Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό."

Transcript

1 Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να κατανοήσετε το νόημα των όρων κύκλος και έλλειψη. Ορισμός: Κύκλος είναι ένα σύνολο σημείων τέτοιων ώστε η απόσταση κάθε μέλους του συνόλου από ένα σταθερό σημείο (κέντρο) να είναι σταθερή. Κάθε ευθύγραμμο τμήμα που συνδέει ένα σημείο Ο με ένα σημείο στην περιφέρεια του κύκλου αποτελεί μια ακτίνα του κύκλου. Το τμήμα ΟΑ είναι μια ακτίνα του κύκλου στο σχήμα δεξιά. Τώρα φανταστείτε ότι το κέντρο του κύκλου χωρίζεται σε δύο σημεία που απομακρύνονται μεταξύ τους. Καθώς μετακινούνται αυτά τα σημεία, το σχήμα του κύκλου παραμορφώνεται σε ελλειπτικό, ώστε να στεγάσει τα δύο «κέντρα». Τα σημεία αυτά ονομάζονται εστιακά σημεία ή εστίες (E 1 και Ε 2 είναι τα εστιακά σημεία στο παρακάτω σχήμα). Για τον κύκλο η απόσταση μεταξύ κέντρου και οποιουδήποτε σημείου της περιφέρειας είναι πάντοτε η ίδια, δηλαδή σταθερή. Ποια είναι η αντίστοιχη συνθήκη για ένα σχήμα με δύο «κέντρα»; Για κάθε σημείο μιας έλλειψης υπάρχουν δύο αποστάσεις, μια από κάθε εστιακό σημείο. Αν το άθροισμα των αποστάσεων αυτών είναι σταθερό, έχουμε μια παρόμοια συνθήκη. Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Σύμφωνα με τον ορισμό αυτό, αν επιλέξετε οποιοδήποτε σημείο της έλλειψης και υπολογίσετε το άθροισμα των αποστάσεών του από τα δύο εστιακά σημεία, θα προκύπτει πάντοτε η ίδια αριθμητική τιμή. Ελέγξτε αυτό το αποτέλεσμα για την έλλειψη στο επόμενο σχήμα. Επιλέξτε τουλάχιστον τέσσερις διαφορετικές θέσεις για ένα σημείο Α που κινείται πάνω στην έλλειψη και μετρήστε τις αποστάσεις κάθε θέσης από τις δύο εστίες. 36 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

2 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Υπολογίστε τα αθροίσματα των δύο αποστάσεων. Πόσο πλησιάζουν αριθμητικά μεταξύ τους τα τέσσερα αθροίσματα; Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 37

3 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Κατασκευή ενός φυσικού μοντέλου Τώρα που γνωρίζετε τι είναι μια έλλειψη, προχωρήστε στη σχεδίασή της! Μια κοινή μέθοδος χρησιμοποιεί δύο πινέζες, ένα κομμάτι νήματος και ένα μολύβι. Όπως φαίνεται στο σχήμα, οι πινέζες στερεώνονται σε μια επίπεδη επιφάνεια και το νήμα τοποθετείται γύρω τους. Για τη χρήση της διάταξης, τεντώστε το νήμα με το μολύβι όπως στο σχήμα. Καθώς μετακινείτε το μολύβι γύρω γύρω από τις εστίες διατηρώντας τεντωμένο το νήμα, η μύτη του μολυβιού χαράσσει μια έλλειψη. Από το βιβλίο De organica conicarum sectionum in plano descriptione tractatus του Ολλανδού μαθηματικού Frans van Schooten, Τι χρειάζεστε: Ένα κομμάτι κλωστής ή οδοντικού νήματος, δύο πινέζες, ένα μεγάλο κομμάτι χαρτί και ένα μολύβι. 1. Ενώστε τα άκρα του νήματος για το σχηματισμό ενός βρόχου. Επιλέξτε δύο σημεία στο χαρτί και στερεώστε το νήμα με τις δύο πινέζες. Ίσως χρειαστεί να επιμηκύνετε ή να κοντύνετε το νήμα, ώστε η έλλειψη να καλύπτει την επιφάνεια του χαρτιού αλλά να μην προεξέχει. 2. Τεντώστε το νήμα με το μολύβι. 3. Διατηρώντας τεντωμένο το νήμα, μετακινήστε το μολύβι γύρω από τα εστιακά σημεία έτσι ώστε η μύτη του μολυβιού να χαράξει μια καμπύλη. Ίσως χρειαστεί να σηκώσετε τη μύτη από το χαρτί και να την επανατοποθετήσετε για τη χάραξη της πλήρους καμπύλης. Ερωτήματα Ε1. Δικαιολογήστε το γεγονός ότι αυτή η κατασκευή σχεδιάζει ελλείψεις. Με άλλα λόγια, εξηγήστε πώς αυτή η μέθοδος κατασκευής ικανοποιεί τον ορισμό μιας έλλειψης. Ε2. Πού βρίσκονται τα εστιακά σημεία της έλλειψης; Ε3. Περιγράψτε πώς μεταβάλλεται το σχήμα της όταν τη σχεδιάσετε και πάλι με τις πινέζες σε μεγαλύτερη μεταξύ τους απόσταση. Τι συμβαίνει στην περίπτωση ελάττωσης της απόστασης αυτής; Ε4. Βασιζόμενοι στις παρατηρήσεις σας, τι μπορείτε να αναφέρετε σχετικά με τα ευθύγραμμα τμήματα ΒΕ 1 και ΓΕ 2 ; (Δείτε το προηγούμενο μεγάλο σχήμα.) 38 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

4 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Ε5. Έστω ότι τα σημεία στερέωσης του νήματος ταυτίζονται. Τι είδους καμπύλη θα σχεδιάσει το μολύβι; Δώστε μια εξήγηση. Ε6. Έστω ότι τα σημεία στερέωσης του νήματος απέχουν τόσο ώστε ολόκληρο το νήμα να είναι τεντωμένο και να έχει το μέγιστο μήκος του. Τι είδους καμπύλη θα σχεδιάσει το μολύβι; Δώστε μια εξήγηση. Ακολουθούν ορισμένες δραστηριότητες που θα σας βοηθήσουν να κατανοήσετε την έλλειψη που κατασκευάσατε. Ερωτήματα Ε1. Σε κάθε έλλειψη αντιστοιχούν δύο σημαντικά ευθύγραμμα τμήματα, ο μεγάλος άξονας και ο μικρός άξονας. Σε καθένα από τα παρακάτω σχήματα το τμήμα ΒΓ είναι ο μεγάλος άξονας και το τμήμα ΔΕ ο μικρός άξονας. Γράψτε έναν ορισμό του μεγάλου και του μικρού άξονα. E2. Σε ένα φύλλο χαρτιού σχεδιάστε με τη βοήθεια του νήματος, των πινεζών και του μολυβιού μια άλλη έλλειψη. Χρησιμοποιήστε έναν κανόνα για τη σχεδίαση και μέτρηση του μεγάλου άξονά της. Χωρίς να προβείτε σε περαιτέρω μετρήσεις, πώς θα προσδιορίσετε το μήκος του νήματος; Υπόδειξη: Χρησιμοποιήστε το μολύβι σας ώστε να τεντώσετε το νήμα. Στη συνέχεια, μετακινήστε το μολύβι γύρω από την έλλειψη ωσότου εντοπίσετε μια βολική θέση. Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 39

5 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Ε3. Στο επόμενο σχήμα το σημείο Δ βρίσκεται στο ένα άκρο του μικρού άξονα της έλλειψης και τα σημεία Ε 1 και Ε 2 είναι οι εστίες της έλλειψης. Εάν το μήκος του μεγάλου άξονα ΒΓ είναι 9,5 εκατοστά, πόσο είναι το μήκος των ευθύγραμμων τμημάτων ΔΕ 1 και ΔΕ 2 ; Μη χρησιμοποιήσετε κανόνα! E4. Εάν το μήκος του μικρού άξονα ΔΕ είναι 7,2 εκατοστά, πόσο είναι το μήκος των τμημάτων ΟΕ 1 και ΟΕ 2 ; Μπορείτε να χρησιμοποιήσετε την απάντηση του ερωτήματος 3. Και πάλι μη χρησιμοποιήσετε κανόνα! E5. Στηριζόμενοι στις απαντήσεις στα ερωτήματα 2-4, ποια είναι η σχέση μεταξύ των τμημάτων ΟΓ, ΟΔ και ΟΕ 2 ; E6. Το παρακάτω σχήμα εμφανίζει μια έλλειψη και τους δύο άξονές της. Ζητείται ο εντοπισμός των δύο εστιών. α. Χρησιμοποιήστε έναν κανόνα και έναν υπολογιστή για την εύρεση των εστιακών σημείων. Εξηγήστε τη μέθοδό σας. β. Βρείτε τα εστιακά σημεία με χρήση μόνο ενός διαβήτη. Εξηγήστε τη μέθοδό σας. 40 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

