Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική"

Transcript

1 Εφαρμοσμένη Οπτική Γεωμετρική Οπτική

2 Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle of reversibility) Επίπεδες επιφάνειες ανάκλαση- διάθλαση Απεικόνιση με οπτικό σύστημα Σφαιρικές επιφάνειες ανάκλαση- διάθλαση Λεπτοί φακοί εστίαση ισχύς Κυλινδρικοί φακοί

3 Γεωμετρική Οπτική Όταν οι διαστάσεις των διαφόρων οπτικών στοιχείων είναι πολύ μεγαλύτερες από το μήκος κύματος του φωτός μπορούμε να αγνοήσουμε την κυματική φύση του φωτός. Αυτή η προσέγγιση αποτελεί την Γεωμετρική Οπτική 1. Το φως θεωρείται ότι διαδίδεται με ευθείες γραμμές, τις ακτίνες. 2. Όταν μια φωτεινή ακτίνα διέρχεται μέσα από ένα οπτικό σύστημα αποτελούμενο από διαδοχικά ομοιογενή μέσα, τότε ο οπτικός δρόμος είναι μια ακολουθία από ευθύγραμμα τμήματα. 3. Οι νόμοι της γεωμετρικής οπτικής που περιγράφουν την αλλαγή διεύθυνσης των ακτίνων, είναι οι γνωστοί νόμοι της ανάκλασης και της διάθλασης.

4 Ανάκλαση και διάθλαση στην διαχωριστική επιφάνεια μεταξύ δυο οπτικών μέσων Σχήματα από Pedrotti et al. 2007

5 Αρχή του Huygens Η οικογένεια των σφαιρικών επιφανειών που είναι κάθετες στις ακτίνες είναι τα κυματικά μέτωπα. Τα σημεία ενός κυματικού μετώπου ισαπέχουν χρονικά από την πηγή. Η αρχή του Huygens είναι ένα μοντέλο που περιγράφει την διάδοση του φωτός ορίζοντας ότι κάθε σημείο ενός κυματικού μετώπου μπορεί να θεωρηθεί ότι είναι πηγή εκπομπής δευτερογενών κυμάτων. Σε κάποια μελλοντική χρονική στιγμή, η νέα θέση του κυματικού μετώπου είναι μια επιφάνεια που εφάπτεται στα δευτερογενή αυτά κύματα Σχήματα από Pedrotti et al. 2007

6 Οι νόμοι της ανάκλασης και της διάθλασης με την αρχή του Huygens Σχήματα από Pedrotti et al. 2007

7 Αρχή του Fermat Ορίζει ότι το φως καλύπτει την απόσταση που χωρίζει δύο σημεία έτσι ώστε να ελαχιστοποιείται ο απαιτούμενος χρόνος. A Η πιο γενική και ορθότερη διατύπωση της αρχής του Fermat (ή αρχής ελαχίστου χρόνου): Μια φωτεινή ακτίνα που διαδίδεται από το σημείο Α στο σημείο Β ακολουθεί οπτική διαδρομή που είναι «στάσιμη» σε σχέση με μεταβολές αυτής της διαδρομής (δηλ. αποτελεί ακρότατο, όχι υποχρεωτικά ελάχιστο). B Ανάκλαση Διάθλαση

8 O νόμος της Διάθλασης με την αρχή του Fermat O t AB 2 2 h + x = + υ i b + ( a x) 2 2 υ t t x ( a x) = 0 + = 0 x υ h + x υ b + ( a x) i t sinθi sinθt = υtsinθi = υisinθt υ υ i n sinθ = n t sinθ i i t t Σε διαδοχικά στρώματα διαφορετικών ομοιογενών μέσων, με διαφορετικό δείκτη διάθλασης το καθένα, ο χρόνος μετάβασης από το Α στο Β, δηλ. ο οπτικός δρόμος, θα είναι: m m s1 s2 sm 1 tab = = si / υi = ns i i υ1 υ2 υ m i= 1 c i= 1

9 Αρχή της αντιστρεψιμότητας Όταν αντιστραφεί η πορεία μιας οπτικής ακτίνας, αυτή θα ακολουθήσει ακριβώς την ίδια διαδρομή, αλλά αντίστροφα (διότι το αποτέλεσμα της εφαρμογής της αρχής του Fermat δεν εξαρτάται από τη σειρά με την οποία εμφανίζονται τα σημεία Α και Β). A B

10 Σχηματισμός ειδώλου από ανάκλαση από επίπεδη επιφάνεια Το μάτι βλέπει το φανταστικό είδωλο S (Δεν μπορεί να προβληθεί π.χ. σε μία οθόνη) Φανταστικό είδωλο εκτεταμένου αντικειμένου: Μεγέθυνση =1 Αναστροφή προσανατολισμού Το κάτοπτρο δεν χρειάζεται να βρίσκεται ακριβώς κάτω από το αντικείμενο Τρία φανταστικά είδωλα: I 1 και I 2 από απλή ανάκλαση από τα κάτοπτρα 1 και 2 και το Ι 3 μετά από δύο διαδοχικές ανακλάσεις Σχήματα από Pedrotti et al. 2007

11 Σχηματισμός ειδώλου από διάθλαση από επίπεδη επιφάνεια Οι (1), (2) και (3) δεν τέμνονται, σε κοινό σημείο οπότε δε δημιουργείται ευκρινές είδωλο. (μόνο για παραξονικές ακτίνες έχουμε ευκρινές είδωλο) sinθ~tanθ~θ n 1 tanθ 1 ~n 2 tanθ 2 n 1 (x/s)=n 2 (x/s ) s =(n 2 /n 1 )s Ολική ανάκλαση θ c =sin -1 (n 2 /n 1 ) Σχήματα από Pedrotti et al. 2007

12 Διάθλαση με ανάκλαση (α,β) και ολική ανάκλαση (γ)

13 Οριακή Γωνία

14 Οριακή Γωνία

15 Οριακή Γωνία

16 Εφαρμοσμένη Οπτική Οπτική Απεικόνιση

17 Απεικόνιση από οπτικό σύστημα Σύμφωνα με την αρχή του Fermat: εφόσον η κάθε μια από τις ακτίνες αυτές ξεκινά από το ίδιο σημείο Ο και καταλήγει στο ίδιο σημείο Ι, θα πρέπει να αντιστοιχούν σε ίσους χρόνους διέλευσης, γι αυτό και λέγονται ισόχρονες. 1. Υποθέτουμε ότι τα διάφορα υλικά του οπτικού συστήματος είναι ισότροπα και ομοιογενή και ότι επομένως χαρακτηρίζονται από ένα συγκεκριμένο δείκτη διάθλασης το καθένα. 2. Υποθέσουμε ότι το οπτικό σύστημα επανακατευθύνει τις ακτίνες έτσι ώστε, εξερχόμενες αυτές από το οπτικό σύστημα να εισέλθουν στην «περιοχή πραγματικών ειδώλων» συγκλίνοντας προς ένα σημείο, το είδωλο Ι Σχήματα από Pedrotti et al Σύμφωνα με την αρχή της αντιστρεψιμότητας, εάν το Ι είναι το αντικείμενο, τότε κάθε μια από τις ακτίνες θα ακολουθήσει ακριβώς την αντίστροφη πορεία και θα σχηματιστεί είδωλο στο σημείο Ο. Τα σημεία Ο και Ι ονομάζονται συζυγή σημεία για το οπτικό σύστημα. Σε ένα ιδανικό οπτικό σύστημα, όλες οι ακτίνες που προέρχονται από το Ο και περνούν μέσα από το οπτικό σύστημα, και μόνο αυτές, θα εστιαστούν στο Ι.

18 Καρτεσιανές επιφάνειες Ανακλαστικές ή διαθλαστικές επιφάνειες που σχηματίζουν τέλεια είδωλα, ονομάζονται καρτεσιανές επιφάνειες. Οι ανακλαστικές καρτεσιανές επιφάνειες είναι κωνικές τομές Φανταστικό είδωλο Είδωλο στο άπειρο Σχήματα από Pedrotti et al. 2007

19 Διαθλαστικές καρτεσιανές επιφάνειες Θέλουμε να βρούμε την εξίσωση της κατάλληλης διαθλώσας επιφάνειας έτσι ώστε το σημείο O να απεικονίζεται στο σημείο Ι. Έστω P ένα οποιοδήποτε σημείο πάνω στη ζητούμενη επιφάνεια Σ. Απαιτούμε κάθε ακτίνα από το Ο, όπως η OPI αφού υποστεί διάθλαση να περνά από το Ι. Μια άλλη τέτοια ακτίνα είναι προφανώς η OVI. Σύμφωνα με την αρχή του Fermat, θα πρέπει οι δυο αυτές ακτίνες να είναι ισόχρονες. Ο χρόνος διάδοσης μιας ακτίνας μέσα σε ένα διαφανές μέσο πάχους x και με δείκτη διάθλασης n είναι t=x/υ=xn/c

20 Διαθλαστικές καρτεσιανές επιφάνειες ns + ns Η σταθερά στην εξίσωση αυτή προκύπτει από το άθροισμα o o I I Η εξίσωση περιγράφει ένα καρτεσιανό ωοειδές εκ περιστροφής

21 Μη ιδανική απεικόνιση Μη ιδανική απεικόνιση μπορεί να συμβεί στη πράξη εξαιτίας: σκέδασης του φωτός (light scattering) οπτικών σφαλμάτων (optical aberration) περίθλασης (diffraction) Κάποιες ακτίνες από το Ο δεν φτάνουν στο Ι λόγω απωλειών από ανάκλαση πάνω σε διαθλώσες επιφάνειες, λόγω διάχυτης ανάκλασης από ανακλαστικές επιφάνειες, και λόγω σκέδασης από ανομοιογένειες στα διαφανή μέσα. Η απώλεια ακτίνων από αυτές τις αιτίες συνεπάγεται απλά την ελάττωση της φωτεινότητας του ειδώλου. Υπάρχουν και ακτίνες που λόγω σκέδασης καταλήγουν στο σημείο Ι, έχοντας ξεκινήσει από μη συζυγή σημεία (του αντικειμένου), κι έτσι προκαλούν υποβάθμιση της ποιότητας του ειδώλου. Όταν το ίδιο το οπτικό σύστημα δεν μπορεί να επιτύχει αντιστοιχία 1-1 μεταξύ ακτίνων του αντικειμένου και του ειδώλου, τότε μιλάμε για «σφάλματα» του οπτικού συστήματος. Oλα τα οπτικά συστήματα δέχονται μόνο ένα μέρος του κυματικού μετώπου που αναδύεται από το αντικείμενο. Έτσι το είδωλο δεν μπορεί να είναι απόλυτα σαφές, ακόμα και αν δεν υπάρχει κανένα άλλο σφάλμα απεικόνισης. Σε αυτή την περίπτωση λέμε ότι η απεικόνιση είναι στο περιθλαστικό όριο ( diffraction limited ), και το οπτικό σύστημα λέγεται σύστημα περιθλαστικού ορίου (diffraction limited optics). Προφανώς πρόκειται για φαινόμενο που σχετίζεται με την κυματική φύση του φωτός, και δεν λαμβάνεται υπόψη στην προσέγγιση της γεωμετρικής οπτικής.

22 Ανάκλαση από σφαιρική επιφάνεια Τα σφαιρικά κάτοπτρα μπορεί να είναι είτε κοίλα είτε κυρτά ως προς το αντικείμενο Ο, ανάλογα με το αν το κέντρο καμπυλότητας, C, είναι στην ίδια πλευρά με το αντικείμενο ή όχι. Γκαουσιανή Οπτική cosφ~1 sinφ~tanφ~φ θ = α+φ (ως εξωτερική γωνία του τριγώνου OPC) 2θ = α+α (ως εξωτερική γωνία του τριγώνου OPI) Επομένως: α-α = -2φ Αν αντικαταστήσουμε τις γωνίες με τις εφαπτόμενές τους:

23 Οι συνθήκες προσήμων Η απόσταση του αντικειμένου Ο από την κορυφή V, s, είναι θετική όταν το O είναι στα αριστερά του V. Σε αυτή την περίπτωση λέμε ότι έχουμε πραγματικό αντικείμενο. Αν το Ο είναι στα δεξιά του V, τότε το s είναι αρνητικό, και το αντικείμενο φανταστικό. Η απόσταση του ειδώλου Ι από την κορυφή V, s, είναι θετική όταν το Ι είναι στα αριστερά του V. Σε αυτή την περίπτωση λέμε ότι έχουμε πραγματικό είδωλο. Αν το Ι είναι στα δεξιά του V, τότε το s είναι αρνητικό, και το είδωλο φανταστικό. Η ακτίνα καμπυλότητας R είναι θετική όταν το C είναι στα δεξιά του V, που αντιστοιχεί σε κυρτό κάτοπτρο, και αρνητική όταν το C είναι στα αριστερά του V, που αντιστοιχεί σε κοίλο κάτοπτρο.

24 Διάθλαση από σφαιρική επιφάνεια n sinθ = n sinθ Στο τρίγωνο CPO η εξωτερική γωνία: α=θ 1 +φ Στο τρίγωνο CPO η εξωτερική γωνία: α =θ 2 +φ Για παραξονικές ακτίνες: n ( α ϕ) = n ( α ϕ) 1 2 Οι γωνίες α, α και φ μπορούν να αντικατασταθούν με τις εφαπτόμενές τους: n1( h h ) = n2( h h ) s R s R n n n n = s s R Σχήματα από Pedrotti et al. 2007

25 Συνθήκες προσήμων για διαθλώσες επιφάνειες s s είναι + εάν το αντικείμενο βρίσκεται μπροστά από την επιφάνεια (πραγματικό αντικείμενο) είναι - εάν το αντικείμενο βρίσκεται πίσω από την επιφάνεια (φανταστικό αντικείμενο) s s είναι + εάν το είδωλο βρίσκεται πίσω από την επιφάνεια (πραγματικό είδωλο) είναι - εάν το είδωλο βρίσκεται μπροστά από την επιφάνεια (φανταστικό είδωλο) R R είναι + εάν το κέντρο καμπυλότητας βρίσκεται πίσω από την επιφάνεια είναι - εάν το κέντρο καμπυλότητας βρίσκεται μπροστά από την επιφάνεια

26 Συνθήκες προσήμων για διαθλώσες επιφάνειες n n n n = s s R n n n n + = s s R

27 Σχηματισμός ειδώλου από σφαιρικά κάτοπτρα Σχήματα από Pedrotti et al. 2007

28 Κατακόρυφη μεγέθυνση ειδώλου από σφαιρική επιφάνεια n sinθ = n n h s = n o 1 2 sinθ hi s hi ns 1 m = = h o ns 2

29

30 Παράδειγμα σχηματισμού ειδώλου από μια σφαιρική επιφάνεια και από παχύ φακό (δυο σφαιρικές διαχωριστικές επιφάνειες) Σχήματα από Pedrotti et al. 2007

31 Λεπτοί φακοί συγκλίνων αποκλίνων Σχήματα από Pedrotti et al. 2007

32 Σύστημα Λεπτών Φακών Σχήματα από Pedrotti et al. 2007

33 Σχήματα από Pedrotti et al. 2007

MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ

MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ MEΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΚΗΣ ΟΠΤΙΚΗΣ Δ. Χατζηδημητρίου Βιβλιογραφία: Introduction to Optics, Pedrotti et al., 006, 3 rd edition, εκδ. Benjamin Cummings Optics and Photonics, An Introduction F. G. Smith

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. G. Mitsou

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. G. Mitsou ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Διάθλαση σε σφαιρική επιφάνεια Φακοί Ορισμοί Λεπτοί φακοί Συγκλίνοντες φακοί Δημιουργία ειδώλων Αποκλίνοντες φακοί Γενικοί τύποι φακών Σύστημα λεπτών φακών σε επαφή Ασκήσεις Διάθλαση

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoira.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική. Κεφάλαιο 2 : Βασικά όργανα μέτρησης ακτινοβολίας : Οπτικά τηλεσκόπια

Παρατηρησιακή Αστροφυσική. Κεφάλαιο 2 : Βασικά όργανα μέτρησης ακτινοβολίας : Οπτικά τηλεσκόπια Παρατηρησιακή Αστροφυσική Κεφάλαιο 2 : Βασικά όργανα μέτρησης ακτινοβολίας : Οπτικά τηλεσκόπια Κύρια σημεία του μαθήματος Βασικές αρχές γεωμετρικής οπτικής Αρχές του Fermat και του Huygens Νόμοι ανάκλασης

Διαβάστε περισσότερα

Μελέτη συστήματος φακών με τη Μέθοδο του Newton

Μελέτη συστήματος φακών με τη Μέθοδο του Newton Μελέτη συστήματος φακών με τη Μέθοδο του Newton.Σκοπός Σκοπός της άσκησης είναι η μελέτη της εστιακής απόστασης συστήματος φακών, η εύρεση της ισοδύναμης εστιακής απόστασης του συστήματος αυτού καθώς και

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΑΣΤΗΡΙ ΕΦΑΡΜΣΜΕΝΗΣ ΠΤΙΚΗΣ Άσκηση 1: Λεπτοί φακοί Εξεταζόμενες γνώσεις. Εξίσωση κατασκευαστών των φακών. Συστήματα φακών. Διαγράμματα κύριων ακτινών. Είδωλα και μεγέθυνση σε λεπτούς φακούς. Α. Λεπτοί

Διαβάστε περισσότερα

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ

ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΟΠΤΙΚΑ ΣΤΟΙΧΕΙΑ : ΚΑΤΟΠΤΡΑ ΔΙΟΠΤΡΑ ΦΑΚΟΙ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση

ΚΕΦΑΛΑΙΟ 11Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση ΚΕΦΑΛΑΙΟ Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Ηφύσητουφωτός 643-77 Netwon Huygens 69-695 Το φως είναι δέσμη σωματιδίων Το φως

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης...

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης... 1. Λεπτοί Φακοί Σελίδα 1. Σκοπός της άσκησης.... 1 2. Στοιχεία θεωρίας... 1 2.1 Γεωμετρική οπτική... 1 2.2 Ο νόμος της ανάκλασης... 1 2.3 Ο νόμος της διάθλασης... 2 2.4 Είδωλα & παραξονική προσέγγιση...

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 Μελέτη φακών

ΑΣΚΗΣΗ 8 Μελέτη φακών Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 8 Μελέτη φακών 8. Απαραίτητα όργανα και υλικά. Οπτική τράπεζα.. Πέτασμα. 3. Συγκεντρωτικός φακός. 4. Φωτεινή πηγή. 5. Διάφραγμα με δακτύλιο και οπή. 6. Φίλτρο κόκκινο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

7α Γεωµετρική οπτική - οπτικά όργανα

7α Γεωµετρική οπτική - οπτικά όργανα 7α Γεωµετρική οπτική - οπτικά όργανα Εισαγωγή ορισµοί Φύση του φωτός Πηγές φωτός είκτης διάθλασης Ανάκλαση ηµιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Η φύση του

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή

Διαβάστε περισσότερα

Σχηματισμός ειδώλων. Εισαγωγή

Σχηματισμός ειδώλων. Εισαγωγή Σχηματισμός ειδώλων Είδωλα πραγματικών αντικειμένων σχηματίζονται όταν οι ακτίνες φωτός (που εκπέμπονται από αυτά τα αντικέιμενα) συναντούν επίπεδες ή καμπύλες επιφάνειες που βρίσκονται μεταξύ δύο μέσων.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εργαστήριο Φυσικής ΙΙΙ - Οπτική Πέτρος Ρακιτζής Φ-08: Εργαστήριο Φυσικής ΙΙΙ Οπτική. Σκοπός. ΜΕΛΕΤΗ ΛΕΠΤΩΝ ΦΑΚΩΝ Εξοικείωση με βασικές αρχές γεωμετρικής οπτικής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2016 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ

ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3 ΣΥΓΚΛΙΝΟΝΤΕΣ ΚΑΙ ΑΠΟΚΛΙΝΟΝΤΕΣ ΦΑΚΟΙ ΑΣΚΗΣΗ 3-2017 1 Σκοπός Σε αυτή την άσκηση ο φοιτητής χειρίζεται βασικά οπτικά όργανα όπως είναι οι λεπτοί φακοί. Στο πρώτο μέρος υπολογίζεται η εστιακή απόσταση

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

Εστιομετρία φακών και κατόπτρων

Εστιομετρία φακών και κατόπτρων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Εστιομετρία

Διαβάστε περισσότερα

Γεωμετρική Οπτική. Πρόκειται δηλαδή για μια ισοφασική επιφάνεια που ονομάζεται μέτωπο κύματος.

Γεωμετρική Οπτική. Πρόκειται δηλαδή για μια ισοφασική επιφάνεια που ονομάζεται μέτωπο κύματος. Γεωμετρική Οπτική Στη Γεωμετρική Οπτική επεξεργαζόμαστε τα φαινόμενα ωσάν το φως να αποτελείται μόνο από σωματίδια, ώστε να εξασφαλίζεται την εύκολη ερμηνεία των φαινομένων της ευθύγραμμης διάδοσης του

Διαβάστε περισσότερα

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΚΦΕ ΕΥΒΟΙΑΣ. ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΕΠΙΛΟΓΗ ΟΜΑΔΑΣ ΜΑΘΗΤΩΝ ΓΙΑ ΤΗΝ 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2015 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ

ΕΚΦΕ ΕΥΒΟΙΑΣ. ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΕΠΙΛΟΓΗ ΟΜΑΔΑΣ ΜΑΘΗΤΩΝ ΓΙΑ ΤΗΝ 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2015 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΕΚΦΕ ΕΥΒΟΙΑΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΕΠΙΛΟΓΗ ΟΜΑΔΑΣ ΜΑΘΗΤΩΝ ΓΙΑ ΤΗΝ 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2015 Διάρκεια: 60 min ΣΑΒΒΑΤΟ 06/12/2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Μαθητές: Σχολική Μονάδα 1.

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

Φυσική Εικόνας & Ήχου Ι (Ε)

Φυσική Εικόνας & Ήχου Ι (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου Ι (Ε) Ενότητα 3: Γενικά περί φακών Αθανάσιος Αρααντινός Τμήμα Φωτογραφίας & Οπτικοακουστικών Τεχνών Το περιεχόμενο

Διαβάστε περισσότερα

Φυσική IΙ. Ενότητα 13: Γεωμετρική οπτική. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Φυσική IΙ. Ενότητα 13: Γεωμετρική οπτική. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Φυσική IΙ Ενότητα 13: Γεωμετρική οπτική Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Η κυματική φύση του φωτός: διάθλαση, ανάκλαση, απορρόφηση Γωνίες πρόσπτωσης, ανάκλασης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική

Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materials.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@maerals.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Γεωμετρική Οπτική Η ιδέα την απεικόνισης Σημειακή πηγή Στιγματική απεικόνιση Η ανακατεύθυνση

Διαβάστε περισσότερα

OΠΤIKH. Επειδή είναι πάντα υ<c (

OΠΤIKH. Επειδή είναι πάντα υ<c ( OΠΤIKH Η ταχύτητα του φωτός δεν είναι πάντα ίδια αλλά αλλάζει όταν το φως από ένα μέσο περνά σε κάποιο άλλο. Αν c είναι η ταχύτητα του φωτός στο κενό και υ η ταχύτητά του σε ένα άλλο υλικό τότε, ορίζουμε

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mail:

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Φύση του φωτός (κύμα ή σωμάτιο)

Φύση του φωτός (κύμα ή σωμάτιο) Φύση του φωτός (κύμα ή σωμάτιο) Για τη μελέτη της συμπεριφοράς του φωτός απαιτείται η εισαγωγή κριτηρίων ως προς τα μεγέθη που περιγράφουν την διάδοση και την αλληλεπίδραση του φωτός με την ύλη. Κριτήρια

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

Σφάλματα φακών (Σφαιρικό - Χρωματικό).

Σφάλματα φακών (Σφαιρικό - Χρωματικό). O12 Σφάλματα φακών (Σφαιρικό - Χρωματικό). 1. Σκοπός Στην άσκηση αυτή υπολογίζονται πειραματικά δυο από τα πιο σημαντικά οπτικά σφάλματα (η αποκλίσεις) που παρουσιάζονται όταν φωτεινές ακτίνες διέλθουν

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΔΙΑΔΟΣΗ ΤΟΥ ΦΩΤΟΣ

ΕΥΘΥΓΡΑΜΜΗ ΔΙΑΔΟΣΗ ΤΟΥ ΦΩΤΟΣ ΕΥΘΥΓΡΑΜΜΗ ΔΙΑΔΟΣΗ ΤΟΥ ΦΩΤΟΣ Όταν προσπίπτει φως σε μια διεπιφάνεια που σχηματίζεται μεταξύ δύο οπτικά διαφορετικών μέσων, ένα μέρος του υφίσταται ανάκλαση ενώ το υπόλοιπο διέρχεται από το πρώτο στο δεύτερο

Διαβάστε περισσότερα

ΟΠΤΙΚΗ ΦΩΤΟΜΕΤΡΙΑ. Φως... Φωτομετρικά μεγέθη - μονάδες Νόμοι Φωτισμού

ΟΠΤΙΚΗ ΦΩΤΟΜΕΤΡΙΑ. Φως... Φωτομετρικά μεγέθη - μονάδες Νόμοι Φωτισμού ΟΠΤΙΚΗ ΦΩΤΟΜΕΤΡΙΑ Φως... Φωτομετρικά μεγέθη - μονάδες Νόμοι Φωτισμού Ηλεκτρομαγνητικά κύματα - Φως Θα διερευνήσουμε: 1. Τί είναι το φως; 2. Πως παράγεται; 3. Χαρακτηριστικά ιδιότητες Γεωμετρική οπτική:

Διαβάστε περισσότερα

HMY 333 Φωτονική. Διάλεξη 04 Απεικόνιση. Οι λόγοι για τους οποίους χρησιμοποιούμε τους φακούς:

HMY 333 Φωτονική. Διάλεξη 04 Απεικόνιση. Οι λόγοι για τους οποίους χρησιμοποιούμε τους φακούς: 1 2 HMY 333 Φωτονική Διάλεξη 04 Απεικόνιση Το ηλεκτρομαγνητικό φάσμα μπορεί να χρησιμοποιηθεί για τις επικοινωνίες (π.χ. ραδιοκύματα ή οπτικές ίνες). Ένας άλλος τομέας χρήσης της ηλεκτρομαγνητικής ακτινοβολίας

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Α3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή

Α3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β) ΠΑΡΑΣΚΕΥΗ 25 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΘΕΜΑ Α Στις ημιτελείς

Διαβάστε περισσότερα

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Α. Στόχοι Οι μαθητές: Να παρατηρήσουν το φαινόμενο της συμβολής / περίθλασης Να αξιοποιήσουν το φαινόμενο της περίθλασης

Διαβάστε περισσότερα

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία.

s s f 25 s ' 10 10 s ' 10 α) s ' 16.7 β) S=10 cm, άρα το αντικείμενο βρίσκεται πάνω στην εστία. ΑΣΚΗΣΗ 1 Δύο κάτοπτρα σχηματίζουν ορθή γωνία, όπως φαίνεται στο σχήμα. Στο σημείο Ο υπάρχει ένα αντικείμενο. Να προσδιορίσετε τη θέση των ειδώλων που σχηματίζονται ΑΣΚΗΣΗ 2 Κοίλο σφαιρικό κάτοπτρο έχει

Διαβάστε περισσότερα

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα). ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση

Διαβάστε περισσότερα

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.

Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε

Διαβάστε περισσότερα

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0) . Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ 0 ΕΚΦΩΝΗΕΙ ΘΕΜΑ Α τις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Κατά τη

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος.

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος. Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος. 1. Σκοπός Όταν δέσμη λευκού φωτός προσπέσει σε ένα πρίσμα τότε κάθε μήκος κύματος διαθλάται σύμφωνα με τον αντίστοιχο

Διαβάστε περισσότερα

Εισαγωγή στο φως. Εισαγωγή

Εισαγωγή στο φως. Εισαγωγή Εισαγωγή στο φως Το φως είναι απαραίτητο για όλες σχεδόν τις μορφές ζωής στη Γη. (Σήμερα γνωρίζουμε ότι) Το φως είναι μια μορφή ηλεκτρομαγνητικής ακτινοβολίας. Μέσω του φωτός μεταφέρεται ενέργεια από την

Διαβάστε περισσότερα

Προβλήματα φακών/κατόπτρων

Προβλήματα φακών/κατόπτρων Προβλήματα φακών/κατόπτρων 1. Χρησιμοποιείστε την τεχνική των ακτινών και σχηματισμών ειδώλου για να βρείτε το είδωλο, που δημιουργείται από ένα κοίλο σφαιρικό κάτοπτρο, ενός αντικειμένου που τοποθετείται

Διαβάστε περισσότερα

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά Ασκήσεις (Ηλεκτρισμός-Οπτική) Ηλεκτρισμός 6 η. Ηλεκτρόνια κινούμενα με ταχύτητα 0 m / sec εισέρχονται σε χώρο μαγνητικού πεδίου όπου διαγράφουν κυκλική τροχιά ακτίνας 0.0m. Να βρεθεί η ένταση του μαγνητικού

Διαβάστε περισσότερα

Κοσμάς Γαζέας Λέκτορας Παρατηρησιακής Αστροφυσικής ΕΚΠΑ Τομέας Αστροφυσικής, Αστρονομίας και Μηχανικής Εργαστήριο Αστρονομίας και Εφαρμοσμένης Οπτικής

Κοσμάς Γαζέας Λέκτορας Παρατηρησιακής Αστροφυσικής ΕΚΠΑ Τομέας Αστροφυσικής, Αστρονομίας και Μηχανικής Εργαστήριο Αστρονομίας και Εφαρμοσμένης Οπτικής Κοσμάς Γαζέας Λέκτορας Παρατηρησιακής Αστροφυσικής ΕΚΠΑ Τομέας Αστροφυσικής, Αστρονομίας και Μηχανικής Εργαστήριο Αστρονομίας και Εφαρμοσμένης Οπτικής Διαλέξεις Δευτέρα 18:00-19:00 Πέμπτη 16:00-19:00 Εργαστήριο

Διαβάστε περισσότερα

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,,

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,, 1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι μετρημένα σε και

Διαβάστε περισσότερα

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης

Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materal.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Θεωρία πινάκων Διάνυσμα ακτίνας Παραξονική προσέγγιση ta διάνυσμα ακτίνας y αριθμητικό

Διαβάστε περισσότερα

Φύση και διάδοση φωτός

Φύση και διάδοση φωτός Σημειώσεις Γενικής Φυσικής - ΒΕΤ Μ. Μπενής / 2016 Κυματική Φύση και διάδοση φωτός Ακτινικό μοντέλο διάδοσης. Στο κεφάλαιο των κυμάτων αναπαραστήσαμε τη διάδοση των κυμάτων με τα κυματομέτωπα. Μια απλούστευση

Διαβάστε περισσότερα

Fundamentals of Lasers

Fundamentals of Lasers Fundamentals of Lasers Συνθήκη κατωφλίου: Ας υποθέσουμε ένα μέσο με καταστάσεις i> και k>, με ενέργειες Ε i, Ε k. Ένα Η/Μ κύμα που διαδίδεται σε αυτό το μέσο θα μεταβάλλει την έντασή του σύμφωνα με τη

Διαβάστε περισσότερα

Μέτρηση καμπυλότητας σφαιρικών και τοροειδών επιφανειών με οπτικές και μηχανικές μεθόδους

Μέτρηση καμπυλότητας σφαιρικών και τοροειδών επιφανειών με οπτικές και μηχανικές μεθόδους ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ, ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΣΤΡΟΝΟΜΙΑΣ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Μέτρηση

Διαβάστε περισσότερα

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x 1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος 1. Εισαγωγή Όταν δέσµη λευκού φωτός προσπέσει σε ένα πρίσµα τότε κάθε µήκος κύµατος διαθλάται σύµφωνα µε τον αντίστοιχο

Διαβάστε περισσότερα

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες:

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: ΔΙΑΓΩΝΙΣΜΑ ΚΥΜΑΤΩΝ (1) ΘΕΜΑ 1 ο Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: 1) Κατά τη διάδοση ενός κύματος μεταφέρεται ενέργεια και ορμή, αλλά όχι ύλη. 2) Σε

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017 [1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗ ΜΑΘΗΜΑ 1 Ο ΟΠΤΙΚΗ. Δρ. M.Χανιάς Αν.Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ, ΤΕΙ Ανατολικής Μακεδονίας και Θράκης

ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗ ΜΑΘΗΜΑ 1 Ο ΟΠΤΙΚΗ. Δρ. M.Χανιάς Αν.Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ, ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗ ΜΑΘΗΜΑ 1 Ο ΟΠΤΙΚΗ Δρ. M.Χανιάς Αν.Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ, ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΚΑΒΑΛΑ 2018 1 Το φως σαν σωμάτιο Σωματιδιακή φύση του φωτός Γεωμετρική

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1 Μεγεθυντικός φακός 1. Σκοπός Οι μεγεθυντικοί φακοί ή απλά μικροσκόπια (magnifiers) χρησιμοποιούνται για την παρατήρηση μικροσκοπικών αντικειμένων ώστε να γίνουν καθαρά παρατηρήσιμες οι λεπτομέρειες τους.

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας. Μονάδες 5

Να αιτιολογήσετε την απάντησή σας. Μονάδες 5 2002 5. Να γράψετε στο τετράδιό σας τη λέξη που συµπληρώνει σωστά καθεµία από τις παρακάτω προτάσεις. γ. Η αιτία δηµιουργίας του ηλεκτροµαγνητικού κύµατος είναι η... κίνηση ηλεκτρικών φορτίων. 1. Ακτίνα

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής

3.2 Η ΠΑΡΑΒΟΛΗ. Ορισμός Παραβολής. Εξίσωση Παραβολής 9 3 Η ΠΑΡΑΒΟΛΗ Ορισμός Παραβολής Έστω μια ευθεία δ και ένα σημείο Ε εκτός της δ Ονομάζεται παραβολή με εστία το σημείο Ε και διευθετούσα την ευθεία δ ο γεωμετρικός τόπος C των σημείων του επιπέδου τα οποία

Διαβάστε περισσότερα

Εισαγωγή Στοιχεία Θεωρίας

Εισαγωγή Στοιχεία Θεωρίας Εισαγωγή Σκοπός της άσκησης αυτής είναι η εισαγωγή στην τεχνογνωσία των οπτικών ινών και η μελέτη τους κατά τη διάδοση μιας δέσμης laser. Συγκεκριμένα μελετάται η εξασθένιση που υφίσταται το σήμα στην

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση

ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση ΕΥΘΥΓΡΑΜΜΗ ΔΙΑΔΟΣΗ ΤΟΥ ΦΩΤΟΣ Σύμφωνα με την καθημερινή μας εμπειρία, το φως φαίνεται σαν να ταξιδεύει ευθύγραμμα μέχρι να συναντήσει κάποιο αντικείμενο.

Διαβάστε περισσότερα

sin 2 n = sin A 2 sin 2 2 n = sin A = sin = cos

sin 2 n = sin A 2 sin 2 2 n = sin A = sin = cos 1 Σκοπός Βαθμός 9.5. Ηθελε να γραψω καλύτερα το 9 ερωτημα. Σκοπός αυτής της εργαστηριακής άσκησης είναι η μελέτη της ανάκλασης, διάθλασης και πόλωσης του φωτός. Προσδιορίζουμε επίσης τον δείκτη διάθλασης

Διαβάστε περισσότερα

Φυσικά Μεγέθη Μονάδες Μέτρησης

Φυσικά Μεγέθη Μονάδες Μέτρησης ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΤΑΞΗ: Α Λυκείου Προσανατολισμού 1,3,4. ΚΕΦΑΛΑΙΑ ΕΝΟΤΗΤΕΣ ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ Οι μαθητές και οι μαθήτριες να είναι σε θέση να: ΑΝΤΙΣΤΟΙΧΑ

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση ΠεριεχόµεναΚεφαλαίου 35 Περίθλαση απλής σχισµής ή δίσκου Intensity in Single-Slit Diffraction Pattern Περίθλαση διπλής σχισµής ιακριτική ικανότητα; Κυκλικές ίριδες ιακριτική

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας. ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας. ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Σγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΓΕΩΜΕΤΡΙΚΗ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟΥ 3

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟΥ 3 ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟΥ 3 Η ταχύτητα του φωτός στο κενό ή στον αέρα είναι σταθερή και ίση με c o =3.10 8 m/s Η ταχύτητα του φωτός οπουδήποτε αλλού είναι c και ισχύει πάντα ότι c

Διαβάστε περισσότερα

1) Κατά μήκος ενός γραμμικού μέσου διαδίδεται ένα αρμονικό κύμα της.δυο σημεία Κ και Λ του ελαστικού μέσου

1) Κατά μήκος ενός γραμμικού μέσου διαδίδεται ένα αρμονικό κύμα της.δυο σημεία Κ και Λ του ελαστικού μέσου 1 Επώνυμο. Όνομα. Αγρίνιο 20-01-2013 Ζήτημα 1 0 Α) Επιλέξτε τη σωστή απάντηση. 1) Κατά μήκος ενός γραμμικού μέσου διαδίδεται ένα αρμονικό κύμα της.δυο σημεία Κ και Λ του ελαστικού μέσου μορφής. 2() t T

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα