλατοδρόμια, κάποιες φορές, κύματα τα οποία δεν έχουν μεγάλο πλάτος μπορεί να

Διαβάστε περισσότερα

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης...

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης... 1. Λεπτοί Φακοί Σελίδα 1. Σκοπός της άσκησης.... 1 2. Στοιχεία θεωρίας... 1 2.1 Γεωμετρική οπτική... 1 2.2 Ο νόμος της ανάκλασης... 1 2.3 Ο νόμος της διάθλασης... 2 2.4 Είδωλα & παραξονική προσέγγιση...

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ Άσκηση 4. Διαφράγματα. Θεωρία Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη

Διαβάστε περισσότερα

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ ΣΥΝΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ -.Μ.Κ. 10.98 1 ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΣ Ε1 Μ 2γ Ε2 2β 1. ΡΙΣΜΙ ΡΙΣΜΙ - ΚΤΣΚΕΥΕΣ Η έλλειψη είναι επίπεδη καµπύλη 2 ου βαθµού, είναι δε ο γεωµετρικός τόπος των σηµείων, των οποίων το άθροισµα

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 Μελέτη φακών

ΑΣΚΗΣΗ 8 Μελέτη φακών Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 8 Μελέτη φακών 8. Απαραίτητα όργανα και υλικά. Οπτική τράπεζα.. Πέτασμα. 3. Συγκεντρωτικός φακός. 4. Φωτεινή πηγή. 5. Διάφραγμα με δακτύλιο και οπή. 6. Φίλτρο κόκκινο

Διαβάστε περισσότερα

Φυσική Εικόνας & Ήχου ΙΙ (Ε)

Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ενότητα 8: Υπολογισμός άγνωστης εστιακής απόστασης θετικού φακού Αθανάσιος Αραβαντινός Τμήμα Φωτογραφίας

Διαβάστε περισσότερα

Μετρήσεις σε ράβδους γραφίτη.

Μετρήσεις σε ράβδους γραφίτη. 13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 13 Δεκεμβρίου2014 Σχολείο: Ονόματα μαθητών:1) 2) 3) Μετρήσεις σε ράβδους γραφίτη. Για να γράψουμε χρησιμοποιούμε τα μολύβια,

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν:

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: 15 η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2017 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: (1) (2) (3) Σέρρες 10/12/2016 Σύνολο μορίων:..... 0 ΜΕΤΡΗΣΗ ΕΙΔΙΚΗΣ

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ Β Λ (ΠΡΟΕΤΟΙΜΑΣΙΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 04/01/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ Ημερομηνία:. ΤΜΗΜΑ:.. ΟΜΑΔΑ:. Ονομ/νυμο: Α.Μ. Συνεργάτες Ονομ/νυμο: Α.Μ. Ονομ/νυμο: Α.Μ. ΠΕΡΙΛΗΨΗ ΤΗΣ ΑΣΚΗΣΗΣ (καθένας με δικά του λόγια, σε όλες τις γραμμές) ΒΑΘΜΟΣ#1: ΥΠΟΓΡΑΦΗ:

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 14-15 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Φυσική ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1.. 3. Αναπληρωματικός: Θέματα: Ηλ. Μαυροματίδης Β Σειρά Θεμάτων (Φυσική) Μέτρηση της

Διαβάστε περισσότερα

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία.

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία. ΑΣΚΗΣΗ 1 Δύο κάτοπτρα σχηματίζουν ορθή γωνία, όπως φαίνεται στο σχήμα. Στο σημείο Ο υπάρχει ένα αντικείμενο. Να προσδιορίσετε τη θέση των ειδώλων που σχηματίζονται ΑΣΚΗΣΗ 2 Κοίλο σφαιρικό κάτοπτρο έχει

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενοτήτων 5, 6 & 7 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου ΟΠΤΙΚΗ Περιεχόμενα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ... 2 Ερωτήσεις κλειστού τύπου... 2 Ερωτήσεις ανοικτού τύπου... 2 Ασκήσεις... 3 ΚΥΜΑΤΙΚΗ ΟΠΤΙΚΗ... 4 Ερωτήσεις κλειστού τύπου... 4 Ερωτήσεις ανοικτού τύπου... 4 Ασκήσεις...

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Α. Στόχοι Οι μαθητές: Να παρατηρήσουν το φαινόμενο της συμβολής / περίθλασης Να αξιοποιήσουν το φαινόμενο της περίθλασης

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Γ Γυμνασίου 9 Μαρτίου 013 Θεωρητικό Μέρος Θέμα 1 ο Α. Ας υποθέσουμε πως έχουμε τον ακόλουθο νόμο δυναμικής F = Ar, όπου με F συμβολίζεται το μέγεθος της δύναμης και με r το μέγεθος της απόστασης. Να βρεθούν

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Η πειραματική διάταξη φαίνεται στο ακόλουθο σχήμα: Θα χρησιμοποιήσουμε: Ένα φακό Laser κόκκινου χρώματος. Ένα φράγμα περίθλασης. Μια οθόνη που φέρει πάνω

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Η κατασκευή με τις δύο πινέζες και το νήμα

Η κατασκευή με τις δύο πινέζες και το νήμα Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

Τοπικός Μαθητικός Διαγωνισμός EUSO

Τοπικός Μαθητικός Διαγωνισμός EUSO Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός

Διαβάστε περισσότερα

2. Ο οφθαλμός ως οπτικό σύστημα

2. Ο οφθαλμός ως οπτικό σύστημα 2. Ο οφθαλμός ως οπτικό σύστημα 2 Απριλίου 20 Η δομή του οφθαλμού Ιδωμένος ως ένα οπτικό όργανο, ο ανθρώπινος οφθαλμός επιτελεί την ακόλουθη λειτουργία. Δέχεται εισερχόμενες ακτίνες φωτός από απομακρυσμένα

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ Σκοπός Σκοπός της άσκησης αυτής είναι η στερεογραφική απεικόνιση του επιπέδου του ρήγματος, καθώς και του βοηθητικού επιπέδου

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Όταν φωτεινή δέσμη φωτός συναντά στην πορεία του εμπόδια ή περνάει από λεπτές σχισμές υφίσταται περίθλαση, φτάνει δηλαδή σε σημεία που δεν προβλέπονται

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

Διδακτική των Μαθηματικών

Διδακτική των Μαθηματικών Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

Υπολογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή

Υπολογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή Ο6 Υπογισµός της ισχύος συστήµατος λεπτών φακών σε επαφή. Σκοπός Στην άσκηση αυτή θα προσδιορίσουµε την εστιακή απόσταση που διαµορφώνει ένα σύστηµα λεπτών φακών που βρίσκονται σε επαφή µεταξύ τους και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΜΟΝΟΧΡΩΜΑΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΚΟΠΟΙ H εξάσκηση στην παρατήρηση και περιγραφή φαινοµένων, όπως το φαινόµενο της συµβολής των κυµάτων H παρατήρηση των αποτελεσµάτων της διάδοσης της

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:...

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:... ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ 10 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2012 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 26/11/2011

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

Εισαγωγή Στοιχεία Θεωρίας

Εισαγωγή Στοιχεία Θεωρίας Εισαγωγή Σκοπός της άσκησης αυτής είναι η εισαγωγή στην τεχνογνωσία των οπτικών ινών και η μελέτη τους κατά τη διάδοση μιας δέσμης laser. Συγκεκριμένα μελετάται η εξασθένιση που υφίσταται το σήμα στην

Διαβάστε περισσότερα

Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα.

Αγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα. Αγωγιμομετρία Η Πορεία των Υπολογισμών με Παραδείγματα. Πρώτα πρέπει να υπολογίσουμε την ισοδύναμη αγωγιμότητα άπειρης αραίωσης για κάθε ηλεκτρολύτη. Εδώ πρέπει να προσέξουμε τις μονάδες. Τα μεγέθη που

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

4. Όρια ανάλυσης οπτικών οργάνων

4. Όρια ανάλυσης οπτικών οργάνων 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες

Διαβάστε περισσότερα

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012

ΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012 1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,

Διαβάστε περισσότερα

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων.

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Α u. u cm. = ω 1 + α cm. cm cm

Α u. u cm. = ω 1 + α cm. cm cm ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

Φυσική Εικόνας & Ήχου ΙΙ (Ε)

Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ενότητα 3: Σφάλματα φακών (Σφαιρικό - Χρωματικό) Αθανάσιος Αραβαντινός Τμήμα Φωτογραφίας & Οπτικοακουστικών

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm

ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΜΕΤΑΤΡΟΠΗ ΑΡΧΙΚΟΥ Κ ΤΟΥ ΕΛΑΤΗΡΙΟΥ ΜΗΧΑΝΗΣ ΣΕ Κ=1,1 kg/mm ΑΓΓΕΛΙΚΗ ΛΕΒΑΝΤΗ ΖΑΝΝΕΙΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΤΜΗΜΑ Α 2 10 ΙΑΝΟΥΑΡΙΟΥ 2010 ΣΕΝΑΡΙΟ : Πρόκειται να μετατρέψουμε τα εμπρός ελατήρια μιας μοτοσυκλέτας

Διαβάστε περισσότερα

ΣΕΝΑΡΙΑ ΚΕΝΤΡΙΚΗΣ ΚΡΟΥΣΗΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΙΠΠΕΩΝ) ΣΕ ΑΕΡΟΔΙΑΔΡΟΜΟ

ΣΕΝΑΡΙΑ ΚΕΝΤΡΙΚΗΣ ΚΡΟΥΣΗΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΙΠΠΕΩΝ) ΣΕ ΑΕΡΟΔΙΑΔΡΟΜΟ ΣΕΝΑΡΙΑ ΚΕΝΤΡΙΚΗΣ ΚΡΟΥΣΗΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΙΠΠΕΩΝ) ΣΕ ΑΕΡΟΔΙΑΔΡΟΜΟ Σε αυτή τη πειραματική δραστηριότητα θα χρησιμοποιούμε δύο ιππείς καθώς επίσης και το Σύστημα Σύγχρονης Λήψης και Απεικόνισης LabPro, με το

Διαβάστε περισσότερα