6 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Κάθε φορά που σχεδιάζετε μια νέα έλλειψη με μολύβι, νήμα και πινέζες, πρέπει να επανατοποθετείτε τις πινέζες και να χαράζετε το περίγραμμα με το μολύβι σας. Ένα μοντέλο του Sketchpad καθιστά ευκολότερη την εξερεύνηση μιας ποικιλίας ελλείψεων. Λεπτομέρειες κατασκευής 1. Κατασκευάστε μια ευθεία και αποκρύψτε τα σημεία ελέγχου της. Κατασκευάστε τα σημεία Α, Β και Γ στην ευθεία. Η θέση αυτών των σημείων είναι αυθαίρετη αλλά το σημείο Γ πρέπει να βρίσκεται μεταξύ των σημείων Α και Β. 2. Αποκρύψτε την ευθεία και κατασκευάστε τα ευθύγραμμα τμήματα ΑΓ και ΓΒ. 3. Δημιουργήστε τις ετικέτες των σημείων Ε1 και Ε2 που αναπαριστούν τις εστίες της έλλειψής σας. 4. Χαράξτε έναν κύκλο με κέντρο το Ε1 και ακτίνα ίση με το μήκος του ΑΓ. Κατασκευάστε έναν άλλο κύκλο με κέντρο το Ε2 και ακτίνα ίση με το μήκος του ΓΒ. 5. Κατασκευάστε τα δύο σημεία τομής των κύκλων. Ίσως χρειαστεί να προσαρμόσετε το μοντέλο σας ώστε οι κύκλοι να τέμνονται. Επιλέξτε τα σημεία τομής και την εντολή Σχεδίαση ίχνους τομών από το μενού Προβολή. 6. Σύρτε το σημείο Γ εμπρός και πίσω κατά μήκος του τμήματος ΑΒ. Το ίχνος των δύο σημείων πρέπει να αποτελεί μια έλλειψη. Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 41

7 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Ερωτήματα Ε1. Εξηγήστε γιατί τα σημεία τομής των δύο κύκλων ικανοποιούν τον ορισμό μιας έλλειψης. Ε2. Πειραματιστείτε με διαφορετικές θέσεις των εστιακών σημείων και παρατηρήστε πώς μεταβάλλεται το σχήμα της έλλειψης. Περιγράψτε τα ευρήματά σας. Ε3. Έστω ότι οι θέσεις των σημείων Α και Β παραμένουν σταθερές στην ευθεία. Ποια είναι η μέγιστη απόσταση μεταξύ των εστιακών σημείων για την οποία είναι δυνατή η σχεδίαση μιας έλλειψης; Ε4. Μελετήστε ξανά τα βήματα της κατασκευής του μοντέλου. Όταν το σημείο Γ μετακινείται εμπρός και πίσω μεταξύ των σημείων Α και Β, η τομή των κύκλων διαγράφει μια έλλειψη. Ποιο είναι το μήκος του μεγάλου άξονα αυτής της έλλειψης; Οι ελλείψεις που σχεδιάσατε σε αυτή τη δραστηριότητα είναι διαφορετικές. Ορισμένες είναι «λεπτές» και επιμήκεις, άλλες είναι «παχιές» και σχεδόν κυκλικές. Η εκκεντρότητα μιας έλλειψης είναι μια αριθμητική τιμή που καθορίζει το πάχος μιας έλλειψης. Ορισμός: Η εκκεντρότητα μιας έλλειψης ορίζεται ως ο λόγος α/β, όπου α: η απόσταση μεταξύ των εστιακών σημείων και β: η απόσταση μεταξύ των άκρων του μεγάλου άξονα Ε5. Χρησιμοποιήστε τις εντολές του Sketchpad (Μέτρηση) Απόστασης και Υπολογισμός για τον προσδιορισμό της εκκεντρότητας της έλλειψής σας. Θα χρειαστείτε τη μέτρηση της απόστασης μεταξύ των εστιακών σημείων καθώς και του μήκους του μεγάλου άξονα. (Ποια σημεία έχουν μεταξύ τους απόσταση ίση με το μήκος του μεγάλου άξονα;) Επιλέξτε τις δύο αποστάσεις και χρησιμοποιήστε την εντολή Υπολογισμός από το μενού Μέτρηση για τον υπολογισμό του λόγου τους. Ε6. Χρησιμοποιήστε το μοντέλο του Sketchpad για τη σχεδίαση διαφορετικών ελλείψεων. Παρατηρήστε πώς μεταβάλλεται η τιμή της εκκεντρότητάς τους. Ποια είναι η ελάχιστη και η μέγιστη τιμή της εκκεντρότητας που είναι δυνατές για τις ελλείψεις που μπορούν να κατασκευαστούν στο σχέδιό σας; Ε7. Μπορούν δύο διαφορετικές ελλείψεις να έχουν την ίδια εκκεντρότητα; Αν ναι, σχεδιάστε με το χέρι δύο ελλείψεις με την ιδιότητα αυτή. Διαφορετικά, εξηγήστε γιατί αυτό δεν είναι δυνατόν. 42 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

