Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική"

Transcript

1 Εφαρμοσμένη Οπτική Γεωμετρική Οπτική

2 Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle of reversibility) Επίπεδες επιφάνειες ανάκλαση- διάθλαση Απεικόνιση με οπτικό σύστημα Σφαιρικές επιφάνειες ανάκλαση- διάθλαση Λεπτοί φακοί εστίαση ισχύς Κυλινδρικοί φακοί

3 Γεωμετρική Οπτική Όταν οι διαστάσεις των διαφόρων οπτικών στοιχείων είναι πολύ μεγαλύτερες από το μήκος κύματος του φωτός μπορούμε να αγνοήσουμε την κυματική φύση του φωτός. Αυτή η προσέγγιση αποτελεί την Γεωμετρική Οπτική 1. Το φως θεωρείται ότι διαδίδεται με ευθείες γραμμές, τις ακτίνες. 2. Όταν μια φωτεινή ακτίνα διέρχεται μέσα από ένα οπτικό σύστημα αποτελούμενο από διαδοχικά ομοιογενή μέσα, τότε ο οπτικός δρόμος είναι μια ακολουθία από ευθύγραμμα τμήματα. 3. Οι νόμοι της γεωμετρικής οπτικής που περιγράφουν την αλλαγή διεύθυνσης των ακτίνων, είναι οι γνωστοί νόμοι της ανάκλασης και της διάθλασης.

4 Ανάκλαση και διάθλαση στην διαχωριστική επιφάνεια μεταξύ δυο οπτικών μέσων Σχήματα από Pedrotti et al. 2007

5 Αρχή του Huygens Η οικογένεια των σφαιρικών επιφανειών που είναι κάθετες στις ακτίνες είναι τα κυματικά μέτωπα. Τα σημεία ενός κυματικού μετώπου ισαπέχουν χρονικά από την πηγή. Η αρχή του Huygens είναι ένα μοντέλο που περιγράφει την διάδοση του φωτός ορίζοντας ότι κάθε σημείο ενός κυματικού μετώπου μπορεί να θεωρηθεί ότι είναι πηγή εκπομπής δευτερογενών κυμάτων. Σε κάποια μελλοντική χρονική στιγμή, η νέα θέση του κυματικού μετώπου είναι μια επιφάνεια που εφάπτεται στα δευτερογενή αυτά κύματα Σχήματα από Pedrotti et al. 2007

6 Οι νόμοι της ανάκλασης και της διάθλασης με την αρχή του Huygens Σχήματα από Pedrotti et al. 2007

7 Αρχή του Fermat Ορίζει ότι το φως καλύπτει την απόσταση που χωρίζει δύο σημεία έτσι ώστε να ελαχιστοποιείται ο απαιτούμενος χρόνος. A Η πιο γενική και ορθότερη διατύπωση της αρχής του Fermat (ή αρχής ελαχίστου χρόνου): Μια φωτεινή ακτίνα που διαδίδεται από το σημείο Α στο σημείο Β ακολουθεί οπτική διαδρομή που είναι «στάσιμη» σε σχέση με μεταβολές αυτής της διαδρομής (δηλ. αποτελεί ακρότατο, όχι υποχρεωτικά ελάχιστο). B Ανάκλαση Διάθλαση

8 O νόμος της Διάθλασης με την αρχή του Fermat O t AB 2 2 h + x = + υ i b + ( a x) 2 2 υ t t x ( a x) = 0 + = 0 x υ h + x υ b + ( a x) i t sinθi sinθt = υtsinθi = υisinθt υ υ i n sinθ = n t sinθ i i t t Σε διαδοχικά στρώματα διαφορετικών ομοιογενών μέσων, με διαφορετικό δείκτη διάθλασης το καθένα, ο χρόνος μετάβασης από το Α στο Β, δηλ. ο οπτικός δρόμος, θα είναι: m m s1 s2 sm 1 tab = = si / υi = ns i i υ1 υ2 υ m i= 1 c i= 1

9 Αρχή της αντιστρεψιμότητας Όταν αντιστραφεί η πορεία μιας οπτικής ακτίνας, αυτή θα ακολουθήσει ακριβώς την ίδια διαδρομή, αλλά αντίστροφα (διότι το αποτέλεσμα της εφαρμογής της αρχής του Fermat δεν εξαρτάται από τη σειρά με την οποία εμφανίζονται τα σημεία Α και Β). A B

10 Σχηματισμός ειδώλου από ανάκλαση από επίπεδη επιφάνεια Το μάτι βλέπει το φανταστικό είδωλο S (Δεν μπορεί να προβληθεί π.χ. σε μία οθόνη) Φανταστικό είδωλο εκτεταμένου αντικειμένου: Μεγέθυνση =1 Αναστροφή προσανατολισμού Το κάτοπτρο δεν χρειάζεται να βρίσκεται ακριβώς κάτω από το αντικείμενο Τρία φανταστικά είδωλα: I 1 και I 2 από απλή ανάκλαση από τα κάτοπτρα 1 και 2 και το Ι 3 μετά από δύο διαδοχικές ανακλάσεις Σχήματα από Pedrotti et al. 2007

11 Σχηματισμός ειδώλου από διάθλαση από επίπεδη επιφάνεια Οι (1), (2) και (3) δεν τέμνονται, σε κοινό σημείο οπότε δε δημιουργείται ευκρινές είδωλο. (μόνο για παραξονικές ακτίνες έχουμε ευκρινές είδωλο) sinθ~tanθ~θ n 1 tanθ 1 ~n 2 tanθ 2 n 1 (x/s)=n 2 (x/s ) s =(n 2 /n 1 )s Ολική ανάκλαση θ c =sin -1 (n 2 /n 1 ) Σχήματα από Pedrotti et al. 2007

12 Διάθλαση με ανάκλαση (α,β) και ολική ανάκλαση (γ)

13 Οριακή Γωνία

14 Οριακή Γωνία

15 Οριακή Γωνία

16 Εφαρμοσμένη Οπτική Οπτική Απεικόνιση

17 Απεικόνιση από οπτικό σύστημα Σύμφωνα με την αρχή του Fermat: εφόσον η κάθε μια από τις ακτίνες αυτές ξεκινά από το ίδιο σημείο Ο και καταλήγει στο ίδιο σημείο Ι, θα πρέπει να αντιστοιχούν σε ίσους χρόνους διέλευσης, γι αυτό και λέγονται ισόχρονες. 1. Υποθέτουμε ότι τα διάφορα υλικά του οπτικού συστήματος είναι ισότροπα και ομοιογενή και ότι επομένως χαρακτηρίζονται από ένα συγκεκριμένο δείκτη διάθλασης το καθένα. 2. Υποθέσουμε ότι το οπτικό σύστημα επανακατευθύνει τις ακτίνες έτσι ώστε, εξερχόμενες αυτές από το οπτικό σύστημα να εισέλθουν στην «περιοχή πραγματικών ειδώλων» συγκλίνοντας προς ένα σημείο, το είδωλο Ι Σχήματα από Pedrotti et al Σύμφωνα με την αρχή της αντιστρεψιμότητας, εάν το Ι είναι το αντικείμενο, τότε κάθε μια από τις ακτίνες θα ακολουθήσει ακριβώς την αντίστροφη πορεία και θα σχηματιστεί είδωλο στο σημείο Ο. Τα σημεία Ο και Ι ονομάζονται συζυγή σημεία για το οπτικό σύστημα. Σε ένα ιδανικό οπτικό σύστημα, όλες οι ακτίνες που προέρχονται από το Ο και περνούν μέσα από το οπτικό σύστημα, και μόνο αυτές, θα εστιαστούν στο Ι.

18 Καρτεσιανές επιφάνειες Ανακλαστικές ή διαθλαστικές επιφάνειες που σχηματίζουν τέλεια είδωλα, ονομάζονται καρτεσιανές επιφάνειες. Οι ανακλαστικές καρτεσιανές επιφάνειες είναι κωνικές τομές Φανταστικό είδωλο Είδωλο στο άπειρο Σχήματα από Pedrotti et al. 2007

19 Διαθλαστικές καρτεσιανές επιφάνειες Θέλουμε να βρούμε την εξίσωση της κατάλληλης διαθλώσας επιφάνειας έτσι ώστε το σημείο O να απεικονίζεται στο σημείο Ι. Έστω P ένα οποιοδήποτε σημείο πάνω στη ζητούμενη επιφάνεια Σ. Απαιτούμε κάθε ακτίνα από το Ο, όπως η OPI αφού υποστεί διάθλαση να περνά από το Ι. Μια άλλη τέτοια ακτίνα είναι προφανώς η OVI. Σύμφωνα με την αρχή του Fermat, θα πρέπει οι δυο αυτές ακτίνες να είναι ισόχρονες. Ο χρόνος διάδοσης μιας ακτίνας μέσα σε ένα διαφανές μέσο πάχους x και με δείκτη διάθλασης n είναι t=x/υ=xn/c

20 Διαθλαστικές καρτεσιανές επιφάνειες ns + ns Η σταθερά στην εξίσωση αυτή προκύπτει από το άθροισμα o o I I Η εξίσωση περιγράφει ένα καρτεσιανό ωοειδές εκ περιστροφής

21 Μη ιδανική απεικόνιση Μη ιδανική απεικόνιση μπορεί να συμβεί στη πράξη εξαιτίας: σκέδασης του φωτός (light scattering) οπτικών σφαλμάτων (optical aberration) περίθλασης (diffraction) Κάποιες ακτίνες από το Ο δεν φτάνουν στο Ι λόγω απωλειών από ανάκλαση πάνω σε διαθλώσες επιφάνειες, λόγω διάχυτης ανάκλασης από ανακλαστικές επιφάνειες, και λόγω σκέδασης από ανομοιογένειες στα διαφανή μέσα. Η απώλεια ακτίνων από αυτές τις αιτίες συνεπάγεται απλά την ελάττωση της φωτεινότητας του ειδώλου. Υπάρχουν και ακτίνες που λόγω σκέδασης καταλήγουν στο σημείο Ι, έχοντας ξεκινήσει από μη συζυγή σημεία (του αντικειμένου), κι έτσι προκαλούν υποβάθμιση της ποιότητας του ειδώλου. Όταν το ίδιο το οπτικό σύστημα δεν μπορεί να επιτύχει αντιστοιχία 1-1 μεταξύ ακτίνων του αντικειμένου και του ειδώλου, τότε μιλάμε για «σφάλματα» του οπτικού συστήματος. Oλα τα οπτικά συστήματα δέχονται μόνο ένα μέρος του κυματικού μετώπου που αναδύεται από το αντικείμενο. Έτσι το είδωλο δεν μπορεί να είναι απόλυτα σαφές, ακόμα και αν δεν υπάρχει κανένα άλλο σφάλμα απεικόνισης. Σε αυτή την περίπτωση λέμε ότι η απεικόνιση είναι στο περιθλαστικό όριο ( diffraction limited ), και το οπτικό σύστημα λέγεται σύστημα περιθλαστικού ορίου (diffraction limited optics). Προφανώς πρόκειται για φαινόμενο που σχετίζεται με την κυματική φύση του φωτός, και δεν λαμβάνεται υπόψη στην προσέγγιση της γεωμετρικής οπτικής.

22 Ανάκλαση από σφαιρική επιφάνεια Τα σφαιρικά κάτοπτρα μπορεί να είναι είτε κοίλα είτε κυρτά ως προς το αντικείμενο Ο, ανάλογα με το αν το κέντρο καμπυλότητας, C, είναι στην ίδια πλευρά με το αντικείμενο ή όχι. Γκαουσιανή Οπτική cosφ~1 sinφ~tanφ~φ θ = α+φ (ως εξωτερική γωνία του τριγώνου OPC) 2θ = α+α (ως εξωτερική γωνία του τριγώνου OPI) Επομένως: α-α = -2φ Αν αντικαταστήσουμε τις γωνίες με τις εφαπτόμενές τους:

23 Οι συνθήκες προσήμων Η απόσταση του αντικειμένου Ο από την κορυφή V, s, είναι θετική όταν το O είναι στα αριστερά του V. Σε αυτή την περίπτωση λέμε ότι έχουμε πραγματικό αντικείμενο. Αν το Ο είναι στα δεξιά του V, τότε το s είναι αρνητικό, και το αντικείμενο φανταστικό. Η απόσταση του ειδώλου Ι από την κορυφή V, s, είναι θετική όταν το Ι είναι στα αριστερά του V. Σε αυτή την περίπτωση λέμε ότι έχουμε πραγματικό είδωλο. Αν το Ι είναι στα δεξιά του V, τότε το s είναι αρνητικό, και το είδωλο φανταστικό. Η ακτίνα καμπυλότητας R είναι θετική όταν το C είναι στα δεξιά του V, που αντιστοιχεί σε κυρτό κάτοπτρο, και αρνητική όταν το C είναι στα αριστερά του V, που αντιστοιχεί σε κοίλο κάτοπτρο.

24 Διάθλαση από σφαιρική επιφάνεια n sinθ = n sinθ Στο τρίγωνο CPO η εξωτερική γωνία: α=θ 1 +φ Στο τρίγωνο CPO η εξωτερική γωνία: α =θ 2 +φ Για παραξονικές ακτίνες: n ( α ϕ) = n ( α ϕ) 1 2 Οι γωνίες α, α και φ μπορούν να αντικατασταθούν με τις εφαπτόμενές τους: n1( h h ) = n2( h h ) s R s R n n n n = s s R Σχήματα από Pedrotti et al. 2007

25 Συνθήκες προσήμων για διαθλώσες επιφάνειες s s είναι + εάν το αντικείμενο βρίσκεται μπροστά από την επιφάνεια (πραγματικό αντικείμενο) είναι - εάν το αντικείμενο βρίσκεται πίσω από την επιφάνεια (φανταστικό αντικείμενο) s s είναι + εάν το είδωλο βρίσκεται πίσω από την επιφάνεια (πραγματικό είδωλο) είναι - εάν το είδωλο βρίσκεται μπροστά από την επιφάνεια (φανταστικό είδωλο) R R είναι + εάν το κέντρο καμπυλότητας βρίσκεται πίσω από την επιφάνεια είναι - εάν το κέντρο καμπυλότητας βρίσκεται μπροστά από την επιφάνεια

26 Συνθήκες προσήμων για διαθλώσες επιφάνειες n n n n = s s R n n n n + = s s R

27 Σχηματισμός ειδώλου από σφαιρικά κάτοπτρα Σχήματα από Pedrotti et al. 2007

28 Κατακόρυφη μεγέθυνση ειδώλου από σφαιρική επιφάνεια n sinθ = n n h s = n o 1 2 sinθ hi s hi ns 1 m = = h o ns 2

29

30 Παράδειγμα σχηματισμού ειδώλου από μια σφαιρική επιφάνεια και από παχύ φακό (δυο σφαιρικές διαχωριστικές επιφάνειες) Σχήματα από Pedrotti et al. 2007

31 Λεπτοί φακοί συγκλίνων αποκλίνων Σχήματα από Pedrotti et al. 2007

32 Σύστημα Λεπτών Φακών Σχήματα από Pedrotti et al. 2007

33 Σχήματα από Pedrotti et al. 2007

MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ

MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ Δ. Χατζηδημητρίου Βιβλιογραφία: Introduction to Optics, Pedrotti et al., 006, 3 rd edition, εκδ. Benjamin Cummings Optics and Photonics, An Introduction F. G. Smith

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoira.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική. Κεφάλαιο 2 : Βασικά όργανα μέτρησης ακτινοβολίας : Οπτικά τηλεσκόπια

Παρατηρησιακή Αστροφυσική. Κεφάλαιο 2 : Βασικά όργανα μέτρησης ακτινοβολίας : Οπτικά τηλεσκόπια Παρατηρησιακή Αστροφυσική Κεφάλαιο 2 : Βασικά όργανα μέτρησης ακτινοβολίας : Οπτικά τηλεσκόπια Κύρια σημεία του μαθήματος Βασικές αρχές γεωμετρικής οπτικής Αρχές του Fermat και του Huygens Νόμοι ανάκλασης

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί

Διαβάστε περισσότερα

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 Μελέτη φακών

ΑΣΚΗΣΗ 8 Μελέτη φακών Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 8 Μελέτη φακών 8. Απαραίτητα όργανα και υλικά. Οπτική τράπεζα.. Πέτασμα. 3. Συγκεντρωτικός φακός. 4. Φωτεινή πηγή. 5. Διάφραγμα με δακτύλιο και οπή. 6. Φίλτρο κόκκινο

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης...

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης... 1. Λεπτοί Φακοί Σελίδα 1. Σκοπός της άσκησης.... 1 2. Στοιχεία θεωρίας... 1 2.1 Γεωμετρική οπτική... 1 2.2 Ο νόμος της ανάκλασης... 1 2.3 Ο νόμος της διάθλασης... 2 2.4 Είδωλα & παραξονική προσέγγιση...

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εργαστήριο Φυσικής ΙΙΙ - Οπτική Πέτρος Ρακιτζής Φ-08: Εργαστήριο Φυσικής ΙΙΙ Οπτική. Σκοπός. ΜΕΛΕΤΗ ΛΕΠΤΩΝ ΦΑΚΩΝ Εξοικείωση με βασικές αρχές γεωμετρικής οπτικής

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2016 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Φύση του φωτός (κύμα ή σωμάτιο)

Φύση του φωτός (κύμα ή σωμάτιο) Φύση του φωτός (κύμα ή σωμάτιο) Για τη μελέτη της συμπεριφοράς του φωτός απαιτείται η εισαγωγή κριτηρίων ως προς τα μεγέθη που περιγράφουν την διάδοση και την αλληλεπίδραση του φωτός με την ύλη. Κριτήρια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

Σφάλματα φακών (Σφαιρικό - Χρωματικό).

Σφάλματα φακών (Σφαιρικό - Χρωματικό). O12 Σφάλματα φακών (Σφαιρικό - Χρωματικό). 1. Σκοπός Στην άσκηση αυτή υπολογίζονται πειραματικά δυο από τα πιο σημαντικά οπτικά σφάλματα (η αποκλίσεις) που παρουσιάζονται όταν φωτεινές ακτίνες διέλθουν

Διαβάστε περισσότερα

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@maerals.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Η ιδέα την απεικόνισης Σημειακή πηγή Στιγματική απεικόνιση Η ανακατεύθυνση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materal.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Θεωρία πινάκων Διάνυσμα ακτίνας Παραξονική προσέγγιση ta διάνυσμα ακτίνας y αριθμητικό

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος 1. Εισαγωγή Όταν δέσµη λευκού φωτός προσπέσει σε ένα πρίσµα τότε κάθε µήκος κύµατος διαθλάται σύµφωνα µε τον αντίστοιχο

Διαβάστε περισσότερα

Fundamentals of Lasers

Fundamentals of Lasers Fundamentals of Lasers Συνθήκη κατωφλίου: Ας υποθέσουμε ένα μέσο με καταστάσεις i> και k>, με ενέργειες Ε i, Ε k. Ένα Η/Μ κύμα που διαδίδεται σε αυτό το μέσο θα μεταβάλλει την έντασή του σύμφωνα με τη

Διαβάστε περισσότερα

Α3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή

Α3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β) ΠΑΡΑΣΚΕΥΗ 25 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΘΕΜΑ Α Στις ημιτελείς

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά Ασκήσεις (Ηλεκτρισμός-Οπτική) Ηλεκτρισμός 6 η. Ηλεκτρόνια κινούμενα με ταχύτητα 0 m / sec εισέρχονται σε χώρο μαγνητικού πεδίου όπου διαγράφουν κυκλική τροχιά ακτίνας 0.0m. Να βρεθεί η ένταση του μαγνητικού

Διαβάστε περισσότερα

Προβλήματα φακών/κατόπτρων

Προβλήματα φακών/κατόπτρων Προβλήματα φακών/κατόπτρων 1. Χρησιμοποιείστε την τεχνική των ακτινών και σχηματισμών ειδώλου για να βρείτε το είδωλο, που δημιουργείται από ένα κοίλο σφαιρικό κάτοπτρο, ενός αντικειμένου που τοποθετείται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ 0 ΕΚΦΩΝΗΕΙ ΘΕΜΑ Α τις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Κατά τη

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Α. Στόχοι Οι μαθητές: Να παρατηρήσουν το φαινόμενο της συμβολής / περίθλασης Να αξιοποιήσουν το φαινόμενο της περίθλασης

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας. ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας. ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΓΕΩΜΕΤΡΙΚΗ

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ.

ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ. ΑΝΑΜΟΡΦΩΣΕΙΣ ΜΕΣΩ ΑΝΑΚΛΑΣΕΩΝ ΣΕ ΚΑΜΠΥΛΕΣ ΕΠΙΦΑΝΕΙΕΣ. Πρόκειται για εικόνες τις οποίες μπορούμε να παρατηρήσουμε χρησιμοποιώντας κατάλληλες ανακλαστικές επιφάνειες, οι οποίες συνήθως είναι κωνικές ή κυλινδρικές

Διαβάστε περισσότερα

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία.

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία. ΑΣΚΗΣΗ 1 Δύο κάτοπτρα σχηματίζουν ορθή γωνία, όπως φαίνεται στο σχήμα. Στο σημείο Ο υπάρχει ένα αντικείμενο. Να προσδιορίσετε τη θέση των ειδώλων που σχηματίζονται ΑΣΚΗΣΗ 2 Κοίλο σφαιρικό κάτοπτρο έχει

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου ΟΠΤΙΚΗ Περιεχόμενα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ... 2 Ερωτήσεις κλειστού τύπου... 2 Ερωτήσεις ανοικτού τύπου... 2 Ασκήσεις... 3 ΚΥΜΑΤΙΚΗ ΟΠΤΙΚΗ... 4 Ερωτήσεις κλειστού τύπου... 4 Ερωτήσεις ανοικτού τύπου... 4 Ασκήσεις...

Διαβάστε περισσότερα

1 m z. 1 mz. 1 mz M 1, 2 M 1

1 m z. 1 mz. 1 mz M 1, 2 M 1 Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ

20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το

Διαβάστε περισσότερα

1) Κατά μήκος ενός γραμμικού μέσου διαδίδεται ένα αρμονικό κύμα της.δυο σημεία Κ και Λ του ελαστικού μέσου

1) Κατά μήκος ενός γραμμικού μέσου διαδίδεται ένα αρμονικό κύμα της.δυο σημεία Κ και Λ του ελαστικού μέσου 1 Επώνυμο. Όνομα. Αγρίνιο 20-01-2013 Ζήτημα 1 0 Α) Επιλέξτε τη σωστή απάντηση. 1) Κατά μήκος ενός γραμμικού μέσου διαδίδεται ένα αρμονικό κύμα της.δυο σημεία Κ και Λ του ελαστικού μέσου μορφής. 2() t T

Διαβάστε περισσότερα

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση ΠεριεχόµεναΚεφαλαίου 35 Περίθλαση απλής σχισµής ή δίσκου Intensity in Single-Slit Diffraction Pattern Περίθλαση διπλής σχισµής ιακριτική ικανότητα; Κυκλικές ίριδες ιακριτική

Διαβάστε περισσότερα

Εισαγωγή Στοιχεία Θεωρίας

Εισαγωγή Στοιχεία Θεωρίας Εισαγωγή Σκοπός της άσκησης αυτής είναι η εισαγωγή στην τεχνογνωσία των οπτικών ινών και η μελέτη τους κατά τη διάδοση μιας δέσμης laser. Συγκεκριμένα μελετάται η εξασθένιση που υφίσταται το σήμα στην

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1 ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ 1. ΟΡΙΣΜΟΙ Το φως είναι ένα σύνθετο κύμα. Με εξαίρεση την ακτινοβολία LASER, τα κύματα φωτός δεν είναι επίπεδα κύματα. Κάθε κύμα φωτός είναι ένα ηλεκτρομαγνητικό κύμα στο οποίο τα διανύσματα

Διαβάστε περισσότερα

Ζήτημα ) Κατά την διάδοση ενός αρμονικού μηχανικού κύματος : 2) α) Οι υπέρυθρες ακτίνες παράγονται από την επιβράδυνση ηλεκτρονίων που

Ζήτημα ) Κατά την διάδοση ενός αρμονικού μηχανικού κύματος : 2) α) Οι υπέρυθρες ακτίνες παράγονται από την επιβράδυνση ηλεκτρονίων που - 1 - Επώνυμο.. Όνομα.. Αγρίνιο 1/2/2015. Να επιλεγεί η σωστή πρόταση Ζήτημα 1 0 1) Κατά την διάδοση ενός αρμονικού μηχανικού κύματος : α) Η συχνότητα ταλάντωσης της πηγής είναι διαφορετική της συχνότητας

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Όταν φωτεινή δέσμη φωτός συναντά στην πορεία του εμπόδια ή περνάει από λεπτές σχισμές υφίσταται περίθλαση, φτάνει δηλαδή σε σημεία που δεν προβλέπονται

Διαβάστε περισσότερα

3.2 Η Αρχή των Huygens-Fresnel

3.2 Η Αρχή των Huygens-Fresnel ΚΕΦ. ενικές αρχές της κυματικής κίνησης. Η Αρχή των Huygens-Fresnel.. Ιστορική διατύπωση.. Απλές εφαρμογές.. Εφαρμογή της αρχής των Huygens-Fresnel σε ανομοιογενές μέσο, με γραμμικά μεταβαλλόμενη ταχύτητα

Διαβάστε περισσότερα

4. Όρια ανάλυσης οπτικών οργάνων

4. Όρια ανάλυσης οπτικών οργάνων 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φυσική των Laser ΔΙΑΔΟΣΗ ΗΜ ΚΥΜΑΤΩΝ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ. Διδάσκων : Επίκ. Καθ. Μ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φυσική των Laser ΔΙΑΔΟΣΗ ΗΜ ΚΥΜΑΤΩΝ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ. Διδάσκων : Επίκ. Καθ. Μ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Φυσική των Laser ΔΙΑΔΟΣΗ ΗΜ ΚΥΜΑΤΩΝ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ

ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ενότητα 1 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΚΡΟΤΑΤΩΝ Ασκήσεις για λύση 3 3, < 1). Δίνεται η συνάρτηση f ( ). 6, Να βρείτε : i ) την παράγωγο της f, ii) τα κρίσιμα σημεία της f. ). Να μελετήσετε ως προς τη μονοτονία

Διαβάστε περισσότερα

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s.

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. 1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. Να βρεθεί το μήκος κύματος. 2. Σε ένα σημείο του Ειρηνικού ωκεανού σχηματίζονται κύματα με μήκος κύματος 1 m και

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ Άσκηση 4. Διαφράγματα. Θεωρία Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/02/12 ΛΥΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/02/12 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΥΚΕΙΟΥ ΣΕΙΡΑ: ΧΕΙΜΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 1/0/1 ΥΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Φυσική Εικόνας & Ήχου ΙΙ (Ε)

Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου ΙΙ (Ε) Ενότητα 3: Σφάλματα φακών (Σφαιρικό - Χρωματικό) Αθανάσιος Αραβαντινός Τμήμα Φωτογραφίας & Οπτικοακουστικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φυσική ΙΙ. Οπτική Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Φυσική ΙΙ. Οπτική Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Φυσική ΙΙ Οπτική Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ Ερωτήσεις Πολλαπλής επιλογής 1. To βάθος µιας πισίνας φαίνεται από παρατηρητή εκτός της πισίνας µικρότερο από το πραγµατικό, λόγω του φαινοµένου της: α. ανάκλασης β. διάθλασης γ. διάχυσης

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί

HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί 4 Hsiu. Ha Ανάκλαση και μετάδοση του φωτός σε μια διηλεκτρική επαφή HMY 333 Φωτονική Διάλεξη Οπτικοί κυματοδηγοί i i i r i si c si v c hp://www.e.readig.ac.u/clouds/awell/ c 3 Γωνία πρόσπτωσης < κρίσιμη

Διαβάστε περισσότερα

Κ.- Α. Θ. Θωμά. Οπτική

Κ.- Α. Θ. Θωμά. Οπτική Κ.- Α. Θ. Θωμά Οπτική Θεωρίες για τη φύση του φωτός Η ανάγκη διατύπωσης διαφορετικών θεωριών προέρχεται από την παρατήρηση ότι το φώς άλλες φορές συμπεριφέρεται σαν σωματίδιο και άλλοτε σαν κύμα, που είναι

Διαβάστε περισσότερα

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης 3 Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης Μέθοδος Σε σώμα διαφανές ημικυλινδρικού σχήματος είναι εύκολο να επιβεβαιωθεί ο νόμος του Sell και να εφαρμοστεί

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 181 ΕΠΙΠΕ Ο ΙΟΠΤΡΟ. ΕΠΙΠΕ ΕΣ ΙΑΘΛΩΣΕΣ ΕΠΙΦΑΝΕΙΕΣ: Ο τύπος των επιπέδων διόπτρων

ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 181 ΕΠΙΠΕ Ο ΙΟΠΤΡΟ. ΕΠΙΠΕ ΕΣ ΙΑΘΛΩΣΕΣ ΕΠΙΦΑΝΕΙΕΣ: Ο τύπος των επιπέδων διόπτρων ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ 8 ΕΠΙΠΕ Ο ΙΟΠΤΡΟ ΕΠΙΠΕ ΕΣ ΙΑΘΛΩΣΕΣ ΕΠΙΦΑΝΕΙΕΣ: Ο τύπος των επιπέδων διόπτρων προκύπτει από τον τύπο των σφαιρικών διόπτρων όταν R=. = Από τ σχέσ αυτή φαίνεται ότι το πρόσµο του είναι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η ικανότητα χρήσης καθρέφτη και πηγής laser. Η κατανόηση

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΣΤΑ ΚΥΜΑΤΑ Θέμα 1 ο Στις ερωτήσεις 1-4 να γράψετε στην κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση, χωρίς δικαιολόγηση. 1. Α) Φορτία που κινούνται

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη ο Κεφάλαιο - Κύµατα. Ενδεικτικές Λύσεις. Θέµα Α

4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη ο Κεφάλαιο - Κύµατα. Ενδεικτικές Λύσεις. Θέµα Α 4ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 21 εκέµβρη 2014 Α.1. Τα ηλεκτροµαγνητικά κύµατα : 2ο Κεφάλαιο - Κύµατα Ενδεικτικές Λύσεις Θέµα Α (ϐ) υπακούουν στην αρχή της επαλληλίας. Α.2. υο σύγχρονες πηγές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ÈÅÌÅËÉÏ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ÈÅÌÅËÉÏ ΘΕΜΑ 1ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα