Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ. Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ. Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική"

Transcript

1 Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία:

2 Ηλεκτρομαγνητική Ακτινοβολία ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 2

3 Φάσμα Ηλεκτρομαγνητικής Ακτινοβολίας ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 3

4 Γενικά για την Ηλιακή Ακτινοβολία Ο Ήλιος είναι ένα τυπικό αστέρι, αποτελούμενο κυρίως από Η: 71 % και He: 27 % κατά μάζα, με ακτίνα R ʘ = 696,000 Km (ο δείκτης ʘ αποτελεί το Αστρονομικό σύμβολο του Ήλιου). Η Ηλιακή ακτινοβολία παράγεται στον πυρήνα του Ήλιου ( 0.1 R ʘ ) μέσω θερμοπυρηνικής σύντηξης με τον λεγόμενο κύκλο πρωτονίου-πρωτονίου (ή p-p cycle). Κάθε δευτερόλεπτο, συμβαίνουν στον πυρήνα θερμοπυρηνικές αντιδράσεις σύντηξης, μέσω των οποίων το Η μετατρέπεται σε He και ακτινοβολία. Κάθε δευτερόλεπτο, tn H καίγονται αποδίδοντας J ενέργειας υπό μορφή ακτινοβολίας. Αυτή η συνολικά παραγόμενη ενέργεια από τον πυρήνα, λέγεται και λαμπρότητα (luminocity) του Ήλιου και συμβολίζεται Lʘ. Επειδή η ισχύς P είναι ο ρυθμός παραγωγής ενέργειας (P = de/dt), έπεται από τα παραπάνω ότι η παραγωγή ισχύος στον πυρήνα του Ήλιου ανέρχεται σε P ʘ = W. Η ενέργεια E που μεταφέρει κάθε φωτόνιο προσδιορίζει και το χρώμα του, δηλαδή το μήκος κύματος (wavelength) λ, που μπορεί να βρεθεί μέσω των ισοτήτων Ε =h f = (h c)/λ, όπου h = η σταθερά του Plank, c = m/s η ταχύτητα των φωτονίων στο κενό, λ το μήκος κύματός τους και f = c /λ η συχνότητά τους. Μια ακτινοβολία που χαρακτηρίζεται από ένα μόνο μήκος κύματος λέγεται μονοχρωματική ακτινοβολία (monochromatic radiation). Όταν σε μια ακτινοβολία, όπως εκείνη του Ηλιακού φωτός, υπάρχουν φωτόνια διαφόρων μηκών κύματος, τότε αναφέρεται ως πολυχρωματική ή ευρυζωνική (broadband) ακτινοβολία. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 4

5 Η Θερμική και η Ηλιακή Ακτινοβολία ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 5

6 Η Ποιότητα της Ηλιακής Ακτινοβολίας ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 6

7 Ηλιακή Σταθερά ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 7

8 Ορολογία της Ηλιακής Ακτινοβολίας Επειδή τα φωτόνια της Ηλιακής ακτινοβολίας κινούνται στο κενό με την ταχύτητα του φωτός, έπεται ότι διαμέσου κάθε επιφάνειας Α διέρχεται κάθε δευτερόλεπτο ένας πολύ μεγάλος αριθμός φωτονίων Υιοθετώντας την ορολογία της Ρευστομηχανικής, λέμε ότι αυτή η διέλευση φωτονίων διαμέσου της Α, αποτελεί μια ροή φωτονίων (κατά τον ίδιο τρόπο που τα μόρια του νερού περνώντας από την διατομή μιας σωλήνας δημιουργούν ροή ή παροχή νερού). Επειδή κάθε φωτόνιο μεταφέρει ενέργεια E, είναι φανερό ότι η διέλευση (ροή) φωτονίων δια μέσου της Α, ισοδυναμεί τελικά με ροή ενέργειας (radiant energy flux) μέσα από την Α. Πρόκειται δηλαδή για ένα πολύ βασικό μέγεθος που μας δείχνει πόσα Joules ενέργειας παρέχονται κάθε δευτερόλεπτο από την Ηλιακή Ακτινοβολία, όταν αυτή διέρχεται ή φωτίζει μια επιφάνεια Α με εμβαδόν 1 m². Το μέγεθος αυτό ονομάζεται πυκνότητα ισχύος (power density) ή πολύ συχνότερα, Irradiance (όρος που στα Ελληνικά έχει την οριακή μετάφραση ακτινοβολία ή ακτινοβολικότης), συμβολίζεται F A και μετριέται σε (J/s)/m². Επειδή 1 J/s = 1 Watt, έπεται ότι τελικά η πυκνότητα ισχύος F A μετριέται σε W/m². ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 8

9 Κίνηση του Ηλίου και Ηλιακή Σταθερά Η I sc είναι γνωστή ως Ηλιακή σταθερά (Solar constant). Στην πραγματικότητα η Ηλιακή σταθερά αποτελεί μια μέση τιμή της F A,mean = I sc κατά την διάρκεια ενός έτους. Λόγω της ελλειπτικής τροχιάς της, η Γη βρίσκεται πλησιέστερα στο Ήλιο στις 2 Ιανουαρίου (περιήλιο) και κατά Km μακρύτερα στις 2 Ιουλίου (αφήλιο). Αποτέλεσμα αυτού είναι η πυκνότητα ισχύος I να μεταβάλλεται περίπου κατά 105 W/m² κατά την διάρκεια του έτους, από 1,270 ~ 1,375 W/m². Η μέση τιμή των 1,366 W/m² επιτυγχάνεται περί τις 3 Απριλίου και 5 Οκτωβρίου, όπου η Γη έχει απόσταση από τον Ήλιο ίση με την μέση τροχιακή της ακτίνα των 149, Km. Η εξίσωση περιγράφει την ετήσια μεταβολή της εξωατμοσφαιρικής πυκνότητας ισχύος στη διάρκεια του έτους, όπου D n ο αύξων αριθμός της ημέρας: 360Dn I Dn cos I sc ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 9

10 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Η διαφορική εξασθένηση της Ηλιακής ακτινοβολίας κατά το πέρασμά της διαμέσου της ατμόσφαιρας Λόγω απορρόφησής της (absorption) από τα μόρια του ατμοσφαιρικού αέρα (gas absorption) και τα αιωρούμενα σωματίδια (particle absorption). Η απορρόφηση είναι διεργασία που εξαρτάται ισχυρά από το μήκος κύματος της προσπίπτουσας ακτινοβολίας. Λόγω σκέδασής της (scattering) από τα μόρια του ατμοσφαιρικού αέρα (gas scattering) και από τα αιωρούμενα σωματίδια (particle scattering). Η σκέδαση από τα μόρια του αέρα (κυρίως από το N 2 και το O 2 ) είναι γνωστή ως μοριακή σκέδαση ή σκέδαση Rayleigh. Η σκέδαση είναι διεργασία ισχυρά εξαρτώμενη από το μήκος κύματος της προσπίπτουσας ακτινοβολίας και από το μέγεθος και το σχήμα των αιωρούμενων σωματιδίων ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 10

11 Η Ποιότητα της Ηλιακής Ακτινοβολίας Φασματική Κατανομή της Ηλιακής Ακτινοβολίας στην επιφάνεια της Γης Μια απλουστευμένη παρατήρηση: Με τη μείωση του Ο 3 (όζον), περιορίζεται η απορρόφηση της Ηλιακής Ακτινοβολίας στην Ατμόσφαιρα με αποτέλεσμα την αλλαγή της θερμοκρασίας στην επιφάνειας της Γης ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 11

12 Η Ποιότητα της Ηλιακής Ακτινοβολίας Φασματική Κατανομή της Ηλιακής Ακτινοβολίας και απορρόφηση ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 12

13 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Η εξασθένηση της Ηλιακής ακτινοβολίας ανάλογα με την φαινόμενη θέση του Ήλιου και ο Δείκτης Αέριας Μάζας Εξαιτίας των προηγούμενων αιτιών η Ηλιακή Ακτινοβολία εξασθενεί καθώς οι ηλιακές ακτίνες διανύουν μεγαλύτερη απόσταση. Είναι προφανές ότι η φασματική πυκνότητα ισχύος I (λ ) που φτάνει στην επιφάνεια της Γης σε κάθε μήκος κύματος λ εξαρτάται και από τη φαινόμενη θέση του Ήλιου (Solar Apparent Position) ως προς έναν τόπο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 13

14 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Η φαινόμενη θέση του Ήλιου (όπως και κάθε αντικειμένου στον τρισδιάστατο χώρο) ως προς τον τοπικό ορίζοντα κάθε παρατηρητή, δίνεται από τις γωνίες κατεύθυνσης: az (αζιμούθιο azimuth angle) και el (ύψος elevation angle) του διανύσματος ΣΗ που συνδέει τη θέση Σ του παρατηρητή με τη θέση Η του Ήλιου ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 14

15 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Η αζιμούθια γωνία αz μετριέται από την κατεύθυνση του Βορρά, δεξιόστροφα. Η γωνία ύψους el του Ήλιου σχηματίζει από την ευθεία ΣΗ και τον τοπικό ορίζοντα. Η συμπληρωματική γωνία ύψους ως προς την τοπική κατακόρυφο λέγεται ζενίθια γωνία του Ήλιου και συμβολίζεται θz. Δηλαδή είναι: Θz = 90 - el ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 15

16 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Η ζενίθια γωνία θz μας δείχνει πόσο αποκλίνει ο Ήλιος από την κατακόρυφο του τόπου Σ. Όταν η γωνία ύψους el του Ήλιου είναι μικρή (όπως πχ. στην θέση Η5 του Ήλιου) το Ηλιακό φώς για να φτάσει στο έδαφος διανύει πολύ μεγαλύτερη διαδρομή από το πάχος της ατμόσφαιρας. Ως αποτέλεσμα η πυκνότητα ισχύος I είναι μικρή. Καθώς η γωνία ύψους el του Ήλιου αυξάνει, η διαδρομή του Ηλιακού φωτός μειώνεται και μαζί της η εξασθένησή του από απορρόφηση και σκέδαση (θέσεις Η4, Η3,, Η1). Έτσι η στάθμη πυκνότητας ισχύος του φάσματος αυξάνει σε κάθε μήκος κύματος (το παρατηρούμενο φάσμα πλησιάζει προς το εξωατμοσφαιρικό) και η πυκνότητα ισχύος I διαρκώς αυξάνει. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 16