8 Η κατασκευή με τις δύο πινέζες και το νήμα (σ. 36) Η δραστηριότητα αυτή παρουσιάζει την πλέον γνωστή τεχνική κατασκευής μιας έλλειψης. Ωστόσο, θα παρατηρήσετε αρκετές διαφορές. Αντί της χρήσης πινεζών ως εστιακών σημείων της έλλειψης (που αναφέρεται στο βιβλίο μαθητή), οι μαθητές χρησιμοποιούν μια συγκολλητική ταινία για τη στερέωση του νήματος στις εστίες. Αυτό απλοποιεί την κατασκευή του μοντέλου. Επιπρόσθετα, οι μαθητές δημιουργούν ένα κατασκευαστικό μοντέλο στο Sketchpad, το οποίο μπορεί εύκολα να τροποποιηθεί για τη σχεδίαση μιας υπερβολής. Τέλος, η δραστηριότητα παρέχει μια εκτεταμένη εισαγωγή στις γεωμετρικές σχέσεις που θα χρειαστούν οι μαθητές για την κατανόηση της αλγεβρικής απόδειξης που υπάρχει στα βιβλία τους. Ειδικότερα, οι μαθητές θα ανακαλύψουν μόνοι τους τις σχέσεις μεταξύ του μήκους του μεγάλου και του μικρού άξονα και της εστιακής απόστασης. Κατασκευή ενός φυσικού μοντέλου Ε1. Το άθροισμα των αποστάσεων από τη μύτη του μολυβιού ως τα δύο στερεωμένα άκρα του νήματος είναι πάντοτε σταθερό και ίσο με το ολικό μήκος του νήματος μείον την εστιακή απόσταση. Ε2. Τα εστιακά σημεία είναι τα δύο άκρα της βάσης του τριγώνου που σχηματίζεται (ή τα σημεία στερέωσης στο χαρτί). Ε3. Όταν η απόσταση μεταξύ των πινεζών είναι μικρή, η έλλειψη είναι «παχιά» και σχεδόν κυκλική. Όταν η απόσταση αυτή είναι μεγαλύτερη, η έλλειψη είναι «λεπτή» και επιμήκης. Ε4. Τα ευθύγραμμα τμήματα ΒΕ 1 και ΓΕ 2 έχουν ίσο μήκος. Ε5. Το μολύβι θα σχεδιάσει έναν κύκλο όταν και τα δύο άκρα του νήματος στερεωθούν στο ίδιο σημείο. Ε6. Εάν το νήμα είναι τεντωμένο, το μολύβι θα σχεδιάσει μια ευθεία. Μια άλλη δυνατή απάντηση είναι πως, όταν το νήμα είναι τεντωμένο, το μολύβι δε θα σχεδιάσει τίποτε. Το ερώτημα αυτό καθώς και το ερώτημα 5 εξετάζουν τις δύο εκφυλισμένες περιπτώσεις μιας έλλειψης: τον κύκλο και την ευθεία. Περαιτέρω εξερεύνηση με τη βοήθεια του μοντέλου σας Ε1. Οι μαθητές μπορούν να ορίσουν τους άξονες ως τα δύο «ευθύγραμμα τμήματα συμμετρίας». Επίσης, ίσως τους ορίσουν ως το μεγαλύτερο και το μικρότερο τμήμα που διέρχονται το «κέντρο» της έλλειψης (το μέσο του τμήματος που συνδέει τις εστίες) και τα άκρα τους κείνται επί της έλλειψης. Μπορείτε να ζητήσετε από τους μαθητές να εξετάσουν την περίπτωση που η έλλειψη είναι κύκλος: Διαθέτει ένας κύκλος μεγάλο και μικρό άξονα; Ε2. Μετακινήστε το μολύβι σας έτσι ώστε να βρίσκεται στο σημείο Γ. Το μήκος του νήματος ισούται με Ε 1 Ε 2 + Ε 2 Γ + Ε 2 Γ. Εφόσον ΒΕ 1 = Ε 2 Γ, μπορούμε να γράψουμε εκ νέου το μήκος ως Ε 1 Ε 2 + Ε 2 Γ + ΒΕ 1 = ΒΓ, δηλαδή το μήκος του μεγάλου άξονα. Άρα το μήκος του νήματος ισούται με το μήκος του μεγάλου άξονα. Ε3. Από το ερώτημα 2 γνωρίζουμε ότι ΔΕ 1 + ΔΕ 2 = ΒΓ. Εφόσον ΔΕ 1 = ΔΕ 2, κάθε τμήμα έχει μήκος ίσο με 4,75 εκατοστά. 94 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Σημειώσεις Καθηγητή

9 Ε4. Το μήκος του τμήματος ΟΔ είναι 3,6 εκατοστά, δηλαδή το ήμισυ του μικρού άξονα ΔΕ. Από το ερώτημα 3 έχουμε ΔΕ 2 = 4,75 εκατοστά. Μπορούμε να χρησιμοποιήσουμε τις δύο τιμές στην εφαρμογή του πυθαγόρειου θεωρήματος στο ορθογώνιο τρίγωνο ΟΔΕ 2 και να λάβουμε (ΟΕ 2 ) 2 + (ΟΔ) 2 = (ΔΕ 2 ) 2. Αντικαθιστώντας τις τιμές και λύνοντας, έχουμε ΟΕ 2 3,1 εκατοστά. Το ευθύγραμμο τμήμα ΟΕ 2 έχει το ίδιο μήκος με το τμήμα ΟΕ 1. Ε5. Το ορθογώνιο τρίγωνο ΟΔΕ 2 δίνει (ΟΕ 2 ) 2 + (ΟΔ) 2 = (ΔΕ 2 ) 2. Από τα ερωτήματα 2 και 3 γνωρίζουμε ότι ΟΓ = ΔΕ 2. Έτσι, έχουμε τη σχέση (ΟΕ 2 ) 2 + (ΟΔ) 2 = (ΟΓ) 2, που γράφεται συνήθως στη μορφή γ 2 = α 2 - β 2, όπου γ = ΟΕ 2 και α = ήμισυ του μήκους του μεγάλου άξονα (τμήμα ΟΓ) και β = ήμισυ του μήκους του μικρού άξονα (τμήμα ΟΔ). Ε6. α. Χρησιμοποιώντας έναν κανόνα και έναν υπολογιστή μπορούμε να εντοπίσουμε τα εστιακά σημεία της έλλειψης, μετρώντας τα μήκη α και β (που περιγράφονται στο ερώτημα 5), και ακολούθως να υπολογίσουμε την τιμή του γ. β. Η εύρεση των εστιακών σημείων είναι ευκολότερη με χρήση ενός διαβήτη. Ρυθμίστε το διαβήτη έτσι ώστε να σχεδιάσει έναν κύκλο ακτίνας α. Κατόπιν χρησιμοποιήστε το διαβήτη για τη σχεδίαση ενός κύκλου με κέντρο το σημείο Δ και ακτίνα α. Τα σημεία τομής των δύο κύκλων με το μεγάλο άξονα είναι οι εστίες της έλλειψης. Οι μαθητές μπορούν να σχολιάσουν το γεγονός ότι η μέθοδος με το διαβήτη έχει το πλεονέκτημα πως δεν απαιτεί μετρήσεις ή υπολογισμούς Κατασκευή ενός μοντέλου Sketchpad Είναι σημαντικό για τους μαθητές να προσπαθήσουν να κατασκευάσουν μόνοι τους ένα μοντέλο Sketchpad προτού τους δώσετε λεπτομερείς οδηγίες. Ξεκινήστε με την παρότρυνση να σκεφτούν σχετικά με τον τρόπο κατασκευής ενός μοντέλου Sketchpad. Πώς μοντελοποιούνται οι πινέζες; Πώς μοντελοποιείται το νήμα; Πώς διατηρείται σταθερό το μήκος του νήματος; Προσπαθήστε να συζητήσετε το στόχο ή/και να τον γράψετε στον πίνακα. Ζητήστε από όσους έχουν κάποιες ιδέες να τις αναπτύξουν στην τάξη. Εάν ένας μαθητής αδυνατεί να προχωρήσει, δώστε του κάποια συμβουλή ή, αν αυτό δε βοηθήσει, τις πλήρεις οδηγίες. 1. Το άθροισμα των αποστάσεων από ένα σημείο τομής των δύο κύκλων προς τις δύο εστίες είναι πάντοτε ίσο με το άθροισμα της ακτίνας των κύκλων, δηλαδή με το σταθερού μήκους τμήμα ΑΒ. 2. Όταν η απόσταση μεταξύ των εστιακών σημείων είναι μικρή, η έλλειψη είναι παχιά και σχεδόν κυκλική. Όταν η απόσταση είναι μεγαλύτερη, η έλλειψη είναι λεπτή και επιμήκης. 3. Η απόσταση μεταξύ των εστιακών σημείων Ε 1 και Ε 2 δεν μπορεί να είναι μεγαλύτερη του μήκους του τμήματος ΑΒ. 4. Το μήκος του μεγάλου άξονα ισούται με το μήκος του τμήματος ΑΒ (δείτε το βήμα 2 στην ενότητα Περαιτέρω εξερεύνηση με τη βοήθεια του μοντέλου σας). Έτσι, ένας απλός τρόπος μέτρησης της απόστασης μεταξύ των άκρων του μεγάλου άξονα είναι η μέτρηση της απόστασης μεταξύ των σημείων Α και Β. Σημειώσεις Καθηγητή Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 95

10 5. Η εκκεντρότητα μιας έλλειψης προσεγγίζει το 0 όταν η μία εστία είναι κοντά στην άλλη. Η εκκεντρότητα προσεγγίζει το 1 όταν το μήκος του τμήματος Ε 1 Ε 2 τείνει στο μήκος του τμήματος ΑΒ. Εκκεντρότητες κοντά στο 0 παράγουν ελλείψεις που μοιάζουν με κύκλους. Εκκεντρότητες πολύ κοντά στο 1 παράγουν ελλείψεις που με δυσκολία διακρίνονται από ένα ευθύγραμμο τμήμα. Γιατί τονίζουμε τη λέξη «πολύ»; Ακόμη και όταν έχουμε μια έλλειψη με μεγάλο άξονα 10 εκατοστών και με εκκεντρότητα 0,99, η έλλειψη δεν είναι τόσο πεπλατυσμένη όσο φαντάζεστε. (Υπολογίστε το μήκος του μικρού άξονα, ώστε να το διαπιστώσετε!) 6. Εφόσον η εκκεντρότητα μετριέται ως λόγος, ένας άπειρος αριθμός διαφορετικών ελλείψεων μπορούν να έχουν την ίδια εκκεντρότητα. Μια μέθοδος δημιουργίας δύο ελλείψεων με την ίδια εκκεντρότητα έγκειται στη μεγέθυνση ή σμίκρυνση μιας έλλειψης με τη βοήθεια μιας φωτοαντιγραφικής διάταξης. Η μεγαλύτερη από τις παρακάτω δύο ελλείψεις δημιουργήθηκε με ένα πρόγραμμα σχεδίασης σε υπολογιστή και κατόπιν ελαττώθηκε το μέγεθός της στο 70% του αρχικού με χρήση της εντολής προσαρμογής κλίμακας. Στο Sketchpad η ίδια ελάττωση μπορεί να επιτευχτεί με την αυξομείωση της έλλειψης ως προς το μέσο του ευθύγραμμου τμήματος που συνδέει τις εστίες. 96 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Σημειώσεις Καθηγητή

11 Κατασκευή: Σχεδίαση κωνικών τομών Μια έλλειψη ορίζεται ως ο γεωμετρικός τόπος όλων των σημείων, τέτοιων ώστε το άθροισμα των αποστάσεων από δύο σταθερά σημεία, που ονομάζονται εστίες, να είναι σταθερό. Στη δραστηριότητα αυτή θα χρησιμοποιήσετε αυτό τον ορισμό προκειμένου να κατασκευάσετε σημεία που δίνουν το ίχνος αυτού του γεωμετρικού τόπου. Τα βήματα της κατασκευής είναι τα ακόλουθα: Βήμα 1: Βήμα 2: Βήμα 3: Βήμα 4: Κατασκευάστε την ευθεία ΑΒ και κατόπιν το σημείο Γ επί της ΑΒ. Αποκρύψτε την ΑΒ και κατόπιν κατασκευάστε τα ευθύγραμμα τμήματα ΑΓ και ΓΒ. Τα μήκη των τελευταίων παριστάνουν δύο αποστάσεις των οποίων το άθροισμα είναι σταθερό, δηλαδή είναι το μήκος ΑΒ. Κατασκευάστε και δώστε ετικέτες στα σημεία Ε 1 και Ε 2, τα οποία παριστάνουν τις εστίες της έλλειψής σας. Κατασκευάστε έναν κύκλο κέντρου Ε 1 και ακτίνας ΑΓ. Κατασκευάστε έναν άλλο κύκλο κέντρου Ε 2 και ακτίνας ΓΒ. Βήμα 5: Κατασκευάστε τα δύο σημεία τομής αυτών των κύκλων. Επιλέξτε αυτά τα σημεία τομής καθώς και την εντολή Σχεδίαση ίχνους τομών από το μενού Προβολή. Έρευνα Σύρτε το σημείο Γ εμπρός πίσω κατά μήκος της ευθείας ΑΒ. Τι σχήμα σχεδιάζουν τα σημεία τομής των κύκλων; (Ίσως χρειαστεί να προσαρμόσετε την ευθεία ΑΒ ή την απόσταση μεταξύ Ε 1 και Ε 2 έτσι ώστε να τέμνονται οι κύκλοι.) Εάν έχει δοθεί ο ορισμός αυτού του σχήματος, γιατί η κατασκευή αυτή δίνει το ίχνος του; Γράψτε την εξήγησή σας. Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 77

12 Κατασκευή: Σχεδίαση κωνικών τομών (συνέχεια) Περαιτέρω εξερεύνηση Μετρήστε τα μήκη του ευθύγραμμου τμήματος Ε 1 Ε 2 και ΑΒ. Υπολογίστε το λόγο Ε 1 Ε 2 /ΑΒ. Ο λόγος αυτός ονομάζεται εκκεντρότητα της έλλειψης. Ακολούθως, επιλέξτε ένα από τα σημεία τομής των κύκλων και το σημείο Γ καθώς και την εντολή Γεωμετρικού τόπου από το μενού Κατασκευή. Έτσι, θα κατασκευαστεί περισσότερο από το ήμισυ της έλλειψης. Κάντε δεξί κλικ σε αυτή την καμπύλη και επιλέξτε την Σχεδίαση ίχνους γεωμετρικού τόπου. Κατασκευάστε το υπόλοιπο ήμισυ της έλλειψης με τον ίδιο τρόπο, χρησιμοποιώντας το άλλο σημείο τομής του κύκλου και το σημείο Γ. Προσαρμόζοντας το μήκος της ευθείας ΑΒ και την απόσταση μεταξύ των εστιών, δημιουργείτε ελλείψεις διαφορετικού σχήματος. Πόσο μεγάλη ή μικρή μπορεί να είναι η τιμή της εκκεντρότητας ώστε να είναι ακόμη δυνατή η παραγωγή μιας έλλειψης; Τι συμβαίνει όταν η τιμή της εκκεντρότητας υπερβεί τη μονάδα; 78 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

13 Κατασκευή: Σχεδίαση κωνικών τομών (σ. 77) Προαπαιτούμενα: Εισαγάγετε τον ορισμό μίας έλλειψης ή αναπαραγάγετε τις οδηγίες κατασκευής χωρίς τον ορισμό και διαπιστώστε αν οι μαθητές μπορούν να διατυπώσουν δικούς τους ορισμούς. Μπορείτε να διευρύνετε αυτή τη δραστηριότητα δίνοντας στους μαθητές ελλιπείς οδηγίες και ζητώντας από αυτούς να κατασκευάσουν ένα σχεδιαστή ελλείψεων βασιζόμενοι στον ορισμό της έλλειψης. Χρόνος στην τάξη: 20 λεπτά. Οδηγίες κατασκευής Βήμα 1 Βήμα 2 Βήμα 3 Βεβαιωθείτε ότι οι μαθητές γνωρίζουν πώς να κατασκευάσουν τα ευθύγραμμα τμήματα ΑΓ και ΓΒ και όχι απλώς πώς να τοποθετήσουν το σημείο Γ πάνω στην ευθεία ΑΒ. Επεξεργαστείτε τις ετικέτες κάνοντας διπλό κλικ πάνω τους. Επιλέξτε το σημείο E 1 και το τμήμα ΑΓ καθώς και την εντολή Κύκλου από το κέντρο και ακτίνα από το μενού Κατασκευή. Επαναλάβετε τη διαδικασία για το σημείο Ε 2 και το τμήμα ΓΒ. Έρευνα/Εικασίες Οι κύκλοι με κέντρα τα σημεία Ε 1 και Ε 2 έχουν ακτίνες ΑΓ και ΓΒ, αντίστοιχα. Η απόσταση του Ε 1 από ένα σημείο τομής είναι ΑΓ και η αντίστοιχη απόσταση του Ε 2 είναι ΓΒ. Άρα το άθροισμα των αποστάσεων αυτών είναι ΑΓ + ΓΒ = ΑΒ. Καθώς μεταφέρετε το σημείο Γ, τα ΑΓ και ΓΒ μεταβάλλονται, αλλά το ΑΒ δηλαδή το άθροισμά τους, παραμένει σταθερό. Τα σημεία τομής του κύκλου ικανοποιούν τον ορισμό μιας έλλειψης, δηλαδή το άθροισμα των αποστάσεων προς δύο σταθερά σημεία είναι σταθερό. Περαιτέρω εξερεύνηση Οι μαθητές που μετρούν την εκκεντρότητα θα διαπιστώσουν ότι αυτή προσεγγίζει την τιμή 0 όταν οι εστίες πλησιάζουν και την τιμή 1 όταν το τμήμα Ε 1 Ε 2 τείνει στο τμήμα ΑΒ. Όταν το Ε 1 Ε 2 γίνει μεγαλύτερο του ΑΒ, οι κύκλοι δεν τέμνονται πλέον όταν το σημείο Γ βρίσκεται μεταξύ των σημείων Α και Β και το σχέδιο δεν είναι σε θέση να δημιουργήσει το ίχνος μιας έλλειψης. Οι κύκλοι τέμνονται όταν το σημείο Γ δε βρίσκεται μεταξύ των Α και Β. Στην περίπτωση αυτή η διαφορά μεταξύ του μήκους των ευθύγραμμων τμημάτων ΑΒ και ΒΓ είναι σταθερή και ίση με ΑΒ. Αυτός ο γεωμετρικός τόπος με εκκεντρότητα μεγαλύτερη του 1 είναι μία υπερβολή. Ενδεχομένως οι μαθητές θα θεωρήσουν ότι αυτή η γεωμετρική αναπαράσταση της εκκεντρότητας έχει περισσότερο νόημα από την παραδοσιακή γεωμετρική αναπαράσταση που συναντούν σε εκπαιδευτικά βιβλία. Δείτε το δείγμα σχεδίου Δραστηριότητες\Έλλειψη.gsp προκειμένου να διαπιστώσετε πώς υπεισέρχεται στη μελέτη το θεώρημα της τριγωνικής ανισότητας. Ο εμπειρικός τρόπος κατασκευής μιας έλλειψης έγκειται στη χρήση ενός νήματος με δύο πινέζες ως εστίες. Στερεώστε τις πινέζες σε έναν πίνακα ανακοινώσεων, τεντώστε το νήμα με τη βοήθεια της μύτης ενός μολυβιού και χαράξτε την έλλειψη διατηρώντας την τάση του νήματος σταθερή. Το μήκος του νήματος είναι το σταθερό άθροισμα των αποστάσεων από τις πινέζες. Σημειώσεις Καθηγητή Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 113

Η κατασκευή με τις δύο πινέζες και το νήμα

Η κατασκευή με τις δύο πινέζες και το νήμα Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Ο πύραυλος Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Διδακτική των Μαθηματικών

Διδακτική των Μαθηματικών Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης

ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1. ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης 1 Σκοπός ΜΗΧΑΝΙΚΗ ΕΝΟΤΗΤΑ 1 ΚΕ Φ ΑΛ ΑΙ Ο 2 : Περ ιγ ραφ ή της κ ίν ησ ης Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σενάριο με το λογισμικό modellus Τίτλος: Πότε δύο τρένα έχουν την ελάχιστη απόσταση μεταξύ τους; Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σε μια πρώτη

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το ελικόπτερο Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Στοιχεία άσκησης Τάξη: Α' Λυκείου Διάρκεια: Συγγραφέας: Έκδοση: Άδεια χρήσης: 2 διδακτικές ώρες Ιωάννης Σ. Κάτσενος, Φυσικός MSc, ikatsenos@gmail.com

Διαβάστε περισσότερα