Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό."

Transcript

1 Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να κατανοήσετε το νόημα των όρων κύκλος και έλλειψη. Ορισμός: Κύκλος είναι ένα σύνολο σημείων τέτοιων ώστε η απόσταση κάθε μέλους του συνόλου από ένα σταθερό σημείο (κέντρο) να είναι σταθερή. Κάθε ευθύγραμμο τμήμα που συνδέει ένα σημείο Ο με ένα σημείο στην περιφέρεια του κύκλου αποτελεί μια ακτίνα του κύκλου. Το τμήμα ΟΑ είναι μια ακτίνα του κύκλου στο σχήμα δεξιά. Τώρα φανταστείτε ότι το κέντρο του κύκλου χωρίζεται σε δύο σημεία που απομακρύνονται μεταξύ τους. Καθώς μετακινούνται αυτά τα σημεία, το σχήμα του κύκλου παραμορφώνεται σε ελλειπτικό, ώστε να στεγάσει τα δύο «κέντρα». Τα σημεία αυτά ονομάζονται εστιακά σημεία ή εστίες (E 1 και Ε 2 είναι τα εστιακά σημεία στο παρακάτω σχήμα). Για τον κύκλο η απόσταση μεταξύ κέντρου και οποιουδήποτε σημείου της περιφέρειας είναι πάντοτε η ίδια, δηλαδή σταθερή. Ποια είναι η αντίστοιχη συνθήκη για ένα σχήμα με δύο «κέντρα»; Για κάθε σημείο μιας έλλειψης υπάρχουν δύο αποστάσεις, μια από κάθε εστιακό σημείο. Αν το άθροισμα των αποστάσεων αυτών είναι σταθερό, έχουμε μια παρόμοια συνθήκη. Ορισμός: Έλλειψη είναι ένα σύνολο σημείων τέτοιων ώστε το άθροισμα των αποστάσεων κάθε σημείου από τις δύο εστίες να είναι σταθερό. Σύμφωνα με τον ορισμό αυτό, αν επιλέξετε οποιοδήποτε σημείο της έλλειψης και υπολογίσετε το άθροισμα των αποστάσεών του από τα δύο εστιακά σημεία, θα προκύπτει πάντοτε η ίδια αριθμητική τιμή. Ελέγξτε αυτό το αποτέλεσμα για την έλλειψη στο επόμενο σχήμα. Επιλέξτε τουλάχιστον τέσσερις διαφορετικές θέσεις για ένα σημείο Α που κινείται πάνω στην έλλειψη και μετρήστε τις αποστάσεις κάθε θέσης από τις δύο εστίες. 36 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

2 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Υπολογίστε τα αθροίσματα των δύο αποστάσεων. Πόσο πλησιάζουν αριθμητικά μεταξύ τους τα τέσσερα αθροίσματα; Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 37

3 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Κατασκευή ενός φυσικού μοντέλου Τώρα που γνωρίζετε τι είναι μια έλλειψη, προχωρήστε στη σχεδίασή της! Μια κοινή μέθοδος χρησιμοποιεί δύο πινέζες, ένα κομμάτι νήματος και ένα μολύβι. Όπως φαίνεται στο σχήμα, οι πινέζες στερεώνονται σε μια επίπεδη επιφάνεια και το νήμα τοποθετείται γύρω τους. Για τη χρήση της διάταξης, τεντώστε το νήμα με το μολύβι όπως στο σχήμα. Καθώς μετακινείτε το μολύβι γύρω γύρω από τις εστίες διατηρώντας τεντωμένο το νήμα, η μύτη του μολυβιού χαράσσει μια έλλειψη. Από το βιβλίο De organica conicarum sectionum in plano descriptione tractatus του Ολλανδού μαθηματικού Frans van Schooten, Τι χρειάζεστε: Ένα κομμάτι κλωστής ή οδοντικού νήματος, δύο πινέζες, ένα μεγάλο κομμάτι χαρτί και ένα μολύβι. 1. Ενώστε τα άκρα του νήματος για το σχηματισμό ενός βρόχου. Επιλέξτε δύο σημεία στο χαρτί και στερεώστε το νήμα με τις δύο πινέζες. Ίσως χρειαστεί να επιμηκύνετε ή να κοντύνετε το νήμα, ώστε η έλλειψη να καλύπτει την επιφάνεια του χαρτιού αλλά να μην προεξέχει. 2. Τεντώστε το νήμα με το μολύβι. 3. Διατηρώντας τεντωμένο το νήμα, μετακινήστε το μολύβι γύρω από τα εστιακά σημεία έτσι ώστε η μύτη του μολυβιού να χαράξει μια καμπύλη. Ίσως χρειαστεί να σηκώσετε τη μύτη από το χαρτί και να την επανατοποθετήσετε για τη χάραξη της πλήρους καμπύλης. Ερωτήματα Ε1. Δικαιολογήστε το γεγονός ότι αυτή η κατασκευή σχεδιάζει ελλείψεις. Με άλλα λόγια, εξηγήστε πώς αυτή η μέθοδος κατασκευής ικανοποιεί τον ορισμό μιας έλλειψης. Ε2. Πού βρίσκονται τα εστιακά σημεία της έλλειψης; Ε3. Περιγράψτε πώς μεταβάλλεται το σχήμα της όταν τη σχεδιάσετε και πάλι με τις πινέζες σε μεγαλύτερη μεταξύ τους απόσταση. Τι συμβαίνει στην περίπτωση ελάττωσης της απόστασης αυτής; Ε4. Βασιζόμενοι στις παρατηρήσεις σας, τι μπορείτε να αναφέρετε σχετικά με τα ευθύγραμμα τμήματα ΒΕ 1 και ΓΕ 2 ; (Δείτε το προηγούμενο μεγάλο σχήμα.) 38 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

4 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Ε5. Έστω ότι τα σημεία στερέωσης του νήματος ταυτίζονται. Τι είδους καμπύλη θα σχεδιάσει το μολύβι; Δώστε μια εξήγηση. Ε6. Έστω ότι τα σημεία στερέωσης του νήματος απέχουν τόσο ώστε ολόκληρο το νήμα να είναι τεντωμένο και να έχει το μέγιστο μήκος του. Τι είδους καμπύλη θα σχεδιάσει το μολύβι; Δώστε μια εξήγηση. Ακολουθούν ορισμένες δραστηριότητες που θα σας βοηθήσουν να κατανοήσετε την έλλειψη που κατασκευάσατε. Ερωτήματα Ε1. Σε κάθε έλλειψη αντιστοιχούν δύο σημαντικά ευθύγραμμα τμήματα, ο μεγάλος άξονας και ο μικρός άξονας. Σε καθένα από τα παρακάτω σχήματα το τμήμα ΒΓ είναι ο μεγάλος άξονας και το τμήμα ΔΕ ο μικρός άξονας. Γράψτε έναν ορισμό του μεγάλου και του μικρού άξονα. E2. Σε ένα φύλλο χαρτιού σχεδιάστε με τη βοήθεια του νήματος, των πινεζών και του μολυβιού μια άλλη έλλειψη. Χρησιμοποιήστε έναν κανόνα για τη σχεδίαση και μέτρηση του μεγάλου άξονά της. Χωρίς να προβείτε σε περαιτέρω μετρήσεις, πώς θα προσδιορίσετε το μήκος του νήματος; Υπόδειξη: Χρησιμοποιήστε το μολύβι σας ώστε να τεντώσετε το νήμα. Στη συνέχεια, μετακινήστε το μολύβι γύρω από την έλλειψη ωσότου εντοπίσετε μια βολική θέση. Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 39

5 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Ε3. Στο επόμενο σχήμα το σημείο Δ βρίσκεται στο ένα άκρο του μικρού άξονα της έλλειψης και τα σημεία Ε 1 και Ε 2 είναι οι εστίες της έλλειψης. Εάν το μήκος του μεγάλου άξονα ΒΓ είναι 9,5 εκατοστά, πόσο είναι το μήκος των ευθύγραμμων τμημάτων ΔΕ 1 και ΔΕ 2 ; Μη χρησιμοποιήσετε κανόνα! E4. Εάν το μήκος του μικρού άξονα ΔΕ είναι 7,2 εκατοστά, πόσο είναι το μήκος των τμημάτων ΟΕ 1 και ΟΕ 2 ; Μπορείτε να χρησιμοποιήσετε την απάντηση του ερωτήματος 3. Και πάλι μη χρησιμοποιήσετε κανόνα! E5. Στηριζόμενοι στις απαντήσεις στα ερωτήματα 2-4, ποια είναι η σχέση μεταξύ των τμημάτων ΟΓ, ΟΔ και ΟΕ 2 ; E6. Το παρακάτω σχήμα εμφανίζει μια έλλειψη και τους δύο άξονές της. Ζητείται ο εντοπισμός των δύο εστιών. α. Χρησιμοποιήστε έναν κανόνα και έναν υπολογιστή για την εύρεση των εστιακών σημείων. Εξηγήστε τη μέθοδό σας. β. Βρείτε τα εστιακά σημεία με χρήση μόνο ενός διαβήτη. Εξηγήστε τη μέθοδό σας. 40 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

6 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Κάθε φορά που σχεδιάζετε μια νέα έλλειψη με μολύβι, νήμα και πινέζες, πρέπει να επανατοποθετείτε τις πινέζες και να χαράζετε το περίγραμμα με το μολύβι σας. Ένα μοντέλο του Sketchpad καθιστά ευκολότερη την εξερεύνηση μιας ποικιλίας ελλείψεων. Λεπτομέρειες κατασκευής 1. Κατασκευάστε μια ευθεία και αποκρύψτε τα σημεία ελέγχου της. Κατασκευάστε τα σημεία Α, Β και Γ στην ευθεία. Η θέση αυτών των σημείων είναι αυθαίρετη αλλά το σημείο Γ πρέπει να βρίσκεται μεταξύ των σημείων Α και Β. 2. Αποκρύψτε την ευθεία και κατασκευάστε τα ευθύγραμμα τμήματα ΑΓ και ΓΒ. 3. Δημιουργήστε τις ετικέτες των σημείων Ε1 και Ε2 που αναπαριστούν τις εστίες της έλλειψής σας. 4. Χαράξτε έναν κύκλο με κέντρο το Ε1 και ακτίνα ίση με το μήκος του ΑΓ. Κατασκευάστε έναν άλλο κύκλο με κέντρο το Ε2 και ακτίνα ίση με το μήκος του ΓΒ. 5. Κατασκευάστε τα δύο σημεία τομής των κύκλων. Ίσως χρειαστεί να προσαρμόσετε το μοντέλο σας ώστε οι κύκλοι να τέμνονται. Επιλέξτε τα σημεία τομής και την εντολή Σχεδίαση ίχνους τομών από το μενού Προβολή. 6. Σύρτε το σημείο Γ εμπρός και πίσω κατά μήκος του τμήματος ΑΒ. Το ίχνος των δύο σημείων πρέπει να αποτελεί μια έλλειψη. Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 41

7 Η κατασκευή με τις δύο πινέζες και το νήμα (συνέχεια) Ερωτήματα Ε1. Εξηγήστε γιατί τα σημεία τομής των δύο κύκλων ικανοποιούν τον ορισμό μιας έλλειψης. Ε2. Πειραματιστείτε με διαφορετικές θέσεις των εστιακών σημείων και παρατηρήστε πώς μεταβάλλεται το σχήμα της έλλειψης. Περιγράψτε τα ευρήματά σας. Ε3. Έστω ότι οι θέσεις των σημείων Α και Β παραμένουν σταθερές στην ευθεία. Ποια είναι η μέγιστη απόσταση μεταξύ των εστιακών σημείων για την οποία είναι δυνατή η σχεδίαση μιας έλλειψης; Ε4. Μελετήστε ξανά τα βήματα της κατασκευής του μοντέλου. Όταν το σημείο Γ μετακινείται εμπρός και πίσω μεταξύ των σημείων Α και Β, η τομή των κύκλων διαγράφει μια έλλειψη. Ποιο είναι το μήκος του μεγάλου άξονα αυτής της έλλειψης; Οι ελλείψεις που σχεδιάσατε σε αυτή τη δραστηριότητα είναι διαφορετικές. Ορισμένες είναι «λεπτές» και επιμήκεις, άλλες είναι «παχιές» και σχεδόν κυκλικές. Η εκκεντρότητα μιας έλλειψης είναι μια αριθμητική τιμή που καθορίζει το πάχος μιας έλλειψης. Ορισμός: Η εκκεντρότητα μιας έλλειψης ορίζεται ως ο λόγος α/β, όπου α: η απόσταση μεταξύ των εστιακών σημείων και β: η απόσταση μεταξύ των άκρων του μεγάλου άξονα Ε5. Χρησιμοποιήστε τις εντολές του Sketchpad (Μέτρηση) Απόστασης και Υπολογισμός για τον προσδιορισμό της εκκεντρότητας της έλλειψής σας. Θα χρειαστείτε τη μέτρηση της απόστασης μεταξύ των εστιακών σημείων καθώς και του μήκους του μεγάλου άξονα. (Ποια σημεία έχουν μεταξύ τους απόσταση ίση με το μήκος του μεγάλου άξονα;) Επιλέξτε τις δύο αποστάσεις και χρησιμοποιήστε την εντολή Υπολογισμός από το μενού Μέτρηση για τον υπολογισμό του λόγου τους. Ε6. Χρησιμοποιήστε το μοντέλο του Sketchpad για τη σχεδίαση διαφορετικών ελλείψεων. Παρατηρήστε πώς μεταβάλλεται η τιμή της εκκεντρότητάς τους. Ποια είναι η ελάχιστη και η μέγιστη τιμή της εκκεντρότητας που είναι δυνατές για τις ελλείψεις που μπορούν να κατασκευαστούν στο σχέδιό σας; Ε7. Μπορούν δύο διαφορετικές ελλείψεις να έχουν την ίδια εκκεντρότητα; Αν ναι, σχεδιάστε με το χέρι δύο ελλείψεις με την ιδιότητα αυτή. Διαφορετικά, εξηγήστε γιατί αυτό δεν είναι δυνατόν. 42 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

8 Η κατασκευή με τις δύο πινέζες και το νήμα (σ. 36) Η δραστηριότητα αυτή παρουσιάζει την πλέον γνωστή τεχνική κατασκευής μιας έλλειψης. Ωστόσο, θα παρατηρήσετε αρκετές διαφορές. Αντί της χρήσης πινεζών ως εστιακών σημείων της έλλειψης (που αναφέρεται στο βιβλίο μαθητή), οι μαθητές χρησιμοποιούν μια συγκολλητική ταινία για τη στερέωση του νήματος στις εστίες. Αυτό απλοποιεί την κατασκευή του μοντέλου. Επιπρόσθετα, οι μαθητές δημιουργούν ένα κατασκευαστικό μοντέλο στο Sketchpad, το οποίο μπορεί εύκολα να τροποποιηθεί για τη σχεδίαση μιας υπερβολής. Τέλος, η δραστηριότητα παρέχει μια εκτεταμένη εισαγωγή στις γεωμετρικές σχέσεις που θα χρειαστούν οι μαθητές για την κατανόηση της αλγεβρικής απόδειξης που υπάρχει στα βιβλία τους. Ειδικότερα, οι μαθητές θα ανακαλύψουν μόνοι τους τις σχέσεις μεταξύ του μήκους του μεγάλου και του μικρού άξονα και της εστιακής απόστασης. Κατασκευή ενός φυσικού μοντέλου Ε1. Το άθροισμα των αποστάσεων από τη μύτη του μολυβιού ως τα δύο στερεωμένα άκρα του νήματος είναι πάντοτε σταθερό και ίσο με το ολικό μήκος του νήματος μείον την εστιακή απόσταση. Ε2. Τα εστιακά σημεία είναι τα δύο άκρα της βάσης του τριγώνου που σχηματίζεται (ή τα σημεία στερέωσης στο χαρτί). Ε3. Όταν η απόσταση μεταξύ των πινεζών είναι μικρή, η έλλειψη είναι «παχιά» και σχεδόν κυκλική. Όταν η απόσταση αυτή είναι μεγαλύτερη, η έλλειψη είναι «λεπτή» και επιμήκης. Ε4. Τα ευθύγραμμα τμήματα ΒΕ 1 και ΓΕ 2 έχουν ίσο μήκος. Ε5. Το μολύβι θα σχεδιάσει έναν κύκλο όταν και τα δύο άκρα του νήματος στερεωθούν στο ίδιο σημείο. Ε6. Εάν το νήμα είναι τεντωμένο, το μολύβι θα σχεδιάσει μια ευθεία. Μια άλλη δυνατή απάντηση είναι πως, όταν το νήμα είναι τεντωμένο, το μολύβι δε θα σχεδιάσει τίποτε. Το ερώτημα αυτό καθώς και το ερώτημα 5 εξετάζουν τις δύο εκφυλισμένες περιπτώσεις μιας έλλειψης: τον κύκλο και την ευθεία. Περαιτέρω εξερεύνηση με τη βοήθεια του μοντέλου σας Ε1. Οι μαθητές μπορούν να ορίσουν τους άξονες ως τα δύο «ευθύγραμμα τμήματα συμμετρίας». Επίσης, ίσως τους ορίσουν ως το μεγαλύτερο και το μικρότερο τμήμα που διέρχονται το «κέντρο» της έλλειψης (το μέσο του τμήματος που συνδέει τις εστίες) και τα άκρα τους κείνται επί της έλλειψης. Μπορείτε να ζητήσετε από τους μαθητές να εξετάσουν την περίπτωση που η έλλειψη είναι κύκλος: Διαθέτει ένας κύκλος μεγάλο και μικρό άξονα; Ε2. Μετακινήστε το μολύβι σας έτσι ώστε να βρίσκεται στο σημείο Γ. Το μήκος του νήματος ισούται με Ε 1 Ε 2 + Ε 2 Γ + Ε 2 Γ. Εφόσον ΒΕ 1 = Ε 2 Γ, μπορούμε να γράψουμε εκ νέου το μήκος ως Ε 1 Ε 2 + Ε 2 Γ + ΒΕ 1 = ΒΓ, δηλαδή το μήκος του μεγάλου άξονα. Άρα το μήκος του νήματος ισούται με το μήκος του μεγάλου άξονα. Ε3. Από το ερώτημα 2 γνωρίζουμε ότι ΔΕ 1 + ΔΕ 2 = ΒΓ. Εφόσον ΔΕ 1 = ΔΕ 2, κάθε τμήμα έχει μήκος ίσο με 4,75 εκατοστά. 94 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Σημειώσεις Καθηγητή

9 Ε4. Το μήκος του τμήματος ΟΔ είναι 3,6 εκατοστά, δηλαδή το ήμισυ του μικρού άξονα ΔΕ. Από το ερώτημα 3 έχουμε ΔΕ 2 = 4,75 εκατοστά. Μπορούμε να χρησιμοποιήσουμε τις δύο τιμές στην εφαρμογή του πυθαγόρειου θεωρήματος στο ορθογώνιο τρίγωνο ΟΔΕ 2 και να λάβουμε (ΟΕ 2 ) 2 + (ΟΔ) 2 = (ΔΕ 2 ) 2. Αντικαθιστώντας τις τιμές και λύνοντας, έχουμε ΟΕ 2 3,1 εκατοστά. Το ευθύγραμμο τμήμα ΟΕ 2 έχει το ίδιο μήκος με το τμήμα ΟΕ 1. Ε5. Το ορθογώνιο τρίγωνο ΟΔΕ 2 δίνει (ΟΕ 2 ) 2 + (ΟΔ) 2 = (ΔΕ 2 ) 2. Από τα ερωτήματα 2 και 3 γνωρίζουμε ότι ΟΓ = ΔΕ 2. Έτσι, έχουμε τη σχέση (ΟΕ 2 ) 2 + (ΟΔ) 2 = (ΟΓ) 2, που γράφεται συνήθως στη μορφή γ 2 = α 2 - β 2, όπου γ = ΟΕ 2 και α = ήμισυ του μήκους του μεγάλου άξονα (τμήμα ΟΓ) και β = ήμισυ του μήκους του μικρού άξονα (τμήμα ΟΔ). Ε6. α. Χρησιμοποιώντας έναν κανόνα και έναν υπολογιστή μπορούμε να εντοπίσουμε τα εστιακά σημεία της έλλειψης, μετρώντας τα μήκη α και β (που περιγράφονται στο ερώτημα 5), και ακολούθως να υπολογίσουμε την τιμή του γ. β. Η εύρεση των εστιακών σημείων είναι ευκολότερη με χρήση ενός διαβήτη. Ρυθμίστε το διαβήτη έτσι ώστε να σχεδιάσει έναν κύκλο ακτίνας α. Κατόπιν χρησιμοποιήστε το διαβήτη για τη σχεδίαση ενός κύκλου με κέντρο το σημείο Δ και ακτίνα α. Τα σημεία τομής των δύο κύκλων με το μεγάλο άξονα είναι οι εστίες της έλλειψης. Οι μαθητές μπορούν να σχολιάσουν το γεγονός ότι η μέθοδος με το διαβήτη έχει το πλεονέκτημα πως δεν απαιτεί μετρήσεις ή υπολογισμούς Κατασκευή ενός μοντέλου Sketchpad Είναι σημαντικό για τους μαθητές να προσπαθήσουν να κατασκευάσουν μόνοι τους ένα μοντέλο Sketchpad προτού τους δώσετε λεπτομερείς οδηγίες. Ξεκινήστε με την παρότρυνση να σκεφτούν σχετικά με τον τρόπο κατασκευής ενός μοντέλου Sketchpad. Πώς μοντελοποιούνται οι πινέζες; Πώς μοντελοποιείται το νήμα; Πώς διατηρείται σταθερό το μήκος του νήματος; Προσπαθήστε να συζητήσετε το στόχο ή/και να τον γράψετε στον πίνακα. Ζητήστε από όσους έχουν κάποιες ιδέες να τις αναπτύξουν στην τάξη. Εάν ένας μαθητής αδυνατεί να προχωρήσει, δώστε του κάποια συμβουλή ή, αν αυτό δε βοηθήσει, τις πλήρεις οδηγίες. 1. Το άθροισμα των αποστάσεων από ένα σημείο τομής των δύο κύκλων προς τις δύο εστίες είναι πάντοτε ίσο με το άθροισμα της ακτίνας των κύκλων, δηλαδή με το σταθερού μήκους τμήμα ΑΒ. 2. Όταν η απόσταση μεταξύ των εστιακών σημείων είναι μικρή, η έλλειψη είναι παχιά και σχεδόν κυκλική. Όταν η απόσταση είναι μεγαλύτερη, η έλλειψη είναι λεπτή και επιμήκης. 3. Η απόσταση μεταξύ των εστιακών σημείων Ε 1 και Ε 2 δεν μπορεί να είναι μεγαλύτερη του μήκους του τμήματος ΑΒ. 4. Το μήκος του μεγάλου άξονα ισούται με το μήκος του τμήματος ΑΒ (δείτε το βήμα 2 στην ενότητα Περαιτέρω εξερεύνηση με τη βοήθεια του μοντέλου σας). Έτσι, ένας απλός τρόπος μέτρησης της απόστασης μεταξύ των άκρων του μεγάλου άξονα είναι η μέτρηση της απόστασης μεταξύ των σημείων Α και Β. Σημειώσεις Καθηγητή Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 95

10 5. Η εκκεντρότητα μιας έλλειψης προσεγγίζει το 0 όταν η μία εστία είναι κοντά στην άλλη. Η εκκεντρότητα προσεγγίζει το 1 όταν το μήκος του τμήματος Ε 1 Ε 2 τείνει στο μήκος του τμήματος ΑΒ. Εκκεντρότητες κοντά στο 0 παράγουν ελλείψεις που μοιάζουν με κύκλους. Εκκεντρότητες πολύ κοντά στο 1 παράγουν ελλείψεις που με δυσκολία διακρίνονται από ένα ευθύγραμμο τμήμα. Γιατί τονίζουμε τη λέξη «πολύ»; Ακόμη και όταν έχουμε μια έλλειψη με μεγάλο άξονα 10 εκατοστών και με εκκεντρότητα 0,99, η έλλειψη δεν είναι τόσο πεπλατυσμένη όσο φαντάζεστε. (Υπολογίστε το μήκος του μικρού άξονα, ώστε να το διαπιστώσετε!) 6. Εφόσον η εκκεντρότητα μετριέται ως λόγος, ένας άπειρος αριθμός διαφορετικών ελλείψεων μπορούν να έχουν την ίδια εκκεντρότητα. Μια μέθοδος δημιουργίας δύο ελλείψεων με την ίδια εκκεντρότητα έγκειται στη μεγέθυνση ή σμίκρυνση μιας έλλειψης με τη βοήθεια μιας φωτοαντιγραφικής διάταξης. Η μεγαλύτερη από τις παρακάτω δύο ελλείψεις δημιουργήθηκε με ένα πρόγραμμα σχεδίασης σε υπολογιστή και κατόπιν ελαττώθηκε το μέγεθός της στο 70% του αρχικού με χρήση της εντολής προσαρμογής κλίμακας. Στο Sketchpad η ίδια ελάττωση μπορεί να επιτευχτεί με την αυξομείωση της έλλειψης ως προς το μέσο του ευθύγραμμου τμήματος που συνδέει τις εστίες. 96 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Σημειώσεις Καθηγητή

11 Κατασκευή: Σχεδίαση κωνικών τομών Μια έλλειψη ορίζεται ως ο γεωμετρικός τόπος όλων των σημείων, τέτοιων ώστε το άθροισμα των αποστάσεων από δύο σταθερά σημεία, που ονομάζονται εστίες, να είναι σταθερό. Στη δραστηριότητα αυτή θα χρησιμοποιήσετε αυτό τον ορισμό προκειμένου να κατασκευάσετε σημεία που δίνουν το ίχνος αυτού του γεωμετρικού τόπου. Τα βήματα της κατασκευής είναι τα ακόλουθα: Βήμα 1: Βήμα 2: Βήμα 3: Βήμα 4: Κατασκευάστε την ευθεία ΑΒ και κατόπιν το σημείο Γ επί της ΑΒ. Αποκρύψτε την ΑΒ και κατόπιν κατασκευάστε τα ευθύγραμμα τμήματα ΑΓ και ΓΒ. Τα μήκη των τελευταίων παριστάνουν δύο αποστάσεις των οποίων το άθροισμα είναι σταθερό, δηλαδή είναι το μήκος ΑΒ. Κατασκευάστε και δώστε ετικέτες στα σημεία Ε 1 και Ε 2, τα οποία παριστάνουν τις εστίες της έλλειψής σας. Κατασκευάστε έναν κύκλο κέντρου Ε 1 και ακτίνας ΑΓ. Κατασκευάστε έναν άλλο κύκλο κέντρου Ε 2 και ακτίνας ΓΒ. Βήμα 5: Κατασκευάστε τα δύο σημεία τομής αυτών των κύκλων. Επιλέξτε αυτά τα σημεία τομής καθώς και την εντολή Σχεδίαση ίχνους τομών από το μενού Προβολή. Έρευνα Σύρτε το σημείο Γ εμπρός πίσω κατά μήκος της ευθείας ΑΒ. Τι σχήμα σχεδιάζουν τα σημεία τομής των κύκλων; (Ίσως χρειαστεί να προσαρμόσετε την ευθεία ΑΒ ή την απόσταση μεταξύ Ε 1 και Ε 2 έτσι ώστε να τέμνονται οι κύκλοι.) Εάν έχει δοθεί ο ορισμός αυτού του σχήματος, γιατί η κατασκευή αυτή δίνει το ίχνος του; Γράψτε την εξήγησή σας. Υποδειγματικές δραστηριότητες Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 77

12 Κατασκευή: Σχεδίαση κωνικών τομών (συνέχεια) Περαιτέρω εξερεύνηση Μετρήστε τα μήκη του ευθύγραμμου τμήματος Ε 1 Ε 2 και ΑΒ. Υπολογίστε το λόγο Ε 1 Ε 2 /ΑΒ. Ο λόγος αυτός ονομάζεται εκκεντρότητα της έλλειψης. Ακολούθως, επιλέξτε ένα από τα σημεία τομής των κύκλων και το σημείο Γ καθώς και την εντολή Γεωμετρικού τόπου από το μενού Κατασκευή. Έτσι, θα κατασκευαστεί περισσότερο από το ήμισυ της έλλειψης. Κάντε δεξί κλικ σε αυτή την καμπύλη και επιλέξτε την Σχεδίαση ίχνους γεωμετρικού τόπου. Κατασκευάστε το υπόλοιπο ήμισυ της έλλειψης με τον ίδιο τρόπο, χρησιμοποιώντας το άλλο σημείο τομής του κύκλου και το σημείο Γ. Προσαρμόζοντας το μήκος της ευθείας ΑΒ και την απόσταση μεταξύ των εστιών, δημιουργείτε ελλείψεις διαφορετικού σχήματος. Πόσο μεγάλη ή μικρή μπορεί να είναι η τιμή της εκκεντρότητας ώστε να είναι ακόμη δυνατή η παραγωγή μιας έλλειψης; Τι συμβαίνει όταν η τιμή της εκκεντρότητας υπερβεί τη μονάδα; 78 Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad Υποδειγματικές δραστηριότητες

13 Κατασκευή: Σχεδίαση κωνικών τομών (σ. 77) Προαπαιτούμενα: Εισαγάγετε τον ορισμό μίας έλλειψης ή αναπαραγάγετε τις οδηγίες κατασκευής χωρίς τον ορισμό και διαπιστώστε αν οι μαθητές μπορούν να διατυπώσουν δικούς τους ορισμούς. Μπορείτε να διευρύνετε αυτή τη δραστηριότητα δίνοντας στους μαθητές ελλιπείς οδηγίες και ζητώντας από αυτούς να κατασκευάσουν ένα σχεδιαστή ελλείψεων βασιζόμενοι στον ορισμό της έλλειψης. Χρόνος στην τάξη: 20 λεπτά. Οδηγίες κατασκευής Βήμα 1 Βήμα 2 Βήμα 3 Βεβαιωθείτε ότι οι μαθητές γνωρίζουν πώς να κατασκευάσουν τα ευθύγραμμα τμήματα ΑΓ και ΓΒ και όχι απλώς πώς να τοποθετήσουν το σημείο Γ πάνω στην ευθεία ΑΒ. Επεξεργαστείτε τις ετικέτες κάνοντας διπλό κλικ πάνω τους. Επιλέξτε το σημείο E 1 και το τμήμα ΑΓ καθώς και την εντολή Κύκλου από το κέντρο και ακτίνα από το μενού Κατασκευή. Επαναλάβετε τη διαδικασία για το σημείο Ε 2 και το τμήμα ΓΒ. Έρευνα/Εικασίες Οι κύκλοι με κέντρα τα σημεία Ε 1 και Ε 2 έχουν ακτίνες ΑΓ και ΓΒ, αντίστοιχα. Η απόσταση του Ε 1 από ένα σημείο τομής είναι ΑΓ και η αντίστοιχη απόσταση του Ε 2 είναι ΓΒ. Άρα το άθροισμα των αποστάσεων αυτών είναι ΑΓ + ΓΒ = ΑΒ. Καθώς μεταφέρετε το σημείο Γ, τα ΑΓ και ΓΒ μεταβάλλονται, αλλά το ΑΒ δηλαδή το άθροισμά τους, παραμένει σταθερό. Τα σημεία τομής του κύκλου ικανοποιούν τον ορισμό μιας έλλειψης, δηλαδή το άθροισμα των αποστάσεων προς δύο σταθερά σημεία είναι σταθερό. Περαιτέρω εξερεύνηση Οι μαθητές που μετρούν την εκκεντρότητα θα διαπιστώσουν ότι αυτή προσεγγίζει την τιμή 0 όταν οι εστίες πλησιάζουν και την τιμή 1 όταν το τμήμα Ε 1 Ε 2 τείνει στο τμήμα ΑΒ. Όταν το Ε 1 Ε 2 γίνει μεγαλύτερο του ΑΒ, οι κύκλοι δεν τέμνονται πλέον όταν το σημείο Γ βρίσκεται μεταξύ των σημείων Α και Β και το σχέδιο δεν είναι σε θέση να δημιουργήσει το ίχνος μιας έλλειψης. Οι κύκλοι τέμνονται όταν το σημείο Γ δε βρίσκεται μεταξύ των Α και Β. Στην περίπτωση αυτή η διαφορά μεταξύ του μήκους των ευθύγραμμων τμημάτων ΑΒ και ΒΓ είναι σταθερή και ίση με ΑΒ. Αυτός ο γεωμετρικός τόπος με εκκεντρότητα μεγαλύτερη του 1 είναι μία υπερβολή. Ενδεχομένως οι μαθητές θα θεωρήσουν ότι αυτή η γεωμετρική αναπαράσταση της εκκεντρότητας έχει περισσότερο νόημα από την παραδοσιακή γεωμετρική αναπαράσταση που συναντούν σε εκπαιδευτικά βιβλία. Δείτε το δείγμα σχεδίου Δραστηριότητες\Έλλειψη.gsp προκειμένου να διαπιστώσετε πώς υπεισέρχεται στη μελέτη το θεώρημα της τριγωνικής ανισότητας. Ο εμπειρικός τρόπος κατασκευής μιας έλλειψης έγκειται στη χρήση ενός νήματος με δύο πινέζες ως εστίες. Στερεώστε τις πινέζες σε έναν πίνακα ανακοινώσεων, τεντώστε το νήμα με τη βοήθεια της μύτης ενός μολυβιού και χαράξτε την έλλειψη διατηρώντας την τάση του νήματος σταθερή. Το μήκος του νήματος είναι το σταθερό άθροισμα των αποστάσεων από τις πινέζες. Σημειώσεις Καθηγητή Διδάσκοντας Γεωμετρία με το The Geometer s Sketchpad 113

Η κατασκευή με τις δύο πινέζες και το νήμα

Η κατασκευή με τις δύο πινέζες και το νήμα Η κατασκευή με τις δύο πινέζες και το νήμα Στη δραστηριότητα αυτή θα εξερευνήσετε ίσως την πλέον κοινή μέθοδο κατασκευής μιας έλλειψης. Προκειμένου να θέσετε το πλαίσιο για την κατασκευή αυτή, πρέπει να

Διαβάστε περισσότερα

Έρευνα 1: Μέσα παράλληλων χορδών

Έρευνα 1: Μέσα παράλληλων χορδών Μέσα χορδών Έρευνα 1: Μέσα παράλληλων χορδών Σχεδιάστε με το Sketchpad το ίχνος των μέσων των χορδών κατά την παράλληλη μεταφορά μιας ευθείας. Για το σκοπό αυτό, πρέπει πρώτα να κατασκευάσετε τα μέσα.

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα στις θέσεις x 1 = - 3 m και x 2 = + 6 m ενός άξονα x'x, όπως φαίνεται στο παρακάτω

Διαβάστε περισσότερα

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Παράθυρα των εγγράφων Επιφάνεια του σχεδίου. Σχεδιάστε εδώ νέα αντικείμενα με τα εργαλεία σημείων, διαβήτη, σχεδίασης ευθύγραμμων αντικειμένων και κειμένου.

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II

Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II Φύλλο 3 1 ράσεις με το λογισμικό The geometer s Sketchpad Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II όμως έχει τη δικιά του φιλοσοφία και το δικό του τρόπο συνεργασίας με το

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II 1 Φύλλο 1 Δράσεις με το λογισμικό Cabri-geometry II Στις δύο παρακάτω γραμμές από το περιβάλλον του λογισμικού αυτού η πρώτη αφορά γενικές επεξεργασίες και δεύτερη με τα εικονίδια περιλαμβάνει τις στοιχειώδεις

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

ΤΟ ΕΜΒΑΔΟΝ ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΓΓΕΓΡΑΜΜΕΝΗ ΓΩΝΙΑ

ΤΟ ΕΜΒΑΔΟΝ ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΓΓΕΓΡΑΜΜΕΝΗ ΓΩΝΙΑ ΤΟ ΕΜΒΑΔΟΝ ΠΟΥ ΠΡΟΚΥΠΤΕΙ ΑΠΟ ΕΓΓΕΓΡΑΜΜΕΝΗ ΓΩΝΙΑ Το στιγμιότυπο που παρουσιάζεται εδώ πρόκυψε πέντε λεπτά πριν από τη λήξη μιας διδακτικής ώρας η οποία ήταν αφιερωμένη σε μια γενική επανάληψη του κεφαλαίου

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ 16_10_2012 ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ 2.1 Απεικόνιση του ανάγλυφου Μια εδαφική περιοχή αποτελείται από εξέχουσες και εισέχουσες εδαφικές μορφές. Τα εξέχοντα εδαφικά τμήματα βρίσκονται μεταξύ

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Ο πύραυλος Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) Μαθηματικά αντικείμενα Έννοιες Ιδιότητες (θεωρήματα, πορίσματα) Σχέσεις Ενέργειες Διαδικασίες Αναπαραστάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

Άρθρο στους Μιγαδικούς Αριθμούς. χρήση της στην εύρεση ακροτάτων.

Άρθρο στους Μιγαδικούς Αριθμούς. χρήση της στην εύρεση ακροτάτων. Σελίδα από Άρθρο στους Μιγαδικούς Αριθμούς Η ανισότητα α β α ± β α + β με α, β C χρήση της στην εύρεση ακροτάτων. και η Μπάμπης Στεργίου Μαθηματικός, Ιούνιος 008 Α. Εισαγωγή Το κείμενο αυτό ξεκίνησε να

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Φύλλο Εργασίας για την y=αx 2

Φύλλο Εργασίας για την y=αx 2 Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

Διδακτική των Μαθηματικών

Διδακτική των Μαθηματικών Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Πρακτική Άσκηση Εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης

Διαβάστε περισσότερα

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες 1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες Θέμα της δραστηριότητας Η δραστηριότητα αυτή είναι μια εισαγωγή στις άπειρες διαδικασίες. Η εισαγωγή αυτή επιτυγχάνεται με την εφαρμογή της μεθόδου

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης

lim lim lim f (x) δ) lim lim lim lim 1- x 1- lim lim lim lim lim Ερωτήσεις ανάπτυξης Ερωτήσεις ανάπτυξης. ** Η γραφική παράσταση της συνάρτησης f είναι αυτή που φαίνεται στο διπλανό σχήμα. Να βρεθούν τα παρακάτω όρια: α) γ) ε) ζ) - f () β) f () δ) f () f () στ) - - - f () f () f () - y

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το αεροσκάφος κάθετης απογείωσης Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης

4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης 4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης Θέμα της δραστηριότητας Η δραστηριότητα αυτή πραγματεύεται την έννοια της μονοτονίας συνάρτησης και ακολούθως εισάγει το θεώρημα της μονοτονίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Το αερόπλοιο. Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες

Το αερόπλοιο. Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Το αερόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δύναμη) - Τεχνολογία Τάξη: Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι μαθητές: - Να εξηγούν

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0 ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση.

Άσκηση 8 9. Ιδια με την άσκηση 8, αλλά τώρα η συνισταμένη έχει αντίθετη κατεύθυνση. 1. Επιλέξτε τη σωστή απάντηση: Η συνισταμένη δύο δυνάμεων είναι μία δύναμη που a. έχει μέτρο ίσο με το άθροισμα των μέτρων των δύο δυνάμεων. b. έχει μέτρο πάντα μεγαλύτερο από το μέτρο της κάθε επί μέρους

Διαβάστε περισσότερα