17 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Μεταβολές της η πυκνότητα ισχύος I δια μέσου επιφάνειας Α κάθετα προσανατολισμένης στην Ηλιακή ακτινοβολία Μεταβολές του Ηλιακού Φάσματος Πυκνότητας Ισχύος I (λ ) ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 17

18 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Τελικά, η εξασθένηση της Ηλιακής ακτινοβολίας εξαρτάται από τον αριθμό μορίων και αιωρούμενων σωματιδίων που απορροφούν και σκεδάζουν (δηλαδή από την συνολική αέρια μάζα που διαπερνά μέχρι να φτάσει στο έδαφος) και όχι από το γεωμετρικό μήκος της διαδρομής του. Το μέγεθος στο οποίο βασίζεται η ποσοτικοποίηση της εξασθένησης της ακτινοβολίας είναι ο δείκτης αέριας μάζας (air mass index) AM που εναλλακτικά αναφέρεται ως σχετική αέρια μάζα (relative air mass) m ή ακόμα, απλώς αέρια μάζα (air mass). AM Οπτική μάζα υπό λοξή πρόσπτωση της Ηλιακής Ακτινοβολίας Οπτική μάζα υπό κάθετη πρόσπτωση της Ηλιακής Ακτινοβολίας AM P sin el el el AM P sin el el ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 18

19 Η Εξασθένιση της Ηλιακής Ακτινοβολίας Μεταβολή της αέριας μάζας συναρτήσει του ηλιακού χρόνου για τρείς χαρακτηριστικές ημερομηνίες του έτους ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 19

20 Απόσταση Ήλιου - Γης και Ένταση Ηλιακής Ακτινοβολίας Η γη κινείται σε ελλειπτική τροχιά με χαρακτηριστικά: ΗΑ = περιήλιο = km ΗΓ = αφήλιο = km OH = (ΗΓ-ΗΑ)/2 = 2, km Εκκεντρότητα e = OH/OA = OA = α = (ΗΑ+ΗΓ)/2 = 149, km ΟΒ = β = α (1-e 2 ) 1/2 = 149, km Λόγω της μικρής εκκεντρότητας o μεγάλος ημιάξονας είναι περίπου ίσος με τον μικρό ημιάξονα και η ελλειπτική τροχιά πλησιάζει τη μορφή κύκλου. Ο ήλιος βρίσκεται στο μεγάλο ημιάξονα της τροχιάς, στο σημείο Η και όχι στο κέντρο Ο. Η απόσταση ήλιου-γης μεταβάλλεται με αποτέλεσμα να μεταβάλλεται και η ένταση της ακτινοβολίας που φθάνει στη Γη, σύμφωνα με: 360 Dn I Dn cos Isc όπου: I (D n ) η ένταση της ηλιακής ακτινοβολίας που φθάνει σε επίπεδο κάθετο στη διεύθυνση της ακτινοβολίας, έξω από τα όρια της ατμόσφαιρας, τη ν-οστή ημέρα του έτους (1η ή 1 Ιαν) και I sc = W/m² κάθετο στην διεύθυνση της ακτινοβολίας, η μέση ετήσια ένταση ακτινοβολίας στα όρια της γήινης ατμόσφαιρας και D n ο αύξων αριθμός της κάθε ημέρας του έτους ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 20

21 Οι συνέπειες της κίνησης της Γης γύρω από τον Ήλιο Σε κάθε νέα θέση, κατά την περιφορά, ο άξονας της γης παραμένει παράλληλος με την προηγούμενη. Όμως δεν είναι κάθετος στο επίπεδο της ελειπτικής τροχιάς και αποκλίνει από την κάθετο κατά: δ n = Το γεγονός αυτό είναι υπεύθυνο για την αλλαγή των εποχών κατά τη διάρκεια του έτους και για τη μεταβολή της διάρκειας της ημέρας και της νύχτας. Η γωνία δ n = ορίζει: Το μέγιστο γεωγραφικό πλάτος (θετικό από τον ισημερινό και προς το βορά ή αρνητικό από τον ισημερινό προς το νότο), στο οποίο ο ήλιος μπορεί να φωτίσει κατακόρυφα (υπό γωνία 90 ) - το μέγιστο αυτό βόρειο πλάτος ορίζει τον τροπικό του καρκίνου, ο οποίος φωτίζεται κατακόρυφα στις 12 το μεσημέρι (ηλιακή ώρα) στις 22/6 και το μέγιστο νότιο πλάτος ορίζει τον τροπικό του αιγόκερου, ο οποίος φωτίζεται κατακόρυφα στις 12 το μεσημέρι (ηλιακή ώρα) στις 22/12, τη γωνιακή θέση του ήλιου κατά το ηλιακό μεσημέρι κάθε ημέρας του έτους, σε σχέση με το επίπεδο του ισημερινού ( η γωνία αυτή ονομάζεται απόκλιση δ n και λαμβάνει τιμές στο διάστημα -δ < δ n <δ ) ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 21

22 Οι συνέπειες της κίνησης της Γης γύρω από τον Ήλιο Η τιμή της γωνίας δ n κυμαίνεται από μέχρι 23.45, είναι διαφορετική για κάθε ημέρα του χρόνου και υπολογίζεται από τη σχέση: 284+ D n δ = sin 360 n 365 όπου n είναι ο χαρακτηριστικός αριθμός της συγκεκριμένης ημέρας του χρόνου (D n = 1 για την 1 η Ιανουαρίου). Κατά την περιφορά της γης η γωνία δ (απόκλιση) παίρνει τις παρακάτω τιμές, όπως μπορεί να υπολογιστεί και από την παραπάνω σχέση. για D n = 81 για D n = για D n = για D n = (22 Μαρτίου) (22 Ιουνίου) (22 Σεπτεμβρίου) (22 Δεκεμβρίου) δ n = 0 δ n = δ n = 0 δ n = (εαρινή ισημερία) (θερινό ηλιοστάσιο) (φθινοπωρινή ισημερία) (χειμερινό ηλιοστάσιο) ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 22

23 Οι συνέπειες της κίνησης της Γης γύρω από τον Ήλιο Ο ήλιος εμφανίζεται στην Ανατολή, φθάνει στο μέγιστο ημερήσιο ύψος του h n και χάνεται στη Δύση Το μέγιστο ημερήσιο ύψος h n : μετριέται σε μοίρες και μεταβάλλεται από μέρα σε μέρα για οποιοδήποτε τόπο, στη διάρκεια ενός έτους, το h n μεταβάλλεται κατά (23.45 έως ) σε έναν τόπο μία οποιαδήποτε μέρα ν του έτους είναι: h n = 90 - φ + δ n όπου φ το γεωγραφικό πλάτος του τόπου και δ n η γωνία δ τη n-οστή μέρα του έτους στο βόρειο ημισφαίριο λαμβάνει τη μέγιστη τιμή του στις 22/6 και την ελάχιστη τιμή του στις 22/12 στην Ξάνθη με γεωγραφικό πλάτος το h n είναι: στις 22 Μαρτίου = στις 22 Ιουνίου = στις 22 Σεπτεμβρίου = στις 22 Δεκεμβρίου = ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 23

24 Η Κίνηση του Ήλιου, Βασικές Έννοιες και Ορισμοί ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 24

25 Ένταση της Ηλιακής Ακτινοβολίας Απουσία Ατμόσφαιρας και Βασικοί Ορισμοί Για τον υπολογισμό της ηλιακής ακτινοβολίας στο κεκλιμένο επίπεδο, θα πρέπει να γνωρίζουμε: την κλίση του συλλέκτη (γωνία β) την ημέρα και το μήνα του έτους (γωνία δn) τη θέση του τόπου (γεωγραφικό πλάτος φ) τη θέση του ήλιου στον ορίζοντα (ωριαία γωνία ω) την ποσότητα της ηλιακής ενέργειας στα όρια της ατμόσφαιρας Αν τοποθετήσουμε ένα συλλέκτη σε οριζόντιο επίπεδο ή με κλίση β (από 0 μέχρι 90 ) ως προς το οριζόντιο επίπεδο στην επιφάνεια της γης, ορίζονται οι παρακάτω γωνίες: η κλίση β της επιφάνειας συλλέκτη ως προς το οριζόντιο επίπεδο, είναι η γωνία που σχηματίζεται ανάμεσα στην επιφάνεια του συλλέκτη και το οριζόντιο επίπεδο η ζενιθιακή γωνία θz, που σχηματίζεται ανάμεσα στην κάθετο στο οριζόντιο επίπεδο και στην διεύθυνση της άμεσης ηλιακής ακτινοβολίας η γωνία πρόσπτωσης θ, που σχηματίζεται ανάμεσα στην κάθετο σε ένα σημείο του συλλέκτη και στη διεύθυνση της άμεσης ηλιακής ακτινοβολίας στο σημείο (όταν β = 0 τότε θz = θ ) η Αζιμουθιακή γωνία γs επιφάνειας του συλλέκτη, που όταν ο συλλέκτης είναι προσανατολισμένος ακριβώς στο νότο η γωνία γs είναι ίση με μηδέν. Η γωνία γs ανατολικά είναι αρνητική με τιμές από 0 μέχρι -180 ο και δυτικά θετική από 0 μέχρι 180 ο. η ωραία γωνία ω, που είναι η γωνία ανάμεσα στον μεσημβρινό του τόπου και της θέσης του ήλιου (γωνιακή μετατόπιση του ήλιου ανατολικά ή δυτικά του μεσημβρινού). ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 25

26 ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 26

27 Ένταση της Ηλιακής Ακτινοβολίας και Βασικοί Ορισμοί Ένταση ηλιακής ακτινοβολίας Ι (W/m²): Ο ρυθμός πρόσπτωσης της ηλιακής ακτινοβολίας σε κάποια επιφάνεια, ανά μονάδα επιφάνειας. Άμεση ηλιακή ακτινοβολία, Ι b (W/m²): Είναι η ηλιακή ακτινοβολία που φτάνει στην επιφάνεια της Γης χωρίς να έχει υποστεί σκέδαση στην ατμόσφαιρα. Διάχυτη ηλιακή ακτινοβολία, Ι d (W/m²): Είναι η ηλιακή ακτινοβολία που φτάνει στην επιφάνεια της γης, αφού έχει αλλάξει διεύθυνση από σκέδαση στην ατμόσφαιρα. Ολική ηλιακή ακτινοβολία, Ι t (W/m²): Το άθροισμα της άμεσης και της διάχυτης ηλιακής ακτινοβολίας σε κάποια επιφάνεια. Γεωγραφικό πλάτος, φ, ενός τόπου: Η γωνιακή θέση του τόπου βόρεια ή νότια από τον ισημερινό και λαμβάνεται θετική προς βορρά (-90 φ 90 ). Απόκλιση, δ n : Η γωνιακή θέση του ήλιου κατά την ηλιακή μεσημβρία σε σχέση με το ισημερινό επίπεδο και λαμβάνεται θετική προς βορρά. (-23,45 δ n 23,45 ). Ωριαία γωνία, ω : Η γωνιακή μετατόπιση του ήλιου ανατολικά ή δυτικά του τοπικού μεσημβρινού εξαιτίας της περιστροφής της γης με 15 /h και λαμβάνεται αρνητική για τις ώρες πριν το μεσημέρι και θετική μετά το μεσημέρι. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 27

28 Ένταση της Ηλιακής Ακτινοβολίας και Βασικοί Ορισμοί Ζενίθια γωνία, θz: Η γωνία που σχηματίζεται μεταξύ της καθέτου στο οριζόντιο επίπεδο ενός τόπου και της ευθείας που ενώνει τον τόπο με τον ήλιο. Αέριa μάζα, m: Το πηλίκο του οπτικού πάχους της ατμόσφαιρας διαμέσου του οποίου περνά η άμεση ηλιακή ακτινοβολία, ως προς το οπτικό πάχος της ατμόσφαιρας, όταν ο ήλιος βρίσκεται στο ζενίθ. Για το επίπεδο της θάλασσας και για 0 < θz <65 είναι m = 1/cosθz. Για θz > 65 πρέπει να γίνει διόρθωση λόγω καμπυλότητας της γης. Κλίση επιφάνειας, β: Η γωνία μεταξύ της εν λόγω επιφάνειας και του οριζόντιου επιπέδου (0 β 180 ). Αζιμούθια γωνία επιφάνειας, γ s : Η απόκλιση που παρουσιάζει η προβολή σημείου στο οριζόντιο επίπεδο της κάθετης σε επιφάνεια, από τον τοπικό μεσημβρινό γ = 0 προς νότο, γ s < 0, ανατολικά και γ s > 0 δυτικά. (-180 γ s 180 ). Γωνία πρόσπτωσης, θ : Η γωνία που σχηματίζεται ανάμεσα στην διεύθυνση της άμεσης ηλιακής ακτινοβολίας σε ένα επίπεδο και στην κάθετο στο επίπεδο. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 28

29 Ένταση της Ηλιακής Ακτινοβολίας και Βασικοί Ορισμοί Απόκλιση, δ n : Η γωνιακή θέση του ήλιου κατά την ηλιακή μεσημβρία σε σχέση με το ισημερινό επίπεδο και λαμβάνεται θετική προς βορρά. (-23,45 δ n 23,45 ) D n δ = sin 360 n 365 Ζενίθια γωνία, θz : Η γωνία που σχηματίζεται μεταξύ της καθέτου στο οριζόντιο επίπεδο ενός τόπου και της ευθείας που ενώνει τον τόπο με τον ήλιο. cosθ cosφ cosδ cosω sinφ sinδ z n n Αζιμούθια γωνία επιφάνειας, γ s : Η απόκλιση που παρουσιάζει η προβολή σημείου στο οριζόντιο επίπεδο της κάθετης σε επιφάνεια, από τον τοπικό μεσημβρινό γ s = 0 προς νότο, γ s < 0, ανατολικά και γ s > 0 δυτικά. (-180 γ s 180 ). sinγ cosδ sinω / sinθ S n z Γωνία πρόσπτωσης, θ : Η γωνία που σχηματίζεται ανάμεσα στην διεύθυνση της άμεσης ηλιακής ακτινοβολίας σε ένα επίπεδο και στην κάθετο στο επίπεδο. cos θ =sinδ sinφ cos β sinδ cosφ sinβ cos γ +cosδ cosφ cosβ cos ω + n n s n +cosδ sinφ sinβ cosγ cos ω +cosδ sinβ sinγ sinω n s n s ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 29

30 Ένταση της Ηλιακής Ακτινοβολίας και Βασικοί Ορισμοί Η ωριαία γωνία ανατολής ή δύσης του ηλίου ω S (όπου θ z = 90 ) υπολογίζεται από την σχέση: cos ω S =-tanφ tanδ n και είναι αρνητική για την ανατολή και θετική για την δύση. Το μήκος της ημέρας σε ώρες είναι: Ν = (2/15) cos -1 (-tanφ tanδ n ) Ο υπολογισμός της ωριαίας γωνίας ω του ήλιου γίνεται με βάση τον Αληθή Ηλιακό Χρόνο (ΑΗΧ), ο οποίος σχετίζεται με τον Τοπικό Ωρολογιακό Χρόνο (ΤΩΧ), τον τόπο, την ημέρα και την θέση του ήλιου σύμφωνα με την σχέση: ΑΗΧ = ΤΩΧ 4 (L st L loc ) + E όπου L st : ο μεσημβρινός που μετράται ο χρόνος και L loc : ο τοπικός μεσημβρινός. Για την Ελλάδα L st = 30 και η προηγούμενη σχέση γράφεται: ΑΗΧ = ΤΩΧ 4 (30 L loc ) + E όπου E = cosβ sinβ cos2β sin2β (σε min). B = 360 (D n -1) / 365, n ημέρα του έτους (1 D n 365). Με την τιμή του ΑΗΧ σε min υπολογίζεται η ωριαία γωνία του ήλιου ω από την σχέση: ω = 15 [(ΑΗΧ-720)/60] (σε μοίρες). Η τιμή 720 αντιστοιχεί στον ΑΗΧ της μεσημβρίας του τόπου. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 30

31 Με δεδομένο ότι η Ένταση της Ηλιακής ακτινοβολίας εκτός της ατμόσφαιρας για συγκεκριμένη ζενίθια γωνία εκφράζεται: 360 Dn Ι Ι cos cosθ 365 o SC Z Η συνολική ημερήσια ηλιακή ενέργεια σε οριζόντιο επίπεδο στο όριο της ατμόσφαιρας υπολογίζεται από την σχέση: Ένταση της Ηλιακής Ακτινοβολίας και Ηλιακή Ενέργεια ΙSC 360Dn 2 π ωs Ho cos cosφ cosδn sinωs sinφ sinδn π Για τον υπολογισμό της ηλιακής ενέργειας σε οριζόντιο επίπεδο στο όριο της ατμόσφαιρας και για το χρονικό διάστημα που αντιστοιχεί σε ωριαίες γωνίες του ήλιου ω 1, και ω 2 έχουμε: Ι 2 π SC 360Dn ω2 ω1 Ho cos cosφ cosδn sinω2 sinω1 sinφ sinδn π ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 31

32 Ηλιακή Ενέργεια Ι 2 π SC 360 Dn ω2 ω1 Ho cos cosφ cosδn sinω2 sinω1 sinφ sinδn π Δημιουργώντας το άθροισμα της Η ο για όλες τις ημέρες κάθε μήνα βρίσκεται μια ημέρα το μήνα, που η τιμή της Η ο πλησιάζει την μέση τιμή Η ο του αθροίσματος. Η ημέρα αυτή ονομάζεται μέση ή αντιπροσωπευτική ημέρα του μήνα και είναι (κατόπιν υπολογισμών): ΙΑΝΟΥΑΡΙΟΣ 17 (D n =17) ΦΕΒΡΟΥΑΡΙΟΣ 16 (D n =47) ΜΑΡΤΙΟΣ 16 (D n =75) ΑΠΡΙΛΙΟΣ 15 (D n =105) ΜΑΙΟΣ 15 (D n =135) ΙΟΥΝΙΟΣ 11 (D n =162) ΙΟΥΛΙΟΣ 17 (D n =198) ΑΥΓΟΥΣΤΟΣ 16 (D n =228) ΣΕΠΤΕΜΒΡΙΟΣ 15 (D n =258) ΟΚΤΩΒΡΙΟΣ 15 (D n =288) ΝΟΕΜΒΡΙΟΣ 14 (D n =318) ΔΕΚΕΜΒΡΙΟΣ 10 (D n =344) ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 32

33 Εκτίμηση της Ηλιακής Ενέργειας στην Επιφάνεια της Γης Για τον υπολογισμό της διαθέσιμης ηλιακής ενέργειας στην επιφάνεια της Γης έχουν αναπτυχθεί τριών τύπων μοντέλα: 1. Εμπειρικά μοντέλα, που συνδέουν τις διάφορες παραμέτρους με σχέσεις που προκύπτουν από τον βέλτιστο συσχετισμό πραγματικών δεδομένων, έχουν τοπική κυρίως ισχύ με μεγαλύτερη ακρίβεια στις μηνιαίες προβλέψεις από τις ημερήσιες ή τις ωριαίες. 2. Ατμοσφαιρικά μοντέλα, που χρησιμοποιούν τιμές διαφόρων ατμοσφαιρικών παραμέτρων (υγρασία, θερμοκρασία, πίεση, όζον, CO 2, κλπ) και μπορούν να εφαρμοστούν οπουδήποτε αρκεί να είναι διαθέσιμα τα μετεωρολογικά δεδομένα που χρειάζονται. 3. Στοχαστικά μοντέλα, που χρησιμοποιούν δεδομένα ηλιακής ακτινοβολίας πολλών ετών και παράγουν διάφορες παραμέτρους των προβλημάτων με στοχαστικές διεργασίες. Τα διαθέσιμα μετεωρολογικά δεδομένα τις περισσότερες φορές περιλαμβάνουν την ολική ηλιακή ακτινοβολία σε οριζόντιο επίπεδο και τις ώρες ηλιοφάνειας. Στις διάφορες εφαρμογές όμως της ηλιακής ενέργειας είναι απαραίτητο να υπολογίζεται η ηλιακή ακτινοβολία σε οποιοδήποτε επίπεδο (κλίσης β και αζιμούθιας γωνίας γ s ) και ο υπολογισμός αυτός είναι πολύπλοκος. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 33

