ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
|
|
- Κύμα Κοσμόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d L Αμελητέο πάχος Σταθερό ρεύμα σε όλη την έκταση του διπόλου J ìï L L ( ) ( )ˆ,,, ïi x y z - z = í ïïï î 0, αλλού ( xyz) 1
2 3/5/016 Δίπολο Hetz 3 - jkr e A( xyz,, ) = ( x, y, z ) dv 4 ò J V R L/ - jkr e = éi ( x ) ( y ) ˆùdy dx dz 4 R òòò êë zú û -L/ x y -jkr L/ -jkr Ie ILe = zˆ dz 4 R ò = 4R -L/ R x y zz x y z -jk -jk ˆ ˆ ˆ ILe ILe A= A cos ˆ sin ˆ zz= A+ A θ= - θ 4 4 zˆ Δίπολο Hetz 4 jkil jk H, e sin 4 j IL jkil E e Zo e ZoH 4 4 o jk jk, sin sin, 1 * Pav () = Re ée() H () ù êë úû 1 * = Re éˆ E(, ) H(, ) ù êë úû 1 ZkIL o = Re é ˆZo H ù ê = sin ë ú û 3 æwattö = P (, ) ˆ ç çè m ø ˆ
3 3/5/016 Δίπολο Hetz 5 U ZkI L 3 o P, sin Κανονικοποιημένο πολικό διάγραμμα Δίπολο Hetz 6 () ( ) ˆ ˆ ad = Pav S, é sin ù ò = S òò ê ë ú û 0 0 W d P d d ZkIL = d P d = d ò ò ò R ad o 3 (, ) sin sin o 4 o 40 Z I L Z I L I L = = = I L W I I ad 80 L eff ( Watts) Μη αποδοτικός ακτινοβολητής (L<<λ) 3
4 3/5/016 Δίπολο Hetz 7 D g U ZkIL 3 sin o Z o 4 4 sin Wad 40 I L 80 max 90 sin 3 3 D D dB Hetz g o AeHetz 3 D Γραμμική Διπολική Κεραία Αυθαίρετου Μήκους Υπέρθεση πολλών στοιχειωδών διπόλων Hetz. Το ρεύμα δεν είναι σταθερό κατά μήκος της κεραίας. 4
5 3/5/016 9 Γραμμική Διπολική Κεραία Αυθαίρετου Μήκους I z L Imax sin k z 0 z L/ L Imax sin k z L/ z 0 10 Γραμμική Διπολική Κεραία Αυθαίρετου Μήκους jki z dz jk de, ZoH, Zo e sin 4 1 1,, kk z cos jki z dz jk jkz cos de, ZoH, Zo sine e 4,, max jk E ZoH Zo e L L cos k cos cos k ji sin 5
6 3/5/ Γραμμική Διπολική Κεραία Αυθαίρετου Μήκους U L L cos k cos cos k ZI o max P, 8 sin P, L L cos k cos cos k ZI 8 sin o max U D= D, = = 4 g ( ) max (, ) U(, ) max Uo ( ) òò 0 0 max U, sindd Γραμμική Διπολική Κεραία L=λ/ 1 Κανονικοποιημένο πολικό διάγραμμα (L = λ/) 6
7 3/5/016 Γραμμική Διπολική Κεραία L=λ 13 Κανονικοποιημένο πολικό διάγραμμα (L = λ) Γραμμική Διπολική Κεραία L=λ 14 7
8 3/5/016 Γραμμική Διπολική Κεραία L=3λ/ 15 Κανονικοποιημένο πολικό διάγραμμα (L = 3λ/) Γραμμική Διπολική Κεραία L=3λ/ 16 8
9 3/5/016 Γραμμική Διπολική Κεραία L=λ 17 Κανονικοποιημένο πολικό διάγραμμα (L = λ) Γραμμική Διπολική Κεραία L=λ 18 9
10 3/5/016 Γραμμική Διπολική Κεραία L=5λ/ 19 Κανονικοποιημένο πολικό διάγραμμα (L = 5λ/) Γραμμική Διπολική Κεραία L=5λ/ 0 10
11 3/5/016 1 Γραμμική Διπολική Κεραία Αυθαίρετου Μήκους L L cos k cos cos k ZImax o Wad U sin dd d 4 sin R ad ad o max 0 L L cos k cos cos k W Z I sin d R ad 1 Cln klcikl sin kl Si kl Si kl 60 1 kl cos kl C ln Ci kl Ci kl Γραμμική Διπολική Κεραία Αυθαίρετου Μήκους Si x x 0 n n 1 t x dt n0 1! 1 t ln sin 1 cos Cix dt C x Cin x t x t n n C 0, Η σταθερά του Eule 0 n1 n t x n1! x 1cos 1 Cin x dt t n n 11
12 3/5/016 Ολοκληρωτικό Ημίτονο Συνημίτονο 3 4 Γραμμική Διπολική Κεραία Αυθαίρετου Μήκους 1
13 3/5/016 Δίπολο λ/ 5,, cos cos j60i sin max jk E ZoH e cos cos 15I max P, sin U cos cos 15I max sin Δίπολο λ/ Rad Ohms W ad I max 73,09 Watts D g cos cos U Wad sin Dm dbi Σελίδα 6 13
14 3/5/016 Μικρό Κυκλικό Πλαίσιο 7 Μικρό σημαίνει μήκος < 0.1 λ Το ρεύμα θεωρείται σταθερό σε όλο το μήκος. ακτίνα Μικρό Κυκλικό Πλαίσιο 8 - jkr e da(,, ) = I( ) dl 4 R kia sinæ 1 ö e A= φˆ A φ j 1+ 4 ç j k çè ø - j k E E H H 0 E H Z 4 kai 4 kai o sin sin e e jk jk 14
15 3/5/016 Μικρό Κυκλικό Πλαίσιο 9 U Z o kai sin 4 4 kai Wad Zo 10 k a I ka 4 4 Rad Zo 0 k a D m U 4 W max 3 ad Aem 3 = D= 4 8 Μικρό Κυκλικό Πλαίσιο 30 Αν η κεραία αποτελείται από πολλαπλούς επάλληλους βρόχους (περιελίξεις) τότε η αντίσταση ακτινοβολίας αυξάνει ανάλογα με το τετράγωνο του αριθμού των περιελίξεων. Δεδομένου ότι ο απλός κυκλικός βρόχος έχει χαμηλή αντίσταση ακτινοβολίας, γεγονός που τον καθιστά μη αποδοτικό ακτινοβολητή, αυτή είναι μια συνήθης τακτική για την αύξηση της αντίστασης ακτινοβολίας. 15
16 3/5/016 Μικρό Κυκλικό Πλαίσιο 31 Μικρό Κυκλικό Πλαίσιο & Μαγνητικό Δίπολο 3 Ορίζουμε για τη συνέχεια ότι ένα μικρό μαγνητικό δίπολο μήκους l που διαρρέεται από ένα μαγνητικό ρεύμα I m και είναι προσανατολισμένο στον άξονα z, είναι ισοδύναμο με έναν μικρό κυκλικό βρόχο επιφάνειας S που διαρρέεται από ρεύμα I και βρίσκεται στο επίπεδο xy. S = a 16
17 3/5/016 Κυκλικός Βρόχος Αυθαίρετου Μήκους 33 ( a) I U( ) = J ka 8Z o W ad R ( a) ( ) 1 sin ìï ( a), a ³ 4o ï í ka é ù < 4kZ ò o ê 6 ïî ï ë 0 ûú Για την περίπτωση μεγάλου βρόχου a ³ / a J ( ka) J ( y) dy, a = 60 ka Umax = ( a) Z 8 o D = 0.68ka Aem, = a Κυκλικός Βρόχος Αυθαίρετου Μήκους 34 17
18 3/5/016 Κυκλικός Βρόχος Αυθαίρετου Μήκους 35 Κυκλικός Βρόχος Αυθαίρετου Μήκους 36 18
19 3/5/016 Κεραίες Υπεράνω Εδάφους 37 Η θεωρία των ειδώλων είναι μια απλή τεχνική για την ανάλυση της επίδρασης που έχει ένας λείος επίπεδος αγωγός, με άπειρες διαστάσεις, στη λειτουργία μιας κεραίας που βρίσκεται κοντά του. Η αγώγιμη επιφάνεια αντικαθίσταται από ένα «είδωλο» της κεραίας τοποθετημένο συμμετρικά ως προς την επιφάνεια. Προκύπτει, έτσι, ένα ισοδύναμο σύστημα δύο κεραιών, όπου η κεραία «είδωλο» υποκαθιστά την αγώγιμη επιφάνεια και τα ανακλώμενα κύματα υποκαθίστανται από εκείνα που εκπέμπονται από την κεραία είδωλο. Το ισοδύναμο σύστημα περιγράφει ικανοποιητικά τα πεδία που δημιουργούνται στο χώρο υπεράνω της αγώγιμης επιφάνειας, ενώ τα πεδία που προκύπτουν για το χώρο κάτω από την αγώγιμη επιφάνεια δεν ανταποκρίνονται στην πραγματική κατάσταση. Κεραίες Υπεράνω Εδάφους 38 19
20 3/5/ Κατακόρυφο ηλεκτρικό δίπολο υπεράνω εδάφους Τα βέλη που εμφανίζονται στο σχήμα απεικονίζουν τη σχετική φορά της πόλωσης σε κάθε τμήμα της διαδρομής 40 Κατακόρυφο ηλεκτρικό δίπολο υπεράνω εδάφους é - jk ki Le ù é ù 0 o sin úë cos( cos ê ) 4 ú û E jz kh ë û O πρώτος όρος εκφράζει το ηλεκτρικό πεδίο που δημιουργεί στο σημείο P ένα δίπολο μήκους L, που είναι τοποθετημένο παράλληλα στο άξονα z, με το κέντρο του στην αρχή του συστήματος συντεταγμένων. Ο δεύτερος όρος του γινομένου εξαρτάται (για δεδομένη συχνότητα) από το ύψος h τοποθέτησης της κεραίας και τη γωνία παρατήρησης θ, και καλείται παράγοντας διάταξης (aay facto). Ο ίδιος παράγοντας διάταξης εφαρμόζεται για οριζόντιο μαγνητικό δίπολο, που το είδωλό του έχει την ίδια φορά. 0
21 3/5/ Κατακόρυφο ηλεκτρικό δίπολο υπεράνω εδάφους 4 Κατακόρυφο ηλεκτρικό δίπολο υπεράνω εδάφους 1
22 3/5/ Οριζόντιο ηλεκτρικό δίπολο υπεράνω εδάφους 44 Οριζόντιο ηλεκτρικό δίπολο υπεράνω εδάφους z Σημείο παρατήρησης Ρ Πραγματική κεραία θ 1 h θ ψ φ y h θ Κεραία είδωλο x
23 3/5/ Οριζόντιο ηλεκτρικό δίπολο υπεράνω εδάφους d E = E + E - jk ki0le = jzo 1-sin sin jkhsin khcos 4 πεδίο που δημιουργείται σε ελεύθερο χώρο ( ( ) ) παράγοντας διάταξης Παρατηρούμε και πάλι ότι η τιμή της έντασης του ηλεκτρικού πεδίου στο σημείο δίνεται ως γινόμενο της τιμής της έντασης του ηλεκτρικού πεδίου που θα υπήρχε στο ίδιο σημείο αν απουσίαζε η ανακλαστική επιφάνεια (περίπτωση ελεύθερου χώρου) επί έναν πολλαπλασιαστικό παράγοντα (παράγοντας διάταξης). 46 Οριζόντιο ηλεκτρικό δίπολο υπεράνω εδάφους h 3 8 3
24 3/5/ Οριζόντιο ηλεκτρικό δίπολο υπεράνω εδάφους 48 Οριζόντιο ηλεκτρικό δίπολο υπεράνω εδάφους 4
25 3/5/ Κατακόρυφο μαγνητικό δίπολο υπεράνω εδάφους Θα πρέπει να θεωρήσουμε ότι ένας ισοδύναμος μικρός ρευματικός βρόχος βρίσκεται σε επίπεδο παράλληλο με το επίπεδο του εδάφους, π.χ. το xy, και συνεπώς το μαγνητικό δίπολο βρίσκεται στον άξονα z. Η φορά του ειδώλου φαίνεται σε προηγούμενο σχήμα, ενώ εξαιτίας της αλλαγής της φοράς θα πρέπει να χρησιμοποιήσουμε τον παράγοντα διάταξης που χρησιμοποιήσαμε και στο οριζόντιο ηλεκτρικό δίπολο, AF = éj k hsin( k hcos ) ù ë û 50 Οριζόντιο μαγνητικό δίπολο υπεράνω εδάφους Για την περίπτωση του οριζόντιου μαγνητικού διπόλου υπεράνω εδάφους θα πρέπει να θεωρήσουμε ότι ένας ισοδύναμος ρευματικός βρόχος βρίσκεται είτε στο επίπεδο xz είτε στο yz. Η φορά του ειδώλου φαίνεται σε προηγούμενο σχήμα, ενώ εξαιτίας της διατήρησης της φοράς θα πρέπει να χρησιμοποιήσουμε τον παράγοντα διάταξης που χρησιμοποιήσαμε και στο κατακόρυφο ηλεκτρικό δίπολο, AF = écos( k hcos ) ù ë û 5
26 3/5/ Ευχαριστώ για την προσοχή σας Αθανάσιος Κανάτας Καθηγητής Πανεπιστημίου Πειραιώς Τηλ: e mail: kanatas@unipi.g 6
Κεραίες & Ασύρματες Ζεύξεις
Κεραίες & Ασύρματες Ζεύξεις ΓΡΑΜΜΙΚΕΣ ΚΕΡΑΙΕΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν τόσο τα
ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
8/3/018 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εισαγωγή στις Κεραίες Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Μηχανισμός Ακτινοβολίας
ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
7/4/017 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εισαγωγή στις Κεραίες Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Μηχανισμός Ακτινοβολίας
ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εισαγωγή στα Η/Μ Κύματα Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Ιδιότητες των μέσων
Κεραίες & Ασύρματες Ζεύξεις
Κεραίες & Ασύρματες Ζεύξεις ΑΝΤΙΣΤΑΣΗ ΕΙΣΟΔΟΥ ΚΕΡΑΙΑΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν
Περιεχόμενα. Συστήματα Κεραιών & Ασύρματη Διάδοση. Γραμμικές κεραίες σύρματος
1 Μαρτίου 010 Συστήματα Κεραιών & Ασύρματη Διάδοση Γραμμικές κεραίες σύρματος Περιεχόμενα Δίπολο απειροστού μήκους Πυκνότητα ισχύος και αντίσταση ακτινοβολίας Απόσταση ακτίνιου και Σφαίρα ακτίνιου Διαχωρισμός
Περιοχές Ακτινοβολίας Κεραιών
Κεραίες ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Δημοσθένης Βουγιούκας Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Πληροφοριακών & Επικοινωνιακών Συστημάτων Περιοχές Ακτινοβολίας Κεραιών 2 1 Σημειακή Πηγή 3 Κατακόρυφα Πολωμένο
Κεραίες & Ασύρματες Ζεύξεις
Κεραίες & Ασύρματες Ζεύξεις Εισαγωγή στις ΣΤΟΙΧΕΙΟΚΕΡΑΙΕΣ Το μάθημα αυτό πραγματεύεται το αντικείμενο των κεραιών και των Ασύρματων Ζεύξεων. Περιέχει τη θεμελίωση και τις βασικές έννοιες /αρχές που διέπουν
Περιεχόμενα. Συστήματα Κεραιών & Ασύρματη Διάδοση. Κεραίες Βρόχου
8 Μαρτίου 1 Συστήματα Κεραιών & Ασύρματη Διάδοση Κεραίες Βρόχου Περιεχόμενα Εισαγωγή Μικρός κυκλικός βρόχος Πυκνότητα ισχύος και αντίσταση ακτινοβολίας Κοντινό πεδίο Μακρινό πεδίο Κυκλικός βρόχος σταθερού
8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.
1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση
ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)
ΑΣΚΗΣΗ 1 ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση 30-06-08 ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) Α) Τρία σηµειακά ϕορτία τοποθετούνται στις κορυφές ενός τετραγώνου πλευράς α, όπως ϕαίνεται στο σχήµα 1. Υπολογίστε
Εξισώσεις του Maxwell
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εισαγωγή στα Η/Μ Κύματα Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Εξισώσεις του Maxwell
Από το στοιχειώδες δίπολο στις κεραίες
Από το στοιχειώδες δίπολο στις κεραίες Τι ξέρουμε Έχουμε μελετήσει ένα στοιχειώδες (l
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ (ΚΕΦ 28)
ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ (ΚΕΦ 8) B που παράγεται από κινούμενο φορτίο Το Ηλ. Πεδίο στο P (δεν φαίνεται) είναι E = 1 4πε 0 q r rˆ Για το Μαγνητικό Πεδίο στο P προκύπτει πειραματικά ότι: µ 0 qv rˆ B = 4π
Η αρνητική φορά του άξονα z είναι προς τη σελίδα. Για να βρούμε το μέτρο του Β χρησιμοποιούμε την Εξ. (2.3). Στο σημείο Ρ 1 ισχύει
ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.. Σταθερό ρεύμα 5 Α μέσω χάλκινου σύρματος ρέει προς δεξαμενή ανοδείωσης. Υπολογίστε το μαγνητικό πεδίο που δημιουργείται από το τμήμα του σύρματος μήκους, cm, σε ένα σημείο που
Ασκήσεις 6 ου Κεφαλαίου
Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη
ΗΜ & Διάδοση ΗΜ Κυμάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΗΜ & Διάδοση ΗΜ Κυμάτων Ενότητα : Κυματική Εξίσωση & Επίπεδο ΗΜ Κύμα Σαββαΐδης Στυλιανός Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014
Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,
Λύση: Η δύναμη σε ρευματοφόρο αγωγό δίνεται από την
1) Στο παρακάτω σχήμα το τμήμα της καμπύλης ΚΛ μεταξύ x = 1 και x = 3.5 αντιστοιχεί σε ένα αγωγό που διαρρέεται από ρεύμα Ι = 1.5 Α με τη φορά που δείχνεται. Η καμπύλη είναι δευτεροβάθμια ως προς x με
ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ B που παράγεται από κινούμενο φορτίο Το Ηλ. Πεδίο στο P (δεν φαίνεται) είναι E 1 4 0 q r 2 rˆ Για το Μαγνητικό Πεδίο στο P προκύπτει πειραματικά ότι: 0 qv rˆ Έχουμε εισάγει την
B 2Tk. Παράδειγμα 1.2.1
Παράδειγμα 1..1 Μία δέσμη πρωτονίων κινείται μέσα σε ομογενές μαγνητικό πεδίο μέτρου,0 Τ, που έχει την κατεύθυνση του άξονα των θετικών z, (Σχ. 1.4). Τα πρωτόνια έχουν ταχύτητα με μέτρο 3,0 10 5 m / s
Κεραίες. Ενότητα 2: Το πρόβλημα της ακτινοβολίας
Κεραίες Ενότητα : Το πρόβλημα της ακτινοβολίας Δημήτρης Βαρουτάς, Αριστείδης Τσίπουρας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Το πρόβλημα της ακτινοβολίας ΚΕΡΑΙΕΣ ΜΑΘΗΜΑ ο Το πρόβλημα
ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)
ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία
Προβλήματα στην Ανάλυση Συντονισμένων Κυκλικών Στοιχειοκεραιών Κυλινδρικών Διπόλων μέσω Μεθόδων Ροπών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Προβλήματα στην Ανάλυση Συντονισμένων Κυκλικών Στοιχειοκεραιών
3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε
8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση
11//17 8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση Φίλιππος Φαρμάκης Επ. Καθηγητής 1 Ηλεκτρομαγνητισμός Πως συνδέονται ο ηλεκτρισμός με τον μαγνητισμό; Πως παράγονται τα κύματα;
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ (ΚΕΦ 27) Μαγνητικές δυνάμεις
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ (ΚΕΦ 27) Μαγνητικές δυνάμεις ΠΑΡΑΤΗΡΗΣΕΙΣ εντός 1. Δέσμη φορτισμένων σωματιδίων αποκλίνουν στο πεδίο B ενός μαγνήτη δηλ. Δέχονται μια δύναμη F m κάθετη τόσο στο v όσο και στο B (είτε v
Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ
Hλεκτρικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SRWAY, Physics fo scientists nd enginees YOUNG H.D., Univesity
Από τον Ηλεκτρομαγνητισμό στις Τηλεπικοινωνίες
Από τον Ηλεκτρομαγνητισμό στις Τηλεπικοινωνίες Τηλεπικοινωνιακό Σύστημα Όλα τα συστήματα που μεταφέρουν πληροφορία μπορούν να περιγραφθούν σαν ένα σύστημα επικοινωνίας. Τα συστήματα αυτά αποτελούνται από
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας»
Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος 018 19 «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας» ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ημερομηνία Παράδοσης : 6/11/018 ΑΣΚΗΣΗ 3 Σκοπός: Η παρούσα εργασία
Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική)
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική) Διάλεξη 5 η Ιωάννα Ζεργιώτη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mail:
1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1
. Ηλεκτρικό Φορτίο Το ηλεκτρικό φορτίο είναι ένα από τα βασικά χαρακτηριστικά των σωματιδίων από τα οποία οικοδομείται η ύλη. Υπάρχουν δύο είδη φορτίου (θετικό αρνητικό). Κατά την φόρτιση το φορτίο δεν
ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Σκοπός Σκοπός του κεφαλαίου είναι η ανασκόπηση βασικών μαθηματικών εργαλείων που αφορούν τη μελέτη διανυσματικών συναρτήσεων [π.χ. E(, t) ]. Τα εργαλεία αυτά είναι
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Ηλίας Γλύτσης, Τηλ. 21-7722479, e-mail:
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου 1. Ένα σύρμα μεγάλου μήκους φέρει ρεύμα 30 Α, με φορά προς τα αριστερά κατά μήκος του άξονα x. Ένα άλλο σύρμα μεγάλου μήκους φέρει
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Α Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και
d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα
Παράδειγμα 3.1. O περιστρεφόμενος βρόχος με σταθερή γωνιακή ταχύτητα ω μέσα σε σταθερό ομογενές μαγνητικό πεδίο είναι το πρότυπο μοντέλο ενός τύπου γεννήτριας εναλλασσόμενου ρεύματος, του εναλλάκτη. Αναπτύσσει
Πηγές μαγνητικού πεδίου Νόμος Ampere. Ιωάννης Γκιάλας 21 Μαίου 2014
Πηγές μαγνητικού πεδίου Νόμος Ampere Ιωάννης Γκιάλας 21 Μαίου 214 Στόχοι διάλεξης Να κατανοηθεί πως προκαλείται το μαγνητικό πεδίο Νόμος Biot-Savart Μαγνητικό πεδίο ευθύγραμμου ρευματοφόρου αγωγού Μαγνητική
Υπενθύμιση (από τη Μηχανική) /Εισαγωγή:
ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ Υπενθύμιση (από τη Μηχανική) /Εισαγωγή: Είχαμε πει ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος
Τα θέματα συνεχίζονται στην πίσω σελίδα
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ ΑΚΑΔ. ΕΤΟΣ 16-17 Διδάσκων : Χ. Βοζίκης Τ. Ε. Ι. ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 13/04/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f( ως προς το στο σημείο 0 ;
Διάφορες κεραίες. Μετάδοση ενέργειας μεταξύ πομπού-δέκτη
Κεραίες Antennas Διάφορες κεραίες Μετάδοση ενέργειας μεταξύ πομπού-δέκτη Hκεραία αποτελεί μία μεταλλική κατασκευή η λειτουργία της οποίας εστιάζεται στη μετατροπή των υψίσυχνων τάσεων ή ρευμάτων σε ηλεκτρομαγνητικά
W f. P V f εμβαδό βρόχου υστέρησης. P f εμβαδό βρόχου υστέρησης. Ενέργεια του μαγνητικού πεδίου. Ενέργεια του μαγνητικού πεδίου
Ενέργεια του μαγνητικού πεδίου Ενέργεια του μαγνητικού πεδίου (magnei field energy) : W f λ() λ(0) idλ Συνενέργεια (oenergy) : W i () i(0) λdi Αν θεωρήσουμε γραμμική (ακόρεστη) καμπύλη μαγνήτισης λ() Li()
ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ A u B Μέτρο Διεύθυνση Κατεύθυνση (φορά) Σημείο Εφαρμογής Διανυσματικά Μεγέθη : μετάθεση, ταχύτητα, επιτάχυνση, δύναμη Μονόμετρα Μεγέθη : χρόνος, μάζα, όγκος, θερμοκρασία,
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr ΚΑΤΑΝΕΜΗΜΕΝΕΣ ΔΥΝΑΜΕΙΣ Κέντρο βάρους μάζας
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 21-7722479 - e-mail:
β) Για ένα μέσο, όπου το Η/Μ κύμα έχει ταχύτητα υ
Ασκ. 5 (σελ 354) Το πλάτος του μαγνητικού πεδίου ενός ηλεκτρομαγνητικού κύματος ειναι 5.4 * 10 7 Τ. Υπολογίστε το πλάτος του ηλεκτρικού πεδίου, αν το κύμα διαδίδεται (a) στο κενό και (b) σε ένα μέσο στο
Εισαγωγή στις Τηλεπικοινωνίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος Κανάτας
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ
πάχος 0 πλάτος 2a μήκος
B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι 10. Η μέθοδος των ειδώλων
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Ι. Η μέθοδος των ειδώλων Περιγραφή της μεθόδου Σημειακό φορτίο και αγώγιμο επίπεδο Φορτίο μεταξύ δύο αγωγίμων ημιεπιπέδων Σημειακό φορτίο έξω από γειωμένη σφαίρα Σημειακό φορτίο
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί
Περίθλαση και εικόνα περίθλασης
Περίθλαση και εικόνα περίθλασης Η περίθλαση αναφέρεται στη γενική συμπεριφορά των κυμάτων, τα οποία διαδίδονται προς όλες τις κατευθύνσεις καθώς περνούν μέσα από μια σχισμή. Ο όρος εικόνα περίθλασης είναι
Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη η Τα Σήματα στις Τηλεπικοινωνίες
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων
Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων ΕΙΣΑΓΩΓΗ - Το μάθημα αυτό πραγματεύεται θεμελιώδεις έννοιες των γραμμών μεταφοράς στην επιστημονική περιοχή των ηλεκτρονικών συστημάτων
ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΕΚΦΩΝΗΣΕΙΣ
ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 - και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η χαρακτηριστική
ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1
ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ, Αγωγοί Διηλεκτρικά. Ν. Τράκας, Ι. Ράπτης Ζωγράφου 27.3.
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) 8-9 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Αγωγοί Διηλεκτρικά Ν. Τράκας Ι. Ράπτης Ζωγράφου 7.3.9 Να επιστραφούν λυμένες μέχρι.4.9 οι ασκήσεις 3 4 5 [ΠΡΟΣΟΧΗ: Οι λύσεις
ΠΑΡΑΤΗΡΗΣΕΙΣ. Η F m είναι δύναμη εξαρτώμενη από την ταχύτητα
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Μαγνητικές δυνάμεις ΠΑΡΑΤΗΡΗΣΕΙΣ εντός 1. έσμη φορτισμένων σωματιδίων αποκλίνουν στο πεδίο B ενός μαγνήτη δηλ. έχονται μια δύναμη F m κάθετη τόσο στο v όσο και στο B (είτε v B είτε όχι).
ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ
ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική
Αρχή λειτουργίας στοιχειώδους γεννήτριας εναλλασσόμενου ρεύματος
Αρχή λειτουργίας στοιχειώδους γεννήτριας εναλλασσόμενου ρεύματος ΣΤΟΧΟΣ : Ο μαθητής να μπορεί να, εξηγεί την αρχή λειτουργίας στοιχειώδους γεννήτριας εναλλασσόμενου ρεύματος, κατανοεί τον τρόπο παραγωγής
Δυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας
Δυναμική Μηχανών I 7 3 Συνάρτηση Απόκρισης Συχνότητας 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Απόκριση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΕ Γ.Ο.Ι. ΧΩΡΟΥΣ
Γεννήτριες ΣΡ Κινητήρες ΣΡ
Γεννήτριες ΣΡ Κινητήρες ΣΡ - Στοιχειώδεις Ηλεκτρικές Μηχανές Επαγωγή λέγεται το φαινόμενο κατά το οποίο αναπτύσσεται ΗΕΔ: a. Στα άκρα αγωγού όταν αυτός κινείται με ταχύτητα υ μέσα σε μαγνητικό πεδίο επαγωγής
Ο τελευταίος όρος είναι πάνω από την επιφάνεια στο άπειρο όπου J = 0,έτσι είναι μηδέν. Επομένως
Πρόβλημα 9.1 Αλλά και αφού είναι: Αλλά Και Έτσι Όμοια Επί πλέον (οι άλλοι δύο όροι αναιρούνται αφού Επομένως: Ο τελευταίος όρος είναι πάνω από την επιφάνεια στο άπειρο όπου J = 0,έτσι είναι μηδέν. Επομένως
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ 1 1. ΜΑΓΝΗΤΙΣΜΟΣ Μαγνητικά φαινόμενα παρατηρήθηκαν για πρώτη φορά πριν από τουλάχιστον 2500 χρόνια σε κομμάτια μαγνητισμένου σιδηρομεταλλεύματος,
ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή
ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 3 Ο : ΙΣΧΥΣ ΚΥΚΛΩΜΑΤΩΝ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Ως ισχύς ορίζεται ο ρυθμός παροχής ή κατανάλωσης ενέργειας. Η ηλεκτρική ισχύς ορίζεται ως το γινόμενο της τάσης επί το ρεύμα: p u i Ιδανικό πηνίο
ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09
ΕΡΓΑΣΙΑ 6 Ημερομηνία Παράδοσης: 9/6/9 1. Ένας ομογενώς φορτισμένος μονωτικός κυκλικός δίσκος ακτίνας με συνολικό φορτίο τοποθετείται στο επίπεδο xy. Να βρείτε το ηλεκτρικό πεδίο σε σημείο P που βρίσκεται
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1
Ηλεκτρική Δυναμική Ενέργεια Ένα ζεύγος παράλληλων φορτισμένων μεταλλικών πλακών παράγει ομογενές ηλεκτρικό πεδίο Ε. Το έργο που παράγεται πάνω σε θετικό δοκιμαστικό φορτίο είναι: W W Fl q y q l q y Ορίζοντας
ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού
ΤΥΠΟΛΟΓΙΟ q e = 1.6 10 19 C Φορτίο Ηλεκτρονίου 1.1 F = k Q 1 Q 2 r 2 = 9 10 9 Q 1 Q 2 r 2 Νόμος Coulomb 1.2 E = F q E = k Q r 2 E = k Q r 2 e r E = 2kλ ρ E = 2kλ ρ e ρ ε 0 = 1/4πk = 8.85 10 12 S. I. Ε
ΘΕΜΑ 1. Ονοματεπώνυμο. Τμήμα
Εισαγωγή στις Φυσικές Επιστήμες (9-7-007) Ηλεκτρομαγνητισμός Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1 Α. Μια μονωτική ράβδος μήκους l φέρει ομογενώς κατανεμημένο θετικό φορτίο Q και είναι διατεταγμένη κατά μήκος του
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mil:
Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014
Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 7 Μαίου 014 Στόχοι διάλεξης Πώς να: υπολογίζει την μεταβολή της μαγνητικής ροής. εφαρμόζει το νόμο του Faraday για τον υπολογισμό της επαγόμενης
cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =
ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ η εξεταστική περίοδος 0-3 Σελίδα - - ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 8-0-0 Διάρκεια: 3 ώρες Ύλη: Ταλαντώσεις Καθηγητής: ΑΤΡΕΙΔΗΣ
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
ΚΕΦΑΛΑΙΟ 1 Ο : ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ 1 Μια μαθηματική συνάρτηση f(t) χαρακτηρίζεται ως εναλλασσόμενη όταν: Όταν η τιμή παίρνεις θετικές και αρνητικές τιμές (εναλλάσσεται) σε σχέση με το χρόνο. Όταν η εναλλαγή
ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.
ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V
Ανάπτυξη κώδικα και GUI για σχεδίαση στοιχειοκεραιών με το λογισμικό MATLAB
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ-ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΥΣΙΚΗΣ(ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΙΑΣ) Κατεύθυνση: Ηλεκτρονική Τεχνολογία Τηλεπικοινωνιών Ανάπτυξη κώδικα και GUI για
1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:28/05/2012
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ:8/5/ ΘΕΜΑ Α Α. Θεωρία. Σελίδα σχολικού βιβλίου 53 Α. Θεωρία. Σελίδα σχολικού βιβλίου 9 Α3. Θεωρία. Σελίδα σχολικού βιβλίου 58
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά
. Να αποδείξετε ότι σε ένα ταλαντούμενο σύστημα ενός βαθμού ελευθερίας, μάζας και σταθεράς ελατηρίου s με πολύ ασθενή απόσβεση (γω, όπου γ r/, r η σταθερά αντίστασης και s/ ) το πλήρες εύρος στο μισό του
Από τι αποτελείται το Φως (1873)
Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός
ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ
ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΥ 6 Κ.Γ. Ευθυµιάδης, Αικ. Σιακαβάρα, Α.Π.Θ., Τµήµα Φυσικής, 6 . Το ρεύµα µετατόπισης προστέθηκε θεωρητικά από τον Maxwell στην εξίσωση του Apee ( B = µ j ) προκειµένου η τελευταία
Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα
Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο
ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )
ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ ) Η περιστροφική αδράνεια ενός σώματος είναι το μέτρο της αντίστασης του στη μεταβολής της περιστροφικής του κατάστασης, αντίστοιχο της μάζας στην περίπτωση της μεταφορικής
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006
ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006 Άσκηση 1 Δύο σφαίρες με ίσες μάζες m είναι δεμένες με νήματα μήκους l από το ίδιο σημείο της οροφής Σ. Αν η κάθε σφαίρα φέρει φορτίο q να βρεθεί η γωνία
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.