10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ"

Transcript

1

2

3 ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν, δηλαδή το αστρονομικό αζιμούθιο Α μιας διεύθυνσης και τις αστρονομικές συντεταγμένες Φ και Λ ενός σημείου. Είναι γνωστό ότι το ελλειψοειδές αναφοράς δεν συμπίπτει απόλυτα με το γεωειδές αλλά το προσεγγίζει σε μεγάλο βαθμό. Aυτό σημαίνει ότι η κάθετος στο ελλειψοειδές και η κατακόρυφος στο γεωειδές από το ίδιο σημείο δεν συμπίπτουν. Όσο βέβαια καλύτερα προσαρμόζεται το ελλειψοειδές στο γεωειδές, τόσο περισσότερο οι διευθύνσεις των κατακόρυφων σε διάφορα σημεία πλησιάζουν τις αντίστοιχες καθέτους, έτσι ώστε οι απαραίτητες αναγωγές των μετρήσεων να έχουν μικρότερες τιμές και να υπολογίζονται εύκολα. Η κάθετος στο ελλειψοειδές συνδέεται με τις γεωδαιτικές συντεταγμένες φ, λ, ενώ η κατακόρυφος συνδέεται με τις αστρονομικές Φ, Λ. Η γωνία που σχηματίζεται μεταξύ της διεύθυνσης της κατακορύφου και της καθέτου στο ελλειψοειδές αναφοράς, σε κάποιο σημείο της επιφάνειας της γης, ονομάζεται απόκλιση της κατακορύφου (deflection of the vertical) θ. Αν είναι γνωστές οι αστρονομικές συντεταγμένες Φ, Λ ενός σημείου και οι αντίστοιχες γεωδαιτικές φ, λ σε ένα σύστημα αναφοράς, μπορεί να προσδιοριστεί η απόκλιση της κατακορύφου στο σημείο αυτό. Αναλυτικότερα, αν θεωρηθεί μια μοναδιαία σφαίρα, στην οποία Γ και Α είναι τα σημεία τομής της με την κάθετο και την κατακόρυφο, αντίστοιχα, και B το σημείο τομής της με την διεύθυνση του άξονα περιστροφής της Γης, τότε η απόκλιση της κατακορύφου δίνεται από το uuur διάνυσμα ΑΓ. Αναλύοντας τη γωνία θ σε δύο συνιστώσες ξ και η, τη πρώτη κατά τη διεύθυνση του μεσημβρινού (δηλαδή Βορρά-Νότου) και τη δεύτερη κατά τη διεύθυνση του πρωτεύοντος κατακόρυφου κύκλου (δηλαδή Ανατολής-Δύσης), από το σφαιρικό τρίγωνο ΑΒΔ (σχήμα 10.1) προκύπτει: sin η=cosφ sin Λ λ και sin ξ =cos η sin Φ φ Κάθετος Κατακόρυφος Γ θ Α ξ Δ η 90-Φ 90-φ Λ λ B Βασικός μεσημβρινός Greenwich Ανατολή Βορράς αστρονομικός μεσημβρινός γεωδαιτικός μεσημβρινός Γεωδαιτικός ορίζοντας Σχήμα 10.1

4 78 Επειδή sinη η, cosη 1, sin( Λ λ) Λ λ, προκύπτει ότι ξ = Φ ϕ και η= Λ λ cosφ Κατά τη μέτρηση ενός γεωδαιτικού δικτύου με επίγειες μεθόδους, για να υπολογιστούν οι συντεταγμένες των κορυφών του, οι οριζόντιες και κατακόρυφες γωνίες μετρώνται με τον πρωτεύοντα άξονα του θεοδολίχου να υλοποιεί την κατακόρυφο στο σημείο μέτρησης. Επομένως, οι διευθύνσεις του δικτύου που προσδιορίζονται πρέπει να αναχθούν στην κάθετο στο ελλειψοειδές αναφοράς λόγω της απόκλισης της κατακορύφου. Οι διορθώσεις που πρέπει να γίνονται στα μετρούμενα μεγέθη είναι: Στο αζιμούθιο: ΔΑ=Α Α Α G =η tanφ ξ sin A η cos A tan υ Στην οριζόντια γωνία: Δβ= ξ sin A η cos A tan υ ξ sin A 1 η cos A 1 tan υ 1 Στην κατακόρυφη γωνία: Δz=z G z A =ξ cos A η sin A Στη διόρθωση του αζιμουθίου, ο όρος η tan Φ ορίζει τη γωνία των δύο μεσημβρινών, αστρονομικού και γεωδαιτικού, που περνούν από το σημείο. Ισχύει, λοιπόν, ότι: ΔΑ=Α Α Α G = Λ λ sinφ Η σχέση αυτή είναι γνωστή ως εξίσωση Laplace και επιτρέπει τον προσδιορισμό της διαφοράς ΔΑ, αν είναι γνωστά το αστρονομικό μήκος Λ και το αντίστοιχο γεωδαιτικό λ, και μέσω αυτής την διόρθωση των γεωδαιτικών δικτύων ως προς τον προσανατολισμό τους. Έτσι εξασφαλίζεται ο έλεγχος στροφής των δικτύων 1 ης τάξης. Τα σημεία των δικτύων που εφαρμόζεται η εξίσωση αυτή ονομάζονται σημεία Laplace και τα γεωδαιτικά αζιμούθια, που προσδιορίζονται από το αστρονομικό μήκος και το αστρονομικό αζιμούθιο μέσω αυτής της εξίσωσης, ονομάζονται αζιμούθια Laplace. Σήμερα, με τη χρήση του συστήματος GPS, μπορούν να προσδιοριστούν ταχύτερα και με ακρίβεια οι συντεταγμένες φ, λ, h των σημείων ενός γεωδαιτικού δικτύου στο σύστημα αναφοράς που έχει οριστεί σε κάθε περιοχή της Γης. Τα υψόμετρα όμως είναι γεωμετρικά (h), γεγονός που δεν εξυπηρετεί τις γεωδαιτικές εργασίες σε μεγάλα τμήματα της Φυσικής Γήινης Επιφάνειας (Φ.Γ.Ε.), στις οποίες απαιτείται η γνώση των ορθομετρικών υψομέτρων (Η). Αυτό είναι και το σημαντικότερο πρόβλημα που αντιμετωπίζει το σύστημα GPS στην ίδρυση ή στην επέκταση τρισδιάστατων δικτύων 1 ης και ης τάξης, τα οποία αποτελούν την απαραίτητη γεωδαιτική υποδομή για την εκτέλεση γεωδαιτικών εργασιών. Για την αναγωγή των γεωμετρικών υψομέτρων σε ορθομετρικά πρέπει να είναι γνωστό το υψόμετρο Ν του γεωειδούς, ώστε μέσα από τη σχέση: h = H + N να προσδιορίζεται το ορθομετρικό υψόμετρο Η σε οποιοδήποτε σημείο στο οποίο έχουν γίνει μετρήσεις με το σύστημα GPS (σχήμα 10.). Έτσι ελαχιστοποιούνται τα προβλήματα υψομετρικών συνδέσεων μεταξύ δικτύων.

5 79 Σχήμα 10. Η τιμή του Ν πρέπει να είναι γνωστή με ακρίβεια αντίστοιχη των γεωδαιτικών εργασιών, κυρίως για περιοχές με μεγάλες μεταβολές στη μορφή του γεωειδούς. Τα γεωδυναμικά μοντέλα, που χρησιμοποιούνται σήμερα, δεν μπορούν, σε πολλές περιπτώσεις, να δώσουν ακριβείς και αξιόπιστες προσεγγίσεις των τιμών Ν, ξ, η σε τμήματα της Γης που παρουσιάζουν έντονο και ανομοιόμορφο τοπογραφικό ανάγλυφο, όπως συμβαίνει στην Ελλάδα. Στις περιπτώσεις αυτές μπορούν να χρησιμοποιηθούν εκτιμήσεις για την μεταβολή ΔΝ του υψομέτρου του γεωειδούς, που προκύπτουν από αξιοποίηση μετρήσεων της απόκλισης της κατακορύφου σε δύο σημεία. Ο προσδιορισμός της μεταβολής ΔΝ του υψομέτρου του γεωειδούς απαιτεί τον υπολογισμό ενός ολοκληρώματος κατά μήκος της διαδρομής που συνδέει τα δύο σημεία. Η τιμή του ολοκληρώματος είναι ανεξάρτητη της διαδρομής. Για αποστάσεις μικρότερες από 40 km, περίπου, και με την προϋπόθεση ότι μεταξύ των δύο σημείων i και j η μεταβολή της απόκλισης της κατακορύφου είναι ομαλή, η μεταβολή ΔΝ μπορεί να προσδιοριστεί με μια γραμμική παρεμβολή: ΔΝ = ξ ξ i j ΔΦ η η i j Δλ cosφ j όπου: ΔΝ υπολογίζεται σε μέτρα, ϕ = ϕ j ϕi, η διαφορά των τιμών του γεωδαιτικού πλάτους σε πρώτα λεπτά μοίρας λ = λ j λi, η διαφορά των τιμών του γεωδαιτικού μήκους σε πρώτα λεπτά μοίρας ή ξ και η σε δευτερόλεπτα μοίρας. όπου: ΔΝ υπολογίζεται σε μέτρα Α = το αστρονομικό αζιμούθιο της διεύθυνσης i j S ij = η απόσταση μεταξύ των σημείων i j σε km ξ ΔΝ = ξ ξ i j cos A η η i j sin A S ij και η σε δευτερόλεπτα μοίρας

6 80 Μετά τον προσδιορισμό του ΔΝ είναι δυνατή η αναγωγή στην γεωδαιτική επιφάνεια αναφοράς των αποστάσεων S μεταξύ των σημείων ενός δικτύου, αφού πρώτα υπολογιστούν τα υψόμετρα Ν i και Ν j. Η απαραίτητη διόρθωση είναι: ΔS ij = N N i j S R ij όπου R η ακτίνα καμπυλότητας της επιφάνειας αναφοράς και όλα τα μεγέθη είναι εκφρασμένα στις ίδιες μονάδες μήκους. Η αναγωγή αυτή επιβάλλεται να γίνεται, ακόμη και για τιμές του υψομέτρου του γεωειδούς της τάξης των 10m, γιατί σε διαφορετική περίπτωση οι παραμορφώσεις στην κλίμακα ξεπερνούν τις αναμενόμενες αβεβαιότητες. Έτσι είναι σαφές ότι αν, από αστρονομικές παρατηρήσεις, υπολογιστούν οι αστρονομικές συντεταγμένες Φ, Λ ενός σημείου της Φ.Γ.Ε, οι οποίες ορίζονται με μοναδικό τρόπο στο αστρονομικό σύστημα συντεταγμένων, και είναι γνωστές οι αντίστοιχες γεωδαιτικές συντεταγμένες φ, λ σε ένα ελλειψοειδές αναφοράς, μπορούν να υπολογιστούν οι τιμές των συνιστωσών ξ, η της απόκλισης της κατακορύφου και οι μεταβολές ΔΝ του υψομέτρου του γεωειδούς, από σημείο σε σημείο, ως προς το συγκεκριμένο ελλειψοειδές. Με τον τρόπο αυτό μπορούν να γίνουν όλες οι απαραίτητες διορθώσεις γωνιών, διευθύνσεων και αποστάσεων στα επίγεια γεωδαιτικά δίκτυα.

7

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα 1 ΕΙΣΑΓΩΓΗ Η Γεωδαιτική Αστρονομία (Geodetic Astronomy) είναι ο κλάδος της Αστρονομίας Θέσης (Positional Astronomy) που ασχολείται με τον προσδιορισμό διευθύνσεων στον χώρο, από σημεία πάνω ή κοντά στην

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,

Διαβάστε περισσότερα

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση

ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός

Διαβάστε περισσότερα

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης

Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;

Διαβάστε περισσότερα

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή

Εντάξεις δικτύων GPS. 6.1 Εισαγωγή 6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 5 0 Ι.Μ. Δόκας Επικ. Καθηγητής Υψομετρία Γνωστική περιοχή της Γεωδαισίας που έχει ως αντικείμενο τον προσδιορισμό υψομέτρων σε μεμονωμένα σημεία καθώς και υψομετρικών διαφορών μεταξύ

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΜΕΤΑΞΥ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΤΟΥ HEPOS (HTRS07) ΚΑΙ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΓΕΩ ΑΙΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ (ΕΓΣΑ87)

ΜΟΝΤΕΛΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΜΕΤΑΞΥ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΤΟΥ HEPOS (HTRS07) ΚΑΙ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΓΕΩ ΑΙΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ (ΕΓΣΑ87) ΤΑΤΜ ΑΠΘ ΚΤΗΜΑΤΟΛΟΓΙΟ Α.Ε. ΜΟΝΤΕΛΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΜΕΤΑΞΥ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΤΟΥ HEPOS (HTRS07) ΚΑΙ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΓΕΩ ΑΙΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ (ΕΓΣΑ87) Βασική µεθοδολογία και αριθµητικά

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ ΠΑΡΑΡΤΗΜΑ A Οι δορυφόροι του συστήµατος GPS GPS Block Ι Η σειρά δορυφόρων GPS Block Ι (Demonstration) ήταν η πρώτη σειρά δορυφόρων και είχε δοκιµαστικό χαρακτήρα, ακολουθήθηκε από την επόµενη επιχειρησιακή

Διαβάστε περισσότερα

Π. ΣΑΒΒΑΪΔΗΣ, ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΩ Α.Π.Θ

Π. ΣΑΒΒΑΪΔΗΣ, ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΩ Α.Π.Θ Π. ΣΑΒΒΑΪΔΗΣ, ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΩ Α.Π.Θ Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις

Διαβάστε περισσότερα

Τοπογραφικά Δίκτυα & Υπολογισμοί

Τοπογραφικά Δίκτυα & Υπολογισμοί ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης

Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό εισάγονται οι βασικές έννοιες που διέπουν τις χαρτογραφικές προβολές. Αρχικά ορίζονται οι επιφάνειες που προσομοιώνουν την επιφάνεια της Γης για τις ανάγκες της Χαρτογραφίας.

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS

Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS 5 Τα δίκτυα GPS 5.1 Γενικά περί των δικτύων GPS H τεχνική των "µεµονωµένων βάσεων" εφαρµόζεται όταν διατίθενται δύο µόνο δέκτες και χρησιµοποιείται για τα συνήθη δίκτυα πύκνωσης µε µικρό α- ριθµό σηµείων.

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Ανατολή-δύση αστέρων Από την σχέση αυτή προκύπτουν δυο τιμές για την ωριαία γωνία Η Δ για την οποία ο αστέρας βρίσκεται στον

Διαβάστε περισσότερα

Δυναμική θεωρία της υψομετρίας (Βαρύτητα & Υψόμετρα)

Δυναμική θεωρία της υψομετρίας (Βαρύτητα & Υψόμετρα) Δυναμική θεωρία της υψομετρίας (Βαρύτητα & Υψόμετρα) Συστήματα Υψομέτρων Ένα σύστημα υψομέτρων είναι ένα μονοδιάστατο σύστημα αναφοράς που χρησιμοποιείται για να εκφράσει τη μετρική απόσταση (ύψος) ενός

Διαβάστε περισσότερα

Υπολογισµοί συντεταγµένων σηµείων

Υπολογισµοί συντεταγµένων σηµείων ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 1. Ορισµοί Υπολογισµοί συντεταγµένων σηµείων Η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER ΜΑΘΗΜΑ 3 Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΑΓΩΓΕΣ ΤΟΥ ΜΕΤΡΗΜΕΝΟΥ ΠΕΔΙΟΥ ΒΑΡΥΤΗΤΑΣ ΑΝΩΜΑΛΙΑ BOUGUER Υπολογισμός της ανωμαλίας Bouguer Ανωμαλία Bouguer = Μετρημένη Βαρύτητα - Μοντέλο

Διαβάστε περισσότερα

Μάθηµα 4 ο : ορυφορικές τροχιές

Μάθηµα 4 ο : ορυφορικές τροχιές Μάθηµα 4 ο : ορυφορικές τροχιές Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Tις σηµαντικότερες κατηγορίες δορυφορικών τροχιών Τους παράγοντες που οδηγούν στην επιλογή συγκεκριµένης

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ

ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ Διδακτικές σημειώσεις Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ MSc Γεωπληροφορική

Διαβάστε περισσότερα

ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων

ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων ΧΑΡΤΟΓΡΑΦΙΑ Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων ρ. Ε. Λυκούδη Αθήνα 2005 Χώρος Η ανάπτυξη της ικανότητας της αντίληψης του χώρου, ως προς τις διαστάσεις του και το περιεχόµενό του είναι

Διαβάστε περισσότερα

Σχολή Ναυτικών Δοκίμων

Σχολή Ναυτικών Δοκίμων Σχολή Ναυτικών Δοκίμων ΜΑΘΗΜΑ: ΘΕΩΡΗΤΙΚΗ ΝΑΥΤΙΛΙΑ και ΕΦΑΡΜΟΓΕΣ Καθηγητής Α. Παλληκάρης Θεματική Ενότητα: Βασικές αρχές γεωδαισίας. Σχήμα και μέγεθος της Γης, Γεωδαιτικά Συστήματα Αναφοράς (Datums), Συστήματα

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS

Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Επιµορφωτικά Σεµινάρια ΑΤΜ Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Συστήματα & πλαίσια αναφοράς Μετασχηματισμοί συντεταγμένων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

Μετασχηματισμός δικτύου GPS στα ελληνικά γεωδαιτικά συστήματα αναφοράς

Μετασχηματισμός δικτύου GPS στα ελληνικά γεωδαιτικά συστήματα αναφοράς Μετασχηματισμός δικτύου GPS στα ελληνικά γεωδαιτικά συστήματα αναφοράς Α. Φωτίου και Χ. Πικριδάς Τομέας Γεωδαισίας και Τοπογραφίας, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ Περίληψη: Παρουσιάζεται

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Σύστημα γήινων συντεταγμένων Γήινος μεσημβρινός του τόπου Ο Μεσημβρινός του Greenwich (πρώτος κάθετος) Γεωγραφικό μήκος 0

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 6: Σφαιρικές Αρμονικές Συναρτήσεις & Αναπτύγματα Συνιστωσών του Πεδίου Βαρύτητας Η.Ν. Τζιαβός - Γ.Σ.

Διαβάστε περισσότερα

Φύλλο Εργασίας. Θέμα : Περπατώντας στο Πήλιο Θέλετε να οργανώσετε έναν ορειβατικό περίπατο από την Αγριά στην Δράκεια Πηλίου.

Φύλλο Εργασίας. Θέμα : Περπατώντας στο Πήλιο Θέλετε να οργανώσετε έναν ορειβατικό περίπατο από την Αγριά στην Δράκεια Πηλίου. Ενότητα Χάρτες Φύλλο Εργασίας Μελέτη χαρτών Τάξη Α Γυμνασίου Ονοματεπώνυμο.Τμήμα..Ημερομηνία. Σκοποί του φύλλου εργασίας Η εξοικείωση 1. Με την χρήση των χαρτών 2. Με την χρήση της πυξίδας 3. Με την εργασία

Διαβάστε περισσότερα

2 ο Μάθημα Κίνηση στο επίπεδο

2 ο Μάθημα Κίνηση στο επίπεδο ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή

Διαβάστε περισσότερα

HEPOS workshop 25-26/9/2008. 26/9/2008 Συνδιοργάνωση: ΤΑΤΜ/ΑΠΘ. ΑΠΘ και ΚΤΗΜΑΤΟΛΟΓΙΟ ΑΕ

HEPOS workshop 25-26/9/2008. 26/9/2008 Συνδιοργάνωση: ΤΑΤΜ/ΑΠΘ. ΑΠΘ και ΚΤΗΜΑΤΟΛΟΓΙΟ ΑΕ HEPOS και σύγχρονα γεωδαιτικά συστήµατα αναφοράς: Θεωρία και υλοποίηση, προοπτικές και εφαρµογές. HEPOS workshop 25-26/9/2008 26/9/2008 Συνδιοργάνωση: ΤΑΤΜ/ΑΠΘ ΑΠΘ και ΚΤΗΜΑΤΟΛΟΓΙΟ ΑΕ Γεωδαιτικά Συστήµατα

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ

ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ Ερασιτεχνικής Αστρονομίας ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ ΝΙΚΟΣ ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ (Εκπαιδευτικός ΠΕ19-Μεταπτυχιακός φοιτητής ΕΑΠ- Μέλος Αστρονομικής Εταιρείας Πάτρας «Ωρίων») gianakop@gmail.com ΠΕΡΙΛΗΨΗ Η εργασία

Διαβάστε περισσότερα

Καθορισμός του μηχανισμού γένεσης

Καθορισμός του μηχανισμού γένεσης Καθορισμός του μηχανισμού γένεσης Σκοπός Σκοπός της άσκησης αυτής είναι ο καθορισμός του μηχανισμού γένεσης ενός σεισμού με βάση τις πρώτες αποκλίσεις των επιμήκων κυμάτων όπως αυτές καταγράφονται στους

Διαβάστε περισσότερα

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ SECTIN 1 5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ 5.1 Σε δύο ιαστάσεις Συστήµατα συντεταγµένων Για να καθοριστεί η θέση, το σχήµα και η κίνηση των σωµάτων στο χώρο (που θεωρείται Ευκλείδειος, δηλαδή µε θετική απόσταση µεταξύ

Διαβάστε περισσότερα

Κεφάλαιο 1. Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα

Κεφάλαιο 1. Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα Κεφάλαιο 1 Μονάδες, Φυσικές Ποσότητες και Κυματοδιανύσματα Στόχοι 1 ου Κεφαλαίου Τρεις βασικές ποσότητες στη φυσική: μέτρα, χιλιόγραμμα και δευτερόλεπτα Αβεβαιότητα και σημαντικά ψηφία στις μετρήσεις Βαθμωτές

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις 5. Φυσική Εισαγωγή στο πεδίο βαρύτητας

Διαβάστε περισσότερα

Ο χώρος. 1.Μονοδιάστατη κίνηση

Ο χώρος. 1.Μονοδιάστατη κίνηση Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά

Διαβάστε περισσότερα

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν.

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙI Α Σ Κ Η Σ Ε Ι Σ ΑΚΑΔ. ΕΤΟΣ 009-00 Κ Ε Φ Α Λ Α Ι Ο V Ι. Δίνονται οι ευθείες δ: x ={,0,0}+λ{,,}, ε: x -x + x -=0, x -x =. Να εξετάσετε αν οι ευθείες δ, ε είναι ασύμβατες. Αν ναι, βρείτε

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 37 5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 5.1 Εισαγωγή Οι κύριες κινήσεις της Γης είναι: μια τροχιακή κίνηση του κέντρου μάζας γύρω από τον Ήλιο και μια περιστροφική κίνηση γύρω από τον άξονα που περνά από

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση)

ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) ΓΕΩΔΑΙΣΙΑ (2η παρουσίαση) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 4ο εξάμηνο ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός της ς - Συνδέσεις των γεωεπιστημών

Διαβάστε περισσότερα

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 3: Συστήματα Υψών Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Εισαγωγή στο

Διαβάστε περισσότερα

Επειδή ο μεσημβρινός τέμνει ξανά τον παράλληλο σε αντιδιαμετρικό του σημείο θα θεωρούμε μεσημβρινό το ημικύκλιο και όχι ολόκληρο τον κύκλο.

Επειδή ο μεσημβρινός τέμνει ξανά τον παράλληλο σε αντιδιαμετρικό του σημείο θα θεωρούμε μεσημβρινό το ημικύκλιο και όχι ολόκληρο τον κύκλο. ΝΑΥΣΙΠΛΟΪΑ Η ιστιοπλοΐα ανοιχτής θαλάσσης δεν διαφέρει στα βασικά από την ιστιοπλοΐα τριγώνου η οποία γίνεται με μικρά σκάφη καi σε προκαθορισμένο στίβο. Όταν όμως αφήνουμε την ακτή και ανοιγόμαστε στο

Διαβάστε περισσότερα

υψών διαφορετικού τύπου. Προσδιορίζονται είτε γεωµετρικά, είτε δυναµικά

υψών διαφορετικού τύπου. Προσδιορίζονται είτε γεωµετρικά, είτε δυναµικά Συστήµατα υψών ΣΥΣΤΗΜΑΤΑ ΥΨΩΝ Η βαρύτητα εξαρτάται από το ύψος, εποµένως τα συστήµατα υψών είναι ιδιαίτερα σηµαντικά για το πεδίο βαρύτητας. ιάφορες τεχνικές µετρήσεων οδηγούν στον προσδιορισµό υψών διαφορετικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Τηλεπισκόπηση - Φωτοερμηνεία

Τηλεπισκόπηση - Φωτοερμηνεία ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 8: Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ

ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 6 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ i vii ΜΕΡΟΣ Α ΧΑΡΤΟΓΡΑΦΙΚΕΣ

Διαβάστε περισσότερα

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ Σκοπός Σκοπός της άσκησης αυτής είναι η στερεογραφική απεικόνιση του επιπέδου του ρήγματος, καθώς και του βοηθητικού επιπέδου

Διαβάστε περισσότερα

Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια)

Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια) Τµήµα Αρχιτεκτόνων Μηχανικών ΜΕ801 Χαρτογραφία 1 Μάθηµα επιλογής χειµερινού εξαµήνου Πάτρα, 2016 Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια) Βασίλης Παππάς, Καθηγητής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 Τοπογραφικοί Χάρτες Περίγραμμα - Ορισμοί - Χαρακτηριστικά Στοιχεία - Ισοϋψείς Καμπύλες - Κατασκευή τοπογραφικής τομής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή Κεφάλαιο 5: 5.1. Εισαγωγή Η ηλιακή γεωμετρία περιγράφει τη σχετική κίνηση γης και ήλιου και αποτελεί ένα σημαντικό παράγοντα που υπεισέρχεται στον ενεργειακό ισολογισμό κτηρίων. Ανάλογα με τη γεωμετρία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2016 ΕΡΓΑΣΤΗΡΙΟ 3:

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1

Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1 Περιεχόµενα Περιεχόµενα... 7 Ευρετήριο Γραφηµάτων... 11 Ευρετήριο Εικόνων... 18 Κεφάλαιο 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ... 19 Θεωρία... 19 1.1 Έννοιες και ορισµοί... 20 1.2 Μονάδες µέτρησης γωνιών και µηκών...

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

Εισαγωγή στην Αστρονομία

Εισαγωγή στην Αστρονομία Παπαδόπουλος Μιλτιάδης ΑΕΜ: 13134 Εξάμηνο: 7 ο Ασκήσεις: 12-1 Εισαγωγή στην Αστρονομία 1. Ο αστέρας Βέγας στον αστερισμό της Λύρας έχει απόκλιση δ=+38 ο 47. α) Σχεδιάστε την φαινόμενη τροχιά του Βέγα στην

Διαβάστε περισσότερα

2η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ HERTZ

2η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ HERTZ . η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ RTZ.. Επαφή στερεών σωμάτων Η επαφή εφαπτόμενων στερών σωμάτων γίνεται διαμέσου της εξωτερικής τους επιφάνειας. Η μακροσκοπικά μετρούμενη Επιφάνεια Επαφής καλείται Ονομαστική

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ Η ΣΥΜΒΟΛΗ ΤΟΥ ΠΑΡΕΧΟΜΕΝΟΥ ΧΡΟΝΟΥ UTC ΑΠΟ ΤΟ ΔΟΡΥΦΟΡΙΚΟ ΣΥΣΤΗΜΑ ΕΝΤΟΠΙΣΜΟΥ, ΣΕ ΓΕΩΔΑΙΤΙΚΕΣ

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 2: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Ο Ήλιος ως πηγή ενέργειας Κατανομή ενέργειας στη γη Ηλιακό φάσμα και ηλιακή σταθερά

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

ΗΛΙΑΚΟ ΡΟΛΟΙ ΓΥΜΝΑΣΙΟΥ ΝΙΚΗΦΟΡΟΥ

ΗΛΙΑΚΟ ΡΟΛΟΙ ΓΥΜΝΑΣΙΟΥ ΝΙΚΗΦΟΡΟΥ ΗΛΙΑΚΟ ΡΟΛΟΙ ΓΥΜΝΑΣΙΟΥ ΝΙΚΗΦΟΡΟΥ Το ρολόι αυτό είναι κατασκευασµένο από λευκό µάρµαρο Θάσου. Βρίσκεται στην αυλή του Γυµνασίου Νικηφόρου ράµας σε 41 0 10' 12'' βόρειο πλάτος και 24 0 18' 49.83'' ανατολικό

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας

Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας 3 ο Πανελλήνιο Συνέδριο ΑΤΜ Ανάλυση χωροσταθμικών υψομέτρων στο κρατικό τριγωνομετρικό δίκτυο της Ελλάδας Χ. Κωτσάκης, Μ. Ζουλίδα, Δ. Τερζόπουλος, Κ. Κατσάμπαλος Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 3 0 Ι.Μ. Δόκας Επικ. Καθηγητής Επίγειες Γεωδαιτικές Μετρήσεις Μήκη Γωνίες Υψομετρικές διαφορές Παράμετροι οργάνων μέτρησης Ανάγνωση/Μέτρηση Σφάλμα/Αβεβαιότητα Μήκη Μέτρηση Μήκους Άμεση

Διαβάστε περισσότερα

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις.

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις. ΔΙΚΤΥΑ SCHMIDT Στερεογραφική προβολή Η στερεογραφική προβολή είναι μια μέθοδος που προσφέρει το πλεονέκτημα της ταχύτατης λύσης προβλημάτων που λύνονται πολύπλοκα με άλλες μεθόδους. Με την στερεογραφική

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Ηλεκτρομαγνητική Ακτινοβολία ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

Ειδικά κεφάλαια παραγωγής ενέργειας

Ειδικά κεφάλαια παραγωγής ενέργειας Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανολόγων Μηχανικών Ειδικά κεφάλαια παραγωγής ενέργειας Ενότητα 3 (β): Μη Συμβατικές Πηγές Ενέργειας Αν. Καθηγητής Γεώργιος Μαρνέλλος (Γραφείο 208) Τηλ.: 24610 56690,

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ Κεφάλαιο 1 1 Να βρείτε (και να σχεδιάσετε) το πεδίο ορισμού των πιο κάτω συναρτήσεων f (, ) 9 4 (γ) f (, ) f (, ) 16 4 1 Να υπολογίσετε το κάθε όριο αν υπάρχει ή να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα

Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Ακτίνα καμπυλότητας - Ανάλυση επιτάχυνσης σε εφαπτομενική και κεντρομόλο συνιστώσα Εξ ορισμού, ένας κύκλος έχει συγκεκριμένη και σταθερή καμπυλότητα σε όλα τα σημεία του ίση με 1/R όπου R η ακτίνα του.

Διαβάστε περισσότερα

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση.

Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Μπερδέματα πάνω στην κεντρομόλο και επιτρόχια επιτάχυνση. Τις προηγούµενες µέρες έγινε στο δίκτυο µια συζήτηση µε θέµα «Πόση είναι η κεντροµόλος επιτάχυνση;» Θεωρώ αναγκαίο να διατυπώσω µε απλό τρόπο κάποια

Διαβάστε περισσότερα

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ II ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 5 (Παράδοση 5/6/05) Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 5 (Παράδοση 5/6/05) Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 5 (Παράδοση 5/6/5) Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΑΣΗΣΗ 1 Ομογενής ράβδος μάζας m και μήκους L είναι στερεωμένη σε οριζόντιο άξονα Ο. Αρχικά βρίσκεται σε κατακόρυφη θέση και αφήνεται

Διαβάστε περισσότερα

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού

Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές

Διαβάστε περισσότερα

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις Περιεχόµενα Κεφαλαίου 5 Εφαρµογές Τριβής Οµοιόµορφη Κυκλική Κίνηση Δυναµική Κυκλικής Κίνησης Οι κλήσεις στους αυτοκινητοδρόµους

Διαβάστε περισσότερα