34 Εκτίμηση της Ηλιακής Ενέργειας στην Επιφάνεια της Γης Βήματα Υπολογισμού: Αν Ε T (σε J/m²) η συνολική ηλιακή ενέργεια που προσπίπτει σε κάποια επιφάνεια μέσα σε ένα μήνα (N ημέρες) τότε η Μέση ανά Μήνα Ημερήσια (ΜΜΗ) τιμή της ηλιακής ενέργειας είναι Ε T /Ν (J/m²). Για τον υπολογισμό της ΜΜΗ ολικής ηλιακής ενέργειας σε κάποιο επίπεδο, H T, πρέπει να υπολογιστούν: H b H d H Tb H Td H Tr Άμεση Μέση ανά Μήνα Ημερήσια ηλιακή ενέργεια σε οριζόντιο επίπεδο Διάχυτη Μέση ανά Μήνα Ημερήσια ηλιακή ενέργεια σε οριζόντιο επίπεδο Άμεση Μέση ανά Μήνα Ημερήσια ηλιακή ενέργεια σε κεκλιμένο επίπεδο Διάχυτη Μέση ανά Μήνα Ημερήσια ηλιακή ενέργεια σε κεκλιμένο επίπεδο Ανακλώμενη από το έδαφος Μέση ανά Μήνα Ημερήσια ηλιακή ενέργεια στο κεκλιμένο επίπεδο Με τις τιμές αυτές υπολογίζεται η ΜΜΗ ολική ηλιακή ακτινοβολία στο κεκλιμένο επίπεδο: H T H Tb H Td H Tr ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 34

35 Μέθοδος Liu Jordan: Για τους υπολογισμούς χρησιμοποιούνται συνήθως δύο παράμετροι: Η παράμετρος συσχέτισης ηλιακής ακτινοβολίας σε κεκλιμένο επίπεδο προς οριζόντιο επίπεδο, Ο δείκτης αιθριότητας, K T Ο συντελεστής αιθριότητας ορίζεται ως το πηλίκο της Μέσης ανά Μήνα Ημερήσιας ολικής ηλιακής ενέργειας στο οριζόντιο επίπεδο της Γης προς τη Μέση ανά Μήνα Ημερήσια ολική ηλιακή ενέργεια στο οριζόντιο επίπεδο εκτός της ατμόσφαιρας, (ΜΜΗ οριζόντιο επίπεδο Γης)/(ΜΜΗ οριζόντιο επίπεδο εκτός ατμόσφαιρας): N O N 1 Όπου: H. Με βάση αυτόν τον υπολογισμό και H T H Tb H Td H Tr, ορίζουμε: O N Εκτίμηση της Ηλιακής Ενέργειας στην Επιφάνεια της Γης H K T H H H T H d Hd R 1 - Rb Rd ρ Rr H H H O R ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 35

36 Εκτίμηση της Ηλιακής Ενέργειας στην Επιφάνεια της Γης H T H d Hd H T H Tb H Td H Tr R 1 - Rb Rd ρ Rr H H H H d H Rb Rd MMH διάχυτη ηλιακή ενέργεια σε οριζόντιο επίπεδο MMH ολική ηλιακή ενέργεια σε οριζόντιο επίπεδο MMH άμεση ηλιακή ενέργεια σε κεκλιμένο επίπεδο MMH άμεση ηλιακή ενέργεια σε οριζόντιο επίπεδο MMH διάχυτη ηλιακή ενέργεια σε κεκλιμένο επίπεδο MMH διάχυτη ηλιακή ενέργεια σε οριζόντιο επίπεδο Επιφάνεια Συντελεστής Ανάκλασης, ρ Καθαρό χιόνι Βρώμικο χιόνι Άμμος Γρασίδι Συνήθως 0.20 Rr MMH ανακλώμενη από το έδαφος ηλιακή ενέργεια σε κεκλιμένο επίπεδο MMH ανακλώμενη από το έδαφος ηλιακή ενέργεια σε οριζόντιο επίπεδο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 36

37 Εκτίμηση της Ηλιακής Ενέργειας στην Επιφάνεια της Γης H T H d Hd H T H Tb H Td H Tr R 1 - Rb Rd ρ Rr H H H Η τιμή της ΜΜΗ ολικής ηλιακής ενέργειας σε οριζόντιο επίπεδο προσδιορίζεται είτε από υπάρχοντα δεδομένα είτε (όταν αυτά δεν υπάρχουν) από την εμπειρική σχέση (μοντέλο Angstrom): H n α b H o N όπου a και b είναι εμπειρικές παράμετροι εξαρτώμενες από τα κλιματολογικά δεδομένα του τόπου. n Επίσης: είναι ο αριθμός ωρών ηλιοφάνειας και ο μέγιστος αριθμός ωρών ηλιοφάνειας. N Με βάση τον συντελεστή αιθριότητας (Liu & Jordan, Collares-Periara & Rabl, Λάλα, Πισιμάνη, Νοταρίδου): H d K T K T H 1 cosβ 1-cosβ Τέλος για τους συντελεστές διόρθωσης έχουμε: R d και R r =, όπου β η κλίση της επιφάνειας. 2 2 Οι συντελεστές αυτοί προκύπτουν θεωρώντας ότι η διάχυτη ηλιακή ενέργεια σε κεκλιμένο επίπεδο προέρχεται ομοιόμορφα από ολόκληρο τον ουράνιο θόλο και η ανακλώμενη ηλιακή ενέργεια προέρχεται από την ανάκλαση της άμεσης και διάχυτης ηλιακής ενέργειας. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 37

38 Εκτίμηση της Ηλιακής Ενέργειας στην Επιφάνεια της Γης Καταλήγουμε στις δύο ισοδύναμες εξισώσεις: cos β 1 cos β H T K T K T Rb K T K T ρ H 2 2 H T cos β 1 cos β R K T K T Rb K T K T ρ H 2 2 Η τιμή του R b υπολογίζεται από τις παρακάτω σχέσεις για κεκλιμένη επιφάνεια με αζιμούθιο γ = 0 και για το βόρειο ημισφαίριο: ' π ' cosφ β cosδn sinωs ωs sin φ β sinδn 180 R b π cosφ cosδn sinωs ωs sinφ sinδn 180 ω s ω s φ β δ n ω - φ δ -1 S =cos tan tan ' -1-1 n : η ωριαία γωνία δύσης του ήλιου για οριζόντια επιφάνεια : η ωριαία γωνία δύσης του ήλιου για κεκλιμένη επιφάνεια : γεωγραφικό πλάτος τόπου : κλίση επιφάνειας : απόκλιση του ήλιου (της μέσης ημέρας του μήνα). ω =min cos -tanφ tan δ, cos -tan φ β tanδ S n n ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 38

39 Εκτίμηση της Ηλιακής Ενέργειας στην Επιφάνεια της Γης Παράδειγμα Άσκηση - Μελέτη: Ένας ηλιακός συλλέκτης πρόκειται να εγκατασταθεί στην Πάτρα με κλίση 60 προσανατολισμένος πλήρως στο Νότο. Με δεδομένο ότι ο συντελεστής ανάκλασης του εδάφους για όλους τους μήνες του έτους είναι 0.2, να υπολογιστεί η μηνιαία μέση ηλιακή ενέργεια και ακτινοβολία που προσπίπτει στην επιφάνειά του για το σύνολο του έτους. Αναζητήστε τα απαραίτητα δεδομένα που χρειάζεστε από το διαδίκτυο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 39

40 Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Οι μετρητές Ηλιακής ακτινοβολίας συχνά αναφέρονται ως ακτινόμετρα (actinometers) ή ραδιόμετρα (radiometers) και χωρίζονται σε δυο μεγάλες κατηγορίες: Α. Τα ευρυφασματικά όργανα (broadband instruments) και Β. Τα φασματικά όργανα (spectral instruments) ή φασματόμετρα (spectrometers) Α. Ευρυφασματικά Όργανα Στην πρώτη κατηγορία ανήκουν τα ακτινόμετρα που μετρούν την πυκνότητα ισχύος (ή άλλα μεγέθη που σχετίζονται άμεσα με αυτή) σε ολόκληρα φασματικά παράθυρα, όπως πχ. στο Visual, στο UV + Visual + N-IR. Συνήθως τα όργανα αυτά μετρούν την πυκνότητα ισχύος το λιγότερο από τα 310 ως τα 2800 nm. Στην κατηγορία (Α) ανήκουν τα ακόλουθα όργανα: Α.1. Πυρανόμετρα (pyranometers) Α.2. Πυρηλιόμετρα (pyrheliometers) Α.3. Πυργεώμετρα (pyrgeometrs) Α.4. Υπεριωδόμετρα (UVmeters) Α.5. Αλβεδόμετρα (albedometers) ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 40

41 Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Α. Ευρυφασματικά Όργανα Α.1. Πυρανόμετρα (pyranometers): Χρησιμοποιούνται για την ευρυφασματική μέτρηση της πυκνότητας ισχύος της ολικής Ηλιακής ακτινοβολίας. Α.2. Πυρηλιόμετρα (pyrheliometers): Χρησιμοποιούνται για την ευρυφασματική μέτρηση της πυκνότητας ισχύος της απευθείας (άμεσης) Ηλιακής ακτινοβολίας. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 41

42 Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Α. Ευρυφασματικά Όργανα Α.3. Πυργεώμετρα (pyrgeometrs): Είναι γνωστά και ως πυρανόμετρα θερμικού υπεριώδους (F-IR pyranometers) και χρησιμοποιούνται για την ευρυφασματική μέτρηση της πυκνότητας ισχύος της θερμικής ακτινοβολίας είτε της επιφάνειας της Γης είτε της ατμόσφαιρας. Α.4. Υπεριωδόμετρα (UVmeters): για την ευρυφασματική μέτρηση της πυκνότητας ισχύος της ολικής Ηλιακής ακτινοβολίας στο υπεριώδες UV-A + UV-B. Α.4. Αλβεδόμετρα (albedometers): Χρησιμοποιούνται για την ευρυφασματική μέτρηση της ανακλαστικής ικανότητας (αλβέδο) της Ηλιακής ακτινοβολίας από τα διαφόρων τύπων εδάφη ή επικαλύψεις της Γήινης επιφάνειας ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 42

43 Β. Φασματικά όργανα ή φασματόμετρα Στη δεύτερη κατηγορία ανήκουν τα ακτινόμετρα που μετρούν την πυκνότητα ισχύος σε κάθε μήκος κύματος χωριστά ή σε μια μικρή φασματική περιοχή κάθε φορά με εύρος Δλ το πολύ 100 nm. Τα πλέον εξελιγμένα ακτινόμετρα του είδους μετρούν την πυκνότητα ισχύος σε εύρος Δλ της τάξης του 1 nm. Στην κατηγορία αυτή ανήκουν τα Ηλιακά φασματοφωτόμετρα (Solar spectro-photometers) που κυκλοφορούν κυρίως σε δυο μορφές: Στην κατηγορία (Β) ανήκουν τα ακόλουθα όργανα: Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Β.1. Τα ζωνοπερατά φωτόμετρα: που καταγράφουν την πυκνότητα ισχύος σε φασματικές μπάντες (εύρους περίπου Δλ = 100 nm) μέσω κατάλληλων φίλτρων 12. Το πιο γνωστό όργανο αυτού του τύπου είναι το Cimel 318 και το Prede POM. Β.2. Τα περιθλαστικά φασματοφωτόμετρα (grating spectrophotometers): που καταγράφουν την πυκνότητα ισχύος της Ηλιακής ακτινοβολίας από 300 ~ 1100 nm σε εκατοντάδες (επί του παρόντος μέχρι και 2048) διαφορετικά μήκη κύματος. Τα όργανα αυτά είναι επί του παρόντος λίγα και έχουν ερευνητική κυρίως χρήση. Το πιο γνωστό όργανο αυτού του τύπου είναι το Prede PGS-100 ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 43

44 Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Πυρανόμετρα: Τα πιο γνωστά όργανα μέτρησης της Ηλιακής Ακτινοβολίας Τα πυρανόμετρα είναι όργανα μέτρησης της συνολικής (global) πυκνότητας ισχύος της Ηλιακής ακτινοβολίας που προσπίπτει σε οριζόντια επιφάνεια εμβαδού Α = 1 m². Η μορφή τους είναι όπως φαίνεται στα διπλανά σχήματα. Η λειτουργία των πυρανόμετρων στηρίζεται στους αισθητήρες θερμοπύλης (thermopile) που λειτουργούν με βάση το θερμοηλεκτρικό φαινόμενο. Ο αισθητήρας θερμοπύλης έχει εξωτερικά την μορφή οριζόντιου κυκλικού δίσκου επικαλυμμένου με κατάλληλο μαύρο υλικό ώστε να απορροφά σχεδόν πλήρως την Ηλιακή ακτινοβολία (οι καλύτεροι απορροφητές φτάνουν σε ποσοστά της τάξης του % απορρόφηση). Η θερμοπύλη αποτελείται από μια σειρά αρκετών (τυπικά 10 ως 100) θερμοηλεκτρικών ζευγών (thermocouples) που συνήθως τοποθετούνται το ένα δίπλα στο άλλο και καλύπτουν όλη την περιφέρεια του κυκλικού δίσκου της θερμοπύλης. Τα θερμοηλεκτρικά ζεύγη είναι συνδεδεμένα εν σειρά ώστε να παράγουν την μέγιστη δυνατή διαφορά δυναμικού (τάση στα άκρα τους). Ακόμα και έτσι, οι τάσεις που παράγονται είναι πολύ μικρές (περί τα 5 ~ 20 mv υπό κάθετα προσπίπτουσα Ηλιακή ακτινοβολία πυκνότητας ισχύος 1000 W/m²). Η τάση που παράγει η θερμοπύλη ενός πυρανόμετρου όταν δέχεται ακτινοβολία με 1 W/m² λέγεται ευαισθησία (sensitivity) του πυρανόμετρου. ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 44

45 Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Πυρανόμετρα: Τα πιο γνωστά όργανα μέτρησης της Ηλιακής Ακτινοβολίας Εκτός από την ευαισθησία s, τα βασικότερα τεχνικά χαρακτηριστικά των πυρανόμετρων είναι: Η φασματική κλίμακα (spectral range) Η διακριτική ικανότητα (resolution) Το σφάλμα κατεύθυνσης (directional error) Ο χρόνος απόκρισης (response time) Η θερμική απόκριση (temperature response ή temperature dependence of sensitivity) Η ολίσθηση ευαισθησίας (non-stability ή sensitivity drifting) Η μη-γραμμικότητα (non-linearity) ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 45

46 Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Δίνονται τα βασικά τεχνικά Χαρακτηριστικά 4 πυρανόμετρων. Κατατάξτε τα πυρανόμετρα ως προς: Παράδειγμα Άσκηση - Μελέτη: α) το φασματικό τους εύρος β) την ευαισθησία τους γ) τον χρόνο απόκρισης δ) το σφάλμα κατεύθυνσης ε) την θερμική τους απόκριση ζ) την ευστάθειά τους η) την μη-γραμμικότητά τους Ποιο από τα πυρανόμετρα θα επιλέγατε (με βάση την καλύτερη τιμή κόστους/απόδοση) αν θα θέλατε να πετύχετε μέτρηση της πυκνότητας ισχύος μέχρι το κοντινό υπέρυθρο (πχ. μέχρι τα 2,800 nm) και μέγιστη ισχύ μέχρι 2000 W/m² και ταυτόχρονα η θερμική ευστάθεια να μην ξεπερνά το ± 4%, η ολίσθηση ευαισθησίας το ± 1 %, η μη-γραμμική απόκριση το ± 1 % και το σφάλμα κατεύθυνσης τα ± 20 W/m² υπό ζενίθια γωνία 80 ; ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 46

47 Όργανα Μέτρησης της Ηλιακής Ακτινοβολίας Παράδειγμα Άσκηση - Μελέτη: Δίνονται μετρήσεις της πυκνότητας ισχύος της Ηλιακής Ακτινοβολίας (σε W/m²) για δέκα (10) συνεχόμενες ημέρες μιας περιόδου στο οριζόντιο επίπεδο και σε κλίση 30. Οι μετρήσεις δίνονται σε μορφή αρχείου Excel όπου στην αριστερή στήλη παρουσιάζονται η ημερομηνία και η ώρα της ημέρας και στις δύο επόμενες στήλες οι τιμές μέτρησης της πυκνότητας ισχύος της Ηλιακής Ακτινοβολίας τόσο για το οριζόντιο επίπεδο όσο και σε κλίση 30 (σε W/m²). Η συχνότητα των μετρήσεων είναι κάθε δέκα (10) minutes. A. Σχεδιάστε γραφικά τις μεταβολές των πυκνοτήτων ισχύος της Ηλιακής Ακτινοβολίας συναρτήσει του χρόνου για τις δύο δεδομένες κλίσεις. B. Υπολογίστε τη μέση τιμή της πυκνότητας ισχύος για κάθε μία από τις κλίσεις σε 24ωρο, 12ωρο και διάρκεια ηλιοφάνειας για κάθε ημέρα. Ποιες οι ώρες ηλιοφάνειας για κάθε ημέρα; C. Με βάση τις μέσες τιμές που υπολογίσατε, επιβεβαιώστε το μοντέλο για την εκτίμηση της πυκνότητας ισχύος της Ηλιακής ακτινοβολίας για κλίση 30 με δεδομένο τη μέση τιμή της πυκνότητας ισχύος της Ηλιακής Ακτινοβολίας στο οριζόντιο επίπεδο. D. Σχολιάστε τα αποτελέσματα. Θεωρήστε γνωστά το γεωγραφικό πλάτος φ = (Πάτρα) και γ = 0 (πλήρης προσανατολισμός στο Νότο) ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανολόγων Μηχανικών ΤΕ, 2015 Ηλιακή Ακτινοβολία 47

Εργαστήριο ΑΠΕ I. Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α

Εργαστήριο ΑΠΕ I. Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α Εργαστήριο ΑΠΕ I Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α Ηλεκτρομαγνητική Ακτινοβολία Φάσμα Ηλεκτρομαγνητικής Ακτινοβολίας Γενικά για την Ηλιακή Ακτινοβολία Ο Ήλιος είναι ένα τυπικό αστέρι, αποτελούμενο

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Ηλεκτρομαγνητική Ακτινοβολία ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Με δεδομένο ότι η Ένταση της Ηλιακής ακτινοβολίας εκτός της ατμόσφαιρας

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ II. Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό. Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ II. Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό. Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ II Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό Σουλιώτης Εμμανουήλ Ηλεκτρομαγνητική Ακτινοβολία ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 2 Φάσμα Ηλεκτρομαγνητικής Ακτινοβολίας ΤΕΙ ΔΥΤΙΚΗΣ

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση

Διαβάστε περισσότερα

Ειδικά κεφάλαια παραγωγής ενέργειας

Ειδικά κεφάλαια παραγωγής ενέργειας Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανολόγων Μηχανικών Ειδικά κεφάλαια παραγωγής ενέργειας Ενότητα 3 (β): Μη Συμβατικές Πηγές Ενέργειας Αν. Καθηγητής Γεώργιος Μαρνέλλος (Γραφείο 208) Τηλ.: 24610 56690,

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΑΚΤΙΝΟΒΟΛΙΑ ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ Μάθημα 2o Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΔΕΥΤΕΡΑ 6/3/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Περίληψη Ηλιακή

Διαβάστε περισσότερα

Εξοικονόμηση Ενέργειας και Ορθολογική Χρήση της. Εμμανουήλ Σουλιώτης Φυσικός

Εξοικονόμηση Ενέργειας και Ορθολογική Χρήση της. Εμμανουήλ Σουλιώτης Φυσικός Εξοικονόμηση Ενέργειας και Ορθολογική Χρήση της Εμμανουήλ Σουλιώτης Φυσικός Στόχοι του Μαθήματος Κατανόηση της Έννοιας της Ενέργειας Εξοικονόμηση της Ενέργειας Ορθολογική Χρήση της Ενέργειας Παραγωγή της

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ Δ. Κουζούδης Πανεπιστήμιο Πατρών

ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ Δ. Κουζούδης Πανεπιστήμιο Πατρών ΗΛΙΑΚΗ ΓΕΩΜΕΤΡΙΑ Δ. Κουζούδης Πανεπιστήμιο Πατρών Συντεταγμένες του τόπου (γεωγραφικό μήκος και πλάτος) Π.χ. το Google Maps δίνει για το Παν. Πατρών 38.3, 21.8. Προσοχή, το πρώτο είναι το γεωγραφικό πλάτος

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 2: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Ο Ήλιος ως πηγή ενέργειας Κατανομή ενέργειας στη γη Ηλιακό φάσμα και ηλιακή σταθερά

Διαβάστε περισσότερα

Εργαστήριο ήπιων µορφών ενέργειας

Εργαστήριο ήπιων µορφών ενέργειας Εργαστήριο ήπιων µορφών ενέργειας Ενότητα: Υπολογισµοί ηλιακής ακτινοβολίας Ταουσανίδης Νίκος Τµήµα ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

H κατανομή του Planck για θερμοκρασία 6000Κ δίνεται στο Σχήμα 1:

H κατανομή του Planck για θερμοκρασία 6000Κ δίνεται στο Σχήμα 1: ΗΛΙΑΚΑ ΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 216-217 ΕΡΓΑΣΙΑ 2: Ηλιακή ακτινοβολία Ημερομηνία ανάρτησης (ιστοσελίδα μαθήματος): 2-4-217 Ημερομηνία παράδοσης: 26-4-217 Επιμέλεια λύσεων:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,

Διαβάστε περισσότερα

συν[ ν Από τους υπολογισμούς για κάθε χαρακτηριστική ημέρα του χρόνου προκύπτει ότι η ένταση της ηλιακής ενέργειας στη γη μεταβάλλεται κατά ± 3,5%.

συν[ ν Από τους υπολογισμούς για κάθε χαρακτηριστική ημέρα του χρόνου προκύπτει ότι η ένταση της ηλιακής ενέργειας στη γη μεταβάλλεται κατά ± 3,5%. 1. ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ Το θεωρητικό δυναμικό, δηλαδή το ανώτατο φυσικό όριο της ηλιακής ενέργειας που φθάνει στη γή ανέρχεται σε 7.500 Gtoe ετησίως και αντιστοιχεί 75.000 % του παγκόσμιου ενεργειακού ισοζυγίου.

Διαβάστε περισσότερα

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται Sfaelos Ioannis Τα ουράνια σώµατα φαίνονται από τη Γη σαν να βρίσκονται στην εσωτερική επιφάνεια µιας γιγαντιαίας σφαίρας, απροσδιόριστης ακτίνας, µε κέντρο τη Γη. Τη φανταστική αυτή σφαίρα τη λέµε "ουράνια

Διαβάστε περισσότερα

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

Β.Π. Ουράνιος Ισηµερινός Ν.Π. Β.Π. Ουράνιος Ισηµερινός Ν.Π. Ανάδροµη Φορά Ορθή Φορά Η ορθή και ανάδροµη φορά περιστροφής της Ουράνιας Σφαίρας, όπως φαίνονται από το Βόρειο και το Νότιο ηµισφαίριο, αντίστοιχα Κύκλος Απόκλισης Μεσηµβρινός

Διαβάστε περισσότερα

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Γιάννης Λ. Τσιρογιάννης Γεωργικός Μηχανικός M.Sc., PhD Επίκουρος Καθηγητής ΤΕΙ Ηπείρου Τμ. Τεχνολόγων Γεωπόνων Κατ. Ανθοκομίας Αρχιτεκτονικής Τοπίου ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ Ηλιακή ακτινοβολία

Διαβάστε περισσότερα

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή Κεφάλαιο 5: 5.1. Εισαγωγή Η ηλιακή γεωμετρία περιγράφει τη σχετική κίνηση γης και ήλιου και αποτελεί ένα σημαντικό παράγοντα που υπεισέρχεται στον ενεργειακό ισολογισμό κτηρίων. Ανάλογα με τη γεωμετρία

Διαβάστε περισσότερα

3. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο

3. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο Σηµειώσεις ΑΠΕ Ι Κεφ. 3 ρ Π. Αξαόπουλος Σελ. 1 3. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο Η γνώση της ηλιακής ακτινοβολίας που δέχεται ένα κεκλιµένο επίπεδο είναι απαραίτητη στις περισσότερες εφαρµογές

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ήπιες Μορφές Ενέργειας Ενότητα 6: Ηλιακή Ακτινοβολία Καββαδίας Κ.Α. Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Α Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Ηλιακή Ενέργεια ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 2 Αλληλεπίδραση

Διαβάστε περισσότερα

«ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ»

«ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ» ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ «ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ» Φώτης

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Με τον όρο ακτινοβολία

Διαβάστε περισσότερα

Υπεύθυνη για τη γενική κυκλοφορία της ατμόσφαιρας. Εξατμίζει μεγάλες μάζες νερού. Σχηματίζει και διαμορφώνει το κλίμα της γης.

Υπεύθυνη για τη γενική κυκλοφορία της ατμόσφαιρας. Εξατμίζει μεγάλες μάζες νερού. Σχηματίζει και διαμορφώνει το κλίμα της γης. 3 Ηλιακή και γήινη ακτινοβολία Εισαγωγή Η κύρια πηγή ενέργειας του πλανήτη μας. Δημιουργεί οπτικά φαινόμενα (γαλάζιο ουρανού, άλως κ.α) Υπεύθυνη για τη γενική κυκλοφορία της ατμόσφαιρας. Εξατμίζει μεγάλες

Διαβάστε περισσότερα

Ειδικά Κεφάλαια Παραγωγής Ενέργειας

Ειδικά Κεφάλαια Παραγωγής Ενέργειας Ειδικά Κεφάλαια Παραγωγής Ενέργειας Ενότητα 3 η : Ηλιακή Ενέργεια Αναπλ. Καθηγητής: Γεώργιος Μαρνέλλος Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Σφαιρικό Τρίγωνο Σφαιρικό τρίγωνο λέγεται το μέρος της σφαίρας, το οποίο περικλείεται μεταξύ των τόξων τριών μέγιστων κύκλων, με την προϋπόθεση

Διαβάστε περισσότερα

Για παράδειγµα, το σύµβολο HTb αναφέρεται στην άµεση ηλιακή ακτινοβολία που προσπίπτει σε µια κεκλιµένη επιφάνεια σε µια ηµέρα.

Για παράδειγµα, το σύµβολο HTb αναφέρεται στην άµεση ηλιακή ακτινοβολία που προσπίπτει σε µια κεκλιµένη επιφάνεια σε µια ηµέρα. 1 Σε ετήσια βάση: 20% της ηλιακής ακτινοβολίας που εισέρχεται στην ατµόσφαιρα της Γης απορροφάταιαπότηνατµόσφαιρακαιτασύννεφα, 30% ανακλάταιπίσωστοδιάστηµα, 50% φτάνει στο έδαφος µε τη µορφή άµεσης και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΟΠΤΥΧΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ: ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΙΙ ΗΛΙΑΚΗ ΤΕΧΝΙΚΗ ΔΡ. ΑΙΚ. A. ΜΠΑΞΕΒΑΝΟΥ ΒΟΛΟΣ, ΑΠΡΙΛΙΟΣ 2007 Περιεχόμενα

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ):

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μιχάλης Βραχνάκης Αναπληρωτής Καθηγητής ΤΕΙ Θεσσαλίας ΠΕΡΙΕΧΟΜΕΝΑ 6 ΟΥ ΜΑΘΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1. Η ΓΗ ΚΑΙ Η ΑΤΜΟΣΦΑΙΡΑ ΤΗΣ ΚΕΦΑΛΑΙΟ 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΚΕΦΑΛΑΙΟ 3. ΘΕΡΜΟΚΡΑΣΙΑ

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Α) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία: msouliot@hotmail.gr

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΗΛΙΑΚΟΙ ΘΕΡΜΙΚΟΙ ΣΥΛΛΕΚΤΕΣ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία: msouliot@hotmail.gr

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Yπενθύμιση: Ισημερινές συντεταγμένες Βασικός κύκλος: ο ουράνιος ισημερινός Πρώτος κάθετος: o μεσημβρινός

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α Α1. Κατά την ανάλυση λευκού φωτός από γυάλινο πρίσμα, η γωνία εκτροπής του κίτρινου χρώματος είναι:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΦΥΣΙΚΗ Γ.Π. Γ Λυκείου / Το Φως 1. Η υπεριώδης ακτινοβολία : a) δεν προκαλεί αμαύρωση της φωτογραφικής πλάκας. b) είναι ορατή. c) χρησιμοποιείται για την αποστείρωση ιατρικών εργαλείων. d) έχει μήκος κύματος

Διαβάστε περισσότερα

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος

Διαβάστε περισσότερα

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και

Διαβάστε περισσότερα

ΔΟΜΗ ΚΑΙ ΣΥΣΤΑΣΗ. Εισαγωγή στη Φυσική της Ατμόσφαιρας: Ασκήσεις Α. Μπάης

ΔΟΜΗ ΚΑΙ ΣΥΣΤΑΣΗ. Εισαγωγή στη Φυσική της Ατμόσφαιρας: Ασκήσεις Α. Μπάης ΔΟΜΗ ΚΑΙ ΣΥΣΤΑΣΗ 1. Να υπολογιστούν η ειδική σταθερά R d για τον ξηρό αέρα και R v για τους υδρατμούς. 2. Να υπολογιστεί η μάζα του ξηρού αέρα που καταλαμβάνει ένα δωμάτιο διαστάσεων 3x5x4 m αν η πίεση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΕΡΓΑΣΤΗΡΙΟ 2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 1. Εισαγωγή. Η ενέργεια, όπως είναι γνωστό από τη φυσική, διαδίδεται με τρεις τρόπους: Α) δι' αγωγής Β) δια μεταφοράς Γ) δι'ακτινοβολίας Ο τελευταίος τρόπος διάδοσης

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΠΑΡΑΔΟΤΕΟ 3.

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΠΑΡΑΔΟΤΕΟ 3. ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ» ΕΘΝΙΚΟ ΣΤΡΑΤΗΓΙΚΟ ΠΛΑΙΣΙΟ ΑΝΑΦΟΡΑΣ ΕΣΠΑ 2007-2013 ΔΡΑΣΗ «ΑΡΙΣΤΕΙΑ» ΠΑΡΑΔΟΤΕΟ 3.1 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΛΟΠΟΙΗΣΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΚΑΙ ΤΩΝ ΜΕΤΡΗΣΕΩΝ

Διαβάστε περισσότερα

είναι τα μήκη κύματος του φωτός αυτού στα δύο υλικά αντίστοιχα, τότε: γ. 1 Β) Να δικαιολογήσετε την επιλογή σας.

είναι τα μήκη κύματος του φωτός αυτού στα δύο υλικά αντίστοιχα, τότε: γ. 1 Β) Να δικαιολογήσετε την επιλογή σας. Β.1 Μονοχρωματικό φως, που διαδίδεται στον αέρα, εισέρχεται ταυτόχρονα σε δύο οπτικά υλικά του ίδιου πάχους d κάθετα στην επιφάνειά τους, όπως φαίνεται στο σχήμα. Οι χρόνοι διάδοσης του φωτός στα δύο υλικά

Διαβάστε περισσότερα

Β. ΘΕΜΑΤΑ ΑΣΤΡΟΝΟΜΙΑΣ

Β. ΘΕΜΑΤΑ ΑΣΤΡΟΝΟΜΙΑΣ Α. Μια σύντοµη περιγραφή της εργασίας που εκπονήσατε στο πλαίσιο του µαθήµατος της Αστρονοµίας. Β. ΘΕΜΑΤΑ ΑΣΤΡΟΝΟΜΙΑΣ Για να απαντήσεις στις ερωτήσεις που ακολουθούν αρκεί να επιλέξεις την ή τις σωστές

Διαβάστε περισσότερα

ΕΙΚΤΗΣ ΥΠΕΡΙΩ ΟΥΣ ΑΚΤΙΝΟΒΟΛΙΑΣ (UV-Index)

ΕΙΚΤΗΣ ΥΠΕΡΙΩ ΟΥΣ ΑΚΤΙΝΟΒΟΛΙΑΣ (UV-Index) ΕΙΚΤΗΣ ΥΠΕΡΙΩ ΟΥΣ ΑΚΤΙΝΟΒΟΛΙΑΣ (UV-Index) Τι είναι η υπεριώδης (ultraviolet-uv) ηλιακή ακτινοβολία Η υπεριώδης ηλιακή ακτινοβολία κατά τη διάδοσή της στη γήινη ατµόσφαιρα απορροφάται κυρίως από το στρατοσφαιρικό

Διαβάστε περισσότερα

ΘΕΜΑ Β Β.1 Α) Μονάδες 4 Μονάδες 8 Β.2 Α) Μονάδες 4 Μονάδες 9

ΘΕΜΑ Β Β.1 Α) Μονάδες 4  Μονάδες 8 Β.2 Α) Μονάδες 4 Μονάδες 9 Β.1 O δείκτης διάθλασης διαφανούς υλικού αποκλείεται να έχει τιμή: α. 0,8 β. 1, γ. 1,4 Β. Το ηλεκτρόνιο στο άτομο του υδρογόνου, έχει κινητική ενέργεια Κ, ηλεκτρική δυναμική ενέργεια U και ολική ενέργεια

Διαβάστε περισσότερα

4/11/2018 ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ. ΘΕΜΑ 1 ο

4/11/2018 ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ. ΘΕΜΑ 1 ο ΝΑΥΣΙΠΛΟΙΑ ΙΙ ΓΈΠΑΛ 4/11/2018 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

Μέτρηση της Ηλιακής Ακτινοβολίας

Μέτρηση της Ηλιακής Ακτινοβολίας Μέτρηση της Ηλιακής Ακτινοβολίας Ο ήλιος θεωρείται ως ιδανικό µέλαν σώµα Με την παραδοχή αυτή υπολογίζεται η θερµοκρασία αυτού αν υπολογιστεί η ροή ακτινοβολίας έξω από την ατµόσφαιρα Με τον όρο ροή ακτινοβολίας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH TZΕΜΟΣ ΑΘΑΝΑΣΙΟΣ Α.Μ. 3507 ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH Όλοι γνωρίζουμε ότι η εναλλαγή των 4 εποχών οφείλεται στην κλίση που παρουσιάζει ο άξονας περιστροφής

Διαβάστε περισσότερα

Εισαγωγή στην Αστρονομία

Εισαγωγή στην Αστρονομία Παπαδόπουλος Μιλτιάδης ΑΕΜ: 13134 Εξάμηνο: 7 ο Ασκήσεις: 12-1 Εισαγωγή στην Αστρονομία 1. Ο αστέρας Βέγας στον αστερισμό της Λύρας έχει απόκλιση δ=+38 ο 47. α) Σχεδιάστε την φαινόμενη τροχιά του Βέγα στην

Διαβάστε περισσότερα

Προσδιορισµός της Ηλιοφάνειας. Εργαστήριο 6

Προσδιορισµός της Ηλιοφάνειας. Εργαστήριο 6 Προσδιορισµός της Ηλιοφάνειας Εργαστήριο 6 Ηλιοφάνεια Πραγµατική ηλιοφάνεια είναι το χρονικό διάστηµα στη διάρκεια της ηµέρας κατά το οποίο ο ήλιος δεν καλύπτεται από σύννεφα. Θεωρητική ηλιοφάνεια ο χρόνος

Διαβάστε περισσότερα

ΑΚΤΙΝΟΒΟΛΙΑ. Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ. Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα

ΑΚΤΙΝΟΒΟΛΙΑ. Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ. Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα ΑΚΤΙΝΟΒΟΛΙΑ Μεταφορά ενέργειας (με φωτόνια ή ηλεκτρομαγνητικά κύματα) Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα Φασματικές περιοχές στο σύστημα

Διαβάστε περισσότερα

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν

Διαβάστε περισσότερα

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1 ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ 1. ΟΡΙΣΜΟΙ Το φως είναι ένα σύνθετο κύμα. Με εξαίρεση την ακτινοβολία LASER, τα κύματα φωτός δεν είναι επίπεδα κύματα. Κάθε κύμα φωτός είναι ένα ηλεκτρομαγνητικό κύμα στο οποίο τα διανύσματα

Διαβάστε περισσότερα

ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ;

ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ; ΠΟΣΟ ΜΕΓΑΛΑ ΕΙΝΑΙ ΤΑ ΑΣΤΕΡΙΑ; Α) Ακτίνα αστέρων (Όγκος). Στον Ήλιο, και τον Betelgeuse, μπορούμε να μετρήσουμε απευθείας τη γωνιακή διαμέτρο, α, των αστεριών. Αν γνωρίζουμε αυτή τη γωνία, τότε: R ( ακτίνα

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΧΝΟΤΗΤΑΣ ΕΝΤΑΣΗΣ ΗΛΙΑΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΓΙΑ ΟΛΟ ΤΟ ΕΤΟΣ ΣΕ ΣΥΓΚΕΚΡΙΜΕΝΗ ΓΕΩΓΡΑΦΙΚΗ ΠΕΡΙΟΧΗ ΜΕΤΑΞΩΤΟΣ ΙΑΚΩΒΟΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΧΝΟΤΗΤΑΣ ΕΝΤΑΣΗΣ ΗΛΙΑΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΓΙΑ ΟΛΟ ΤΟ ΕΤΟΣ ΣΕ ΣΥΓΚΕΚΡΙΜΕΝΗ ΓΕΩΓΡΑΦΙΚΗ ΠΕΡΙΟΧΗ ΜΕΤΑΞΩΤΟΣ ΙΑΚΩΒΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΣΕΡΡΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΧΝΟΤΗΤΑΣ ΕΝΤΑΣΗΣ ΗΛΙΑΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΓΙΑ ΟΛΟ ΤΟ ΕΤΟΣ ΣΕ ΣΥΓΚΕΚΡΙΜΕΝΗ ΓΕΩΓΡΑΦΙΚΗ ΠΕΡΙΟΧΗ Υπό των φοιτητών: Επιβλέπων

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΦΩΣ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 04-05 ΠΟΡΕΙΑ ΑΚΤΙΝΑΣ. Β. Στο διπλανό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ 05 2 0 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝ. ΠΑΙΔΕΙΑΣ Γ' ΛΥΚΕΙΟΥ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Η θερμική υπέρυθρη εκπομπή της Γης

Η θερμική υπέρυθρη εκπομπή της Γης Η θερμική υπέρυθρη εκπομπή της Γης Δορυφορικές μετρήσεις στο IR. Θεωρητική θεώρηση της τηλεπισκόπισης της εκπομπήςτηςγήινηςακτινοβολίαςαπό δορυφορικές πλατφόρμες. Μοντέλα διάδοσης της υπέρυθρης ακτινοβολίας

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

Δx

Δx Ποια είναι η ελάχιστη αβεβαιότητα της ταχύτητας ενός φορτηγού μάζας 2 τόνων που περιμένει σε ένα κόκκινο φανάρι (η η μέγιστη δυνατή ταχύτητά του) όταν η θέση του μετράται με αβεβαιότητα 1 x 10-10 m. Δx

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Γεωκεντρικό σύστημα παρατήρησης Με εξαίρεση έναν αριθμό από διαστημικές αποστολές, οι παρατηρήσεις των ουράνιων αντικειμένων

Διαβάστε περισσότερα

Υπολογισμός Εξατμισοδιαπνοής της καλλιέργειας αναφοράς Μέθοδος Penman-Monteith FAO 56 (τροποποιημένη)

Υπολογισμός Εξατμισοδιαπνοής της καλλιέργειας αναφοράς Μέθοδος Penman-Monteith FAO 56 (τροποποιημένη) Υπολογισμός Εξατμισοδιαπνοής της καλλιέργειας αναφοράς Μέθοδος Penman-Monteith FAO 56 (τροποποιημένη) Ο υπολογισμός της εξατμισοδιαπνοής μπορεί να γίνει από μια εξίσωση της ακόλουθης μορφής: ETa ks kc

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ

ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ ΣΕΠΤΕΜΒΡΙΟΣ-ΟΚΤΩΒΡΙΟΣ 2006 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΔΥΝΑΜΙΚΟ ΗΛΙΑΚΩΝ ΕΦΑΡΜΟΓΩΝ ΣΤΗΝ ΚΡΗΤΗ Γ. ΖΗΔΙΑΝΑΚΗΣ, Μ. ΛΑΤΟΣ, Ι. ΜΕΘΥΜΑΚΗ, Θ. ΤΣΟΥΤΣΟΣ Τμήμα Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης ΠΕΡΙΛΗΨΗ Στην εργασία

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΚΑΙ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Πληροφορίες για τον Ήλιο:

Πληροφορίες για τον Ήλιο: Πληροφορίες για τον Ήλιο: 1) Ηλιακή σταθερά: F ʘ =1.37 kw m -2 =1.37 10 6 erg sec -1 cm -2 2) Απόσταση Γης Ήλιου: 1AU (~150 10 6 km) 3) L ʘ = 3.839 10 26 W = 3.839 10 33 erg sec -1 4) Διαστάσεις: Η διάμετρος

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ. Εκτίµηση εισερχόµενης ηλιακής ακτινοβολίας σε λεκάνη απορροής µε χρήσησγπ

ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ. Εκτίµηση εισερχόµενης ηλιακής ακτινοβολίας σε λεκάνη απορροής µε χρήσησγπ ΠΡΟΧΩΡΗΜΕΝΗ Υ ΡΟΛΟΓΙΑ Εκτίµηση εισερχόµενης ηλιακής ακτινοβολίας σε λεκάνη απορροής µε χρήσησγπ Νίκος Μαµάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 26 Solar elevation Παράγοντες που

Διαβάστε περισσότερα

Ραδιομετρία. Φωτομετρία

Ραδιομετρία. Φωτομετρία Ραδιομετρία Μελετά και μετρά την εκπομπή, τη μεταφορά και τα αποτελέσματα της πρόσπτωσης ΗΜ ακτινοβολίας σε διάφορα σώματα Φωτομετρία Μελετά και μετρά την εκπομπή, τη μεταφορά και τα αποτελέσματα της πρόσπτωσης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β και Γ ΛΥΚΕΙΟΥ.

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β και Γ ΛΥΚΕΙΟΥ. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β και Γ ΛΥΚΕΙΟΥ. ΑΝΤΙΚΕΙΜΕΝΟ : ΤΟ ΦΩΣ,( ΚΕΦ. Γ ΛΥΚΕΙΟΥ και ΚΕΦ.3 Β ΛΥΚΕΙΟΥ) ΘΕΜΑ Α Να επιλέξετε την σωστή πρόταση χωρίς να δικαιολογήσετε την απάντηση σας.. Οι Huygens

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ 1.. Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες λανθασμένες (Λ); α. Στη διάθλαση όταν το φως διέρχεται από ένα οπτικά πυκνότερο υλικό σε ένα οπτικά αραιότερο

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ. Ηλεκτρομαγνητική Ακτινοβολία ΗΜΕΡΗΣΙΑ ΚΙΝΗΣΗ ΤΟΥ ΗΛΙΟΥ ΣΥΛΛΕΚΤΕΣ

ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ. Ηλεκτρομαγνητική Ακτινοβολία ΗΜΕΡΗΣΙΑ ΚΙΝΗΣΗ ΤΟΥ ΗΛΙΟΥ ΣΥΛΛΕΚΤΕΣ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Διάρθρωση Εργαστηρίου Ώρες Εργαστηρίου ΟΜΑΔΑ Α : ΔΕΥΤΕΡΑ 16:-19: ΟΜΑΔΑ Β : ΤΡΙΤΗ 17:-18: ΟΜΑΔΑ Γ : ΤΕΤΑΡΤΗ 17:-: ΟΜΑΔΑ Δ : ΠΕΜΠΤΗ 16:-19: ΟΜΑΔΑ Ε : ΠΑΡΑΣΚΕΥΗ 14:-17: Γ. ΒΙΣΚΑΔΟΥΡΟΣ Ι.

Διαβάστε περισσότερα

Ατμοσφαιρική Ρύπανση

Ατμοσφαιρική Ρύπανση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Ισοζύγιο ενέργειας στο έδαφος Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Εφαρμογή: Μεταβολή των ουρανογραφικών συντεταγμένων λόγω της μετάπτωσης του άξονα του κόσμου (προηγούμενο

Διαβάστε περισσότερα

Μελέτη Ηλιοθερμικής Μονάδας Παραβολικών Κατόπτρων 50MW

Μελέτη Ηλιοθερμικής Μονάδας Παραβολικών Κατόπτρων 50MW ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μελέτη Ηλιοθερμικής Μονάδας Παραβολικών Κατόπτρων

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Ο Γνώμονας, ένα απλό αστρονομικό όργανο και οι χρήσεις του στην εκπαίδευση Σοφία Γκοτζαμάνη και Σταύρος Αυγολύπης Ο Γνώμονας Ο Γνώμονας είναι το πιο απλό αστρονομικό όργανο και το πρώτο που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος.

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος. Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος. 1. Σκοπός Όταν δέσμη λευκού φωτός προσπέσει σε ένα πρίσμα τότε κάθε μήκος κύματος διαθλάται σύμφωνα με τον αντίστοιχο

Διαβάστε περισσότερα

Τηλεπισκόπηση Περιβαλλοντικές Εφαρμογές. Αθανάσιος Α. Αργυρίου

Τηλεπισκόπηση Περιβαλλοντικές Εφαρμογές. Αθανάσιος Α. Αργυρίου Τηλεπισκόπηση Περιβαλλοντικές Εφαρμογές Αθανάσιος Α. Αργυρίου Ορισμοί Άμεση Μέτρηση Έμμεση Μέτρηση Τηλεπισκόπηση: 3. Οι μετρήσεις γίνονται από απόσταση (από 0 36 000 km) 4. Μετράται η Η/Μ ακτινοβολία Με

Διαβάστε περισσότερα

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ):

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μιχάλης Βραχνάκης Αναπληρωτής Καθηγητής ΤΕΙ Θεσσαλίας ΠΕΡΙΕΧΟΜΕΝΑ 4 ΟΥ ΜΑΘΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1. Η ΓΗ ΚΑΙ Η ΑΤΜΟΣΦΑΙΡΑ ΤΗΣ ΚΕΦΑΛΑΙΟ 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 2.1 Γενικά 2.2

Διαβάστε περισσότερα

Μάθηµα 4 ο : ορυφορικές τροχιές

Μάθηµα 4 ο : ορυφορικές τροχιές Μάθηµα 4 ο : ορυφορικές τροχιές Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Tις σηµαντικότερες κατηγορίες δορυφορικών τροχιών Τους παράγοντες που οδηγούν στην επιλογή συγκεκριµένης

Διαβάστε περισσότερα

Βασικές διαδικασίες παραγωγής πολωμένου φωτός

Βασικές διαδικασίες παραγωγής πολωμένου φωτός Πόλωση του φωτός Βασικές διαδικασίες παραγωγής πολωμένου φωτός πόλωση λόγω επιλεκτικής απορρόφησης - διχρωισμός πόλωση λόγω ανάκλασης από μια διηλεκτρική επιφάνεια πόλωση λόγω ύπαρξης δύο δεικτών διάθλασης

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ 1 Η υπέρυθρη ακτινοβολία α συμμετέχει στη μετατροπή του οξυγόνου της ατμόσφαιρας σε όζον β προκαλεί φωσφορισμό γ διέρχεται μέσα από την ομίχλη και τα σύννεφα δ έχει μικρότερο μήκος κύματος από την υπεριώδη

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας. Μονάδες 5

Να αιτιολογήσετε την απάντησή σας. Μονάδες 5 2002 5. Να γράψετε στο τετράδιό σας τη λέξη που συµπληρώνει σωστά καθεµία από τις παρακάτω προτάσεις. γ. Η αιτία δηµιουργίας του ηλεκτροµαγνητικού κύµατος είναι η... κίνηση ηλεκτρικών φορτίων. 1. Ακτίνα

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Κύρια σημεία του μαθήματος Το σχήμα και οι κινήσεις της Γης Μετάπτωση και κλόνιση του άξονα της Γης Συστήματα χρόνου και ορισμοί: αστρικός χρόνος,

Διαβάστε περισσότερα

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 1: Εισαγωγή Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2011-2012 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό κάθε μίας από τις παρακάτω ερωτήσεις Α.1- Α.4 και δίπλα το

Διαβάστε περισσότερα

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική Εφαρμοσμένη Οπτική Γεωμετρική Οπτική Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

11/11/2009. Μέθοδος Penman Μέθοδος Thornwaite

11/11/2009. Μέθοδος Penman Μέθοδος Thornwaite 11/11/2009 Μέθοδος Pem Μέθοδος Thorwite Τροποποιηµένη µέθοδος Pem Η µέθοδος γενικά δίνει αρκετά ικανοποιητικά αποτελέσµατα σε σχέση µε όλες τις µέχρι σήµερα χρησιµοποιούµενες έµµεσες µεθόδους και ισχύει

Διαβάστε περισσότερα

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2018

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2018 [1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2018 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

ΕΠΙΔΡΑΣΗ ΤΩΝ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΑΙΩΡΗΜΑΤΩΝ ΣΤΗ ΡΟΗ ΠΟΥ ΔΕΧΟΝΤΑΙ ΚΙΝΗΤΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΦΑΡΜΟΓΗ ΣΤΗ ΘΕΣΣΑΛΟΝΙΚΗ

ΕΠΙΔΡΑΣΗ ΤΩΝ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΑΙΩΡΗΜΑΤΩΝ ΣΤΗ ΡΟΗ ΠΟΥ ΔΕΧΟΝΤΑΙ ΚΙΝΗΤΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ: ΕΦΑΡΜΟΓΗ ΣΤΗ ΘΕΣΣΑΛΟΝΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΕΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ ΕΠΙΔΡΑΣΗ ΤΩΝ ΑΤΜΟΣΦΑΙΡΙΚΩΝ ΑΙΩΡΗΜΑΤΩΝ ΣΤΗ ΡΟΗ ΠΟΥ ΔΕΧΟΝΤΑΙ ΚΙΝΗΤΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ:

Διαβάστε περισσότερα

Κεφάλαιο 2: ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

Κεφάλαιο 2: ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Κεφάλαιο 2: ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 2.1 Μεταφορά θερμότητας με ακτινοβολία 2.2 Φάσμα η/μ ακτινοβολίας 2.3 Ακτινοβολία μέλανος σώματος 2.4 Ιδιότητες μη μελανών επιφανειών 2.5 Ηλιακή ακτινοβολία 2.5.1 Βασικές

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Γ «Μέθοδος των Καμπυλών f, F-Chart Method»

Εργαστήριο ΑΠΕ I. Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Γ «Μέθοδος των Καμπυλών f, F-Chart Method» Εργαστήριο ΑΠΕ I Ενότητα 3: Ηλιακοί Συλλέκτες: Μέρος Γ «Μέθοδος των Καμπυλών f, F-Chart Method» Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Συστήματα Ηλιακών Θερμικών Συλλεκτών Η Λογική

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα