Thermal correlators in integrable models

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Thermal correlators in integrable models"

Transcript

1 Thermal correlators in integrable models G. Takács HAS Theoretical Physics Research Group Eötvös University, Budapest In collaboration with: B. Pozsgay (Institute for Theoretical Physics, Amsterdam) I. Szécsényi (Eötvös University) Talk given at the 8th Bologna Workshop on: CFT and Intergrable Models and their Applications to Quantum Field Theory, Statistical Mechanics and Condensed Matter Physics September 12-15, 2011

2 Outline of talk 1. Introduction Thermal correlators The problem 2. Ingredients of the solution Finite volume as regulator Multidimensional residue 3. The thermal two-point function 4. How to proceed further? Conclusions and outlook

3 What do we wish to compute and why? Goal: correlators in dimensional (integrable) QFTs at finite temperature O 1... O n T = Tr e RH O 1... O n Tr e RH R = 1 T

4 What do we wish to compute and why? Goal: correlators in dimensional (integrable) QFTs at finite temperature O 1... O n T = Tr e RH O 1... O n Tr e RH R = 1 T Why? A large number of condensed matter systems can be described by such models (impurities, (quasi) one-dimensional conductors, spin chains/ladders) What is a correlator good for? n = 1: order parameters n = 2: response functions (susceptibility etc)

5 One-point functions O(t, x) T = e REn n O(0, 0) n n n e REn

6 One-point functions O(t, x) T = N=0 k=1 e REn n O(0, 0) n n n e REn Solution is known: LeClair-Mussardo formula (1999) 1 N (ˆ ) dθk 1 O(t, x) T,µ = N! 2π 1 + e ɛ(θ F O k) 2N (θ 1,....θ N ) conn

7 One-point functions O(t, x) T = N=0 k=1 e REn n O(0, 0) n n n e REn Solution is known: LeClair-Mussardo formula (1999) 1 N (ˆ ) dθk 1 O(t, x) T,µ = N! 2π 1 + e ɛ(θ F O k) 2N (θ 1,....θ N ) conn ˆ dθ TBA: ɛ(θ) = mr cosh θ µ 2π ϕ(θ θ ) log(1 + e ɛ(θ ) ) ϕ(θ) = i log S(θ) θ F O 2N (θ 1,....θ N ) conn = θ 1,....θ N O(0, 0) θ 1,....θ N connected

8 One-point functions O(t, x) T = N=0 k=1 e REn n O(0, 0) n n n e REn Solution is known: LeClair-Mussardo formula (1999) 1 N (ˆ ) dθk 1 O(t, x) T,µ = N! 2π 1 + e ɛ(θ F O k) 2N (θ 1,....θ N ) conn ˆ dθ TBA: ɛ(θ) = mr cosh θ µ 2π ϕ(θ θ ) log(1 + e ɛ(θ ) ) ϕ(θ) = i log S(θ) θ F O 2N (θ 1,....θ N ) conn = θ 1,....θ N O(0, 0) θ 1,....θ N connected Pozsgay-Takács (2007): finite volume regularization, to O ( e 3mR) Pozsgay (2010): proof to all orders

9 Two-point functions R R t t x O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m (t: Euclidean time). n : N particles, m : M particles Massive QFT: E n N m, E m M m double series in powers of e mr and e m(r t)

10 Two-point functions R R t t x O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m (t: Euclidean time). n : N particles, m : M particles Massive QFT: E n N m, E m M m double series in powers of e mr and e m(r t) What do we have? 1. Large-distance asymptotics (Altshuler, Konik, Tsvelik 2004) 2. Partial expansion (Essler-Konik 2008,2009 only works for N = 1 or M = 1)

11 Two-point functions R R t t x O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m (t: Euclidean time). n : N particles, m : M particles Massive QFT: E n N m, E m M m double series in powers of e mr and e m(r t) What do we have? 1. Large-distance asymptotics (Altshuler, Konik, Tsvelik 2004) 2. Partial expansion (Essler-Konik 2008,2009 only works for N = 1 or M = 1) Goal: to have a systematic expansion!

12 LeClair-Mussardo proposal (1999) O 1 (x, t)o 2 (0, 0) T = 1 N [ˆ ] dθj N! 2π f σ j (θ j )e σ j (tɛ j +ixk j ) N=0 σ i =±1 j=1 F O 1 N (θ 1 iπ σ 1,..., θ N iπ σ N ) F O 2 N (θ 1 iπ σ 1,..., θ N iπ σ N ) where σ j = (1 σ j )/2 {0, 1}, f σj (θ j ) = 1/(1 + e σ j ɛ(θ j ) ), ɛ j = ɛ(θ j )/R és k j = k(θ j ) ˆ k(θ) = m sinh θ + dθ δ(θ θ )ρ 1 (θ ) ˆ 2πρ 1 (θ)(1 + e ɛ(θ) ) = m cosh θ + dθ ϕ(θ θ )ρ 1 (θ ) FN O (θ 1,..., θ N ) = 0 O(0, 0) θ 1,..., θ N

13 LeClair-Mussardo proposal (1999) O 1 (x, t)o 2 (0, 0) T = 1 N [ˆ ] dθj N! 2π f σ j (θ j )e σ j (tɛ j +ixk j ) N=0 σ i =±1 j=1 F O 1 N (θ 1 iπ σ 1,..., θ N iπ σ N ) F O 2 N (θ 1 iπ σ 1,..., θ N iπ σ N ) where σ j = (1 σ j )/2 {0, 1}, f σj (θ j ) = 1/(1 + e σ j ɛ(θ j ) ), ɛ j = ɛ(θ j )/R és k j = k(θ j ) ˆ k(θ) = m sinh θ + dθ δ(θ θ )ρ 1 (θ ) ˆ 2πρ 1 (θ)(1 + e ɛ(θ) ) = m cosh θ + dθ ϕ(θ θ )ρ 1 (θ ) FN O (θ 1,..., θ N ) = 0 O(0, 0) θ 1,..., θ N Saleur (1999): doubts concerning validity...

14 Form factors Asymptotic states: { θ 1,..., θ n in : θ 1 > θ 2 > > θ n θ 1,..., θ n = θ 1,..., θ n out θ θ = 2πδ(θ θ) : θ 1 < θ 2 < < θ n Factorized scattering: θ 1,..., θ k, θ k+1,..., θ n = S(θ k θ k+1 ) θ 1,..., θ k+1, θ k,..., θ n Form factors: F O mn(θ 1,..., θ m θ 1,..., θ n ) = θ 1,..., θ m O(0, 0) θ 1,..., θ n

15 Form factors Asymptotic states: { θ 1,..., θ n in : θ 1 > θ 2 > > θ n θ 1,..., θ n = θ 1,..., θ n out θ θ = 2πδ(θ θ) : θ 1 < θ 2 < < θ n Factorized scattering: θ 1,..., θ k, θ k+1,..., θ n = S(θ k θ k+1 ) θ 1,..., θ k+1, θ k,..., θ n Form factors: F O mn(θ 1,..., θ m θ 1,..., θ n ) = θ 1,..., θ m O(0, 0) θ 1,..., θ n Crossing: Fmn(θ O 1,..., θ m θ 1,..., θ n) = Fm 1n+1(θ O 1,..., θ m 1 θ m + iπ, θ 1,..., θ n) + n k 1 2πδ(θ m θ k ) S(θ l θ k )Fm 1n 1(θ O 1,..., θ m 1 θ 1,..., θ k 1, θ k+1..., θ n) k=1 l=1 Elementary form factors: F O n (θ 1,..., θ n ) = 0 O(0, 0) θ 1,..., θ n

16 The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m

17 The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms.

18 The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms. Well-known treatment: put in box but here it is important to take into account particle interactions.

19 The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms. Well-known treatment: put in box but here it is important to take into account particle interactions. Why? Because the relevant contribution is subleading in the volume dependence!

20 The problem: disconnected pieces O 1 (t, x)o 2 (0, 0) T = 1 e REn n O 1 (0, 0) m e (R t)em e ix(pm Pn) m O 2 (0, 0) n Z n,m Disconnected pieces: δ and δ 2 terms. Well-known treatment: put in box but here it is important to take into account particle interactions. Why? Because the relevant contribution is subleading in the volume dependence! One-point function: all terms are maximally disconnected! O(t, x) T = 1 e REn n O(0, 0) n Z n

21 Form factors in finite volume I Spectrum in finite volume: {I 1,..., I n } L I 1 I n Bethe-Yang equations: e iml sinh θ k S( θ k θ l ) = 1 l k Using phaseshift S(θ) = e iδ(θ) : Q k ( θ 1,..., θ n ) = ml sinh θ k + δ( θ k θ l ) = 2πI k l k, k = 1,..., n Density of states: E E 0 = n m cosh θ k + O k=1 (e µl) ρ(θ 1,..., θ n ) = det J (n), J (n) kl = Q k(θ 1,..., θ n ) θ l

22 Form factors in finite volume II General case: {I 1,..., I m} O(0, 0) {I 1,..., I n } L = F m+n( θ O m + iπ,..., θ 1 + iπ, θ 1,..., θ n ) ρ( θ 1,..., θ n )ρ( θ 1,..., θ m) +O(e µl )

23 Form factors in finite volume II General case: {I 1,..., I m} O(0, 0) {I 1,..., I n } L = F m+n( θ O m + iπ,..., θ 1 + iπ, θ 1,..., θ n ) ρ( θ 1,..., θ n )ρ( θ 1,..., θ m) Diagonal case: {I 1,..., I m} = {I 1,..., I n } F(A) L ρ({1,..., n} \ A) L {I 1... I n } O {I 1... I n } L = A {1,2,...n} where ρ({k 1,..., k r }) L = ρ( θ k1,..., θ kr ) and the symmetric evaluation F({k 1,..., k r }) L = F s 2r ( θ k1,..., θ kr ) +O(e µl ) ρ({1,..., n}) L +O(e µl ) F s 2l(θ 1,..., θ l ) = lim ɛ 0 F O 2l (θ l + iπ + ɛ,..., θ 1 + iπ + ɛ, θ 1,..., θ l ) (Pozsgay-Takács, 2007)

24 Finite volume as regulator All matrix elements are finite in finite volume: δ(θ θ ) ml cosh θδ II

25 Finite volume as regulator All matrix elements are finite in finite volume: but: care is needed δ(θ θ ) ml cosh θδ II δ(θ 1 θ 1)δ(θ 2 θ 2) ml cosh θ 1 δ I1 I 1 ml cosh θ 2δ I2 I 2 there are also + O(L) contributions!

26 Finite volume as regulator All matrix elements are finite in finite volume: but: care is needed δ(θ θ ) ml cosh θδ II δ(θ 1 θ 1)δ(θ 2 θ 2) ml cosh θ 1 δ I1 I 1 ml cosh θ 2δ I2 I 2 there are also + O(L) contributions! Solution: take correlator in finite volume O 1 (t, x)o 2 (0, 0) T,L = 1 e REn(L) e (R t)em(l) e ix(pm(l) Pn(L)) Z(R, L) n,m n O 1 (0, 0) m L m O 2 (0, 0) n L Z(R, L) = n e REn(L) L only at the end! (Pozsgay-Takács 2007: 1pt functions)

27 Reordering the series expansion I where C NM = I 1...I N O 1 (x, t)o 2 (0) T,L = 1 Z N,M C NM J 1...J M {I 1... I N } O 1 (0) {J 1... J M } L {J 1... J M } O 2 (0) {I 1... I N } L e i(p 1 P 2 )x e E 1(R t) e E 2t u and v keep track of powers of e mt and e m(r t) (at the end set u = v = 1) O 1 (x, t)o 2 (0) T,L = 1 Z Z = N u N v M C NM N,M (uv) N Z N

28 Reordering the series expansion II Z 1 = N (uv) N Z N Z 0 = Z 0 = 1 Z 1 = Z 1 Z 2 = Z 2 1 Z 2 From this: O 1 (x, t)o 2 (0) T,L = u N v N D NM D NM = l C N l,m l Z l

29 Reordering the series expansion II Z 1 = N (uv) N Z N Z 0 = Z 0 = 1 Z 1 = Z 1 Z 2 = Z 2 1 Z 2 From this: O 1 (x, t)o 2 (0) T,L = u N v N D NM D NM = l First few coefficients: D 1M = C 1M Z 1 C 0,M 1 C N l,m l Z l D 2M = C 2M Z 1 C 1,M 1 + (Z 2 1 Z 2 )C 0,M 2

30 Reordering the series expansion II Z 1 = N (uv) N Z N Z 0 = Z 0 = 1 Z 1 = Z 1 Z 2 = Z 2 1 Z 2 From this: O 1 (x, t)o 2 (0) T,L = u N v N D NM D NM = l First few coefficients: D 1M = C 1M Z 1 C 0,M 1 Infinite volume limit: C N l,m l Z l D 2M = C 2M Z 1 C 1,M 1 + (Z 2 1 Z 2 )C 0,M 2 O 1 (x, t)o 2 (0) T = lim O 1(x, t)o 2 (0) T,L = D NM L N,M D NM = lim D NM L

31 Partition function Z 1 = I e mr cosh θ = ˆ dθ 2π ml cosh θe mr cosh θ ( ml sinh θ = 2πI )

32 Partition function Z 1 = I e mr cosh θ = ˆ dθ 2π ml cosh θe mr cosh θ ( ml sinh θ = 2πI ) Two-particle contribution Z 2 = I 1<I 2 e mr(cosh θ1+cosh θ2) ml sinh θ 1 + δ(θ 1 θ 2 ) = 2πI 1, ml sinh θ 2 + δ(θ 2 θ 1 ) = 2πI 2 2 I 1 <I 2 = = I 1,I 2 I 1 =I 2 ˆ dθ1 2π ˆ dθ2 ρ2(θ1, θ2) 2π ˆ dθ1 ml cosh θ1... 2π ρ 2(θ 1, θ 2) = m 2 L 2 cosh θ 1 cosh θ 2 + ml(cosh θ 1 + cosh θ 2)ϕ(θ 1 θ 2) Z 2 = 1 ˆ dθ1 2 2π 1 2 ˆ dθ2 2π ρ2(θ1, θ2)e mr(cosh θ 1+cosh θ 2 ) ˆ dθ1 2π ml cosh θ1e 2mR cosh θ 1

33 Multi-dimensional residue theorem Performing sums over quantum numbers (at finite L!): Turn them into integrals!

34 Multi-dimensional residue theorem Performing sums over quantum numbers (at finite L!): Turn them into integrals! Theorem: Suppose g(z), f 1 (z),..., f n (z) are analytic functions, where z = (z 1,..., z n ). Let C C n be a monomial multi-contour (C = C 1 C n ). Assume that f k (z) = 0 k = 1,..., n has a solution z = (z 1,..., z n ) such that for all k z k is in the interior of C k and ( ) fk det 0 z l z=z Then C dz 1 2πi... dz n g(z) 2πi f 1 (z)... f n (z) = g(z ) ( ) det fk z=z z l

35 Multi-dimensional residue theorem Performing sums over quantum numbers (at finite L!): Turn them into integrals! Theorem: Suppose g(z), f 1 (z),..., f n (z) are analytic functions, where z = (z 1,..., z n ). Let C C n be a monomial multi-contour (C = C 1 C n ). Assume that f k (z) = 0 k = 1,..., n has a solution z = (z 1,..., z n ) such that for all k z k is in the interior of C k and ( ) fk det 0 z l z=z Then C dz 1 2πi... dz n g(z) 2πi f 1 (z)... f n (z) = g(z ) ( ) det fk z=z z l Remarks: Standard contour deformations work away from the det f = 0 variety. General multi-contour: sum of moniomial ones

36 Evaluating D 11 I D 11 = lim D 11 L D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2 C 11 = I,J {I } O 1 (0) {J} L {J} O 2 (0) {I } L e i(p1 p2)x e E1(R t) e E2t

37 Evaluating D 11 I D 11 = lim D 11 L D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2 C 11 = I,J {I } O 1 (0) {J} L {J} O 2 (0) {I } L e i(p1 p2)x e E1(R t) e E2t where ml sinh θ = 2πI, ml sinh θ = 2πJ E 1 = m cosh θ, p 1 = m sinh θ E 2 = m cosh θ, p 2 = m sinh θ {I } O 1 (0) {J} L = F O1 2 (θ + iπ, θ ) ρ1 (θ)ρ 1 (θ ) + δ IJ O 1 {J} O 2 (0) {I } L = F O2 2 (θ + iπ, θ) ρ1 (θ)ρ 1 (θ ) + δ IJ O 2

38 Evaluating D 11 II From this C 11 = F O1 2 (θ + iπ, θ )F O2 2 (θ + iπ, θ) ρ 1 (θ)ρ 1 (θ e i(p1 p2)x e E1(R t) e E2t ) I,J + O 1 J F O2 2 (θ + iπ, θ ) ρ 1 (θ e E2R + O 2 ) I F O1 2 (θ + iπ, θ) ρ 1 (θ) e E1R + I O 1 O 2 e E1R

39 Evaluating D 11 II From this C 11 = F O1 2 (θ + iπ, θ )F O2 2 (θ + iπ, θ) ρ 1 (θ)ρ 1 (θ e i(p1 p2)x e E1(R t) e E2t ) I,J + O 1 J F O2 2 (θ + iπ, θ ) ρ 1 (θ e E2R + O 2 ) I F O1 2 (θ + iπ, θ) ρ 1 (θ) e E1R + I O 1 O 2 e E1R Last term is O(L), but cancelled by Z 1 C 00! D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2

40 Evaluating D 11 II From this C 11 = F O1 2 (θ + iπ, θ )F O2 2 (θ + iπ, θ) ρ 1 (θ)ρ 1 (θ e i(p1 p2)x e E1(R t) e E2t ) I,J + O 1 J F O2 2 (θ + iπ, θ ) ρ 1 (θ e E2R + O 2 ) I F O1 2 (θ + iπ, θ) ρ 1 (θ) e E1R + I O 1 O 2 e E1R Last term is O(L), but cancelled by Z 1 C 00! D 11 = C 11 Z 1 C 00, C 00 = O 1 O 2 End result: D 11 = ˆ ˆ dθ dθ 2π 2π F O 1 2 (θ + iπ, θ )F O 2 2 (θ + iπ, θ) e imx(sinh θ sinh θ ) m(r t) cosh θ mt cosh θ ˆ +( O 1 F O 2 2s + O 2 F O 1 dθ cosh θ 2s ) e mr 2π

41 Evaluating D 22 Using gives We need: C 22 = I 1>I 2 D 22 = C 22 Z 1 C 11 + (Z 2 1 Z 2 )C 00 K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) D 11 = C 11 Z 1 C 00 D 22 = C 22 Z 1 D 11 Z 2 C 00 J 1>J 2 {I 1, I 2 } O 1 {J 1, J 2 } L {J 1, J 2 } O 2 {I 1, I 2 } L K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) = e imx(sinh θ1+sinh θ2 sinh θ 1 sinh θ 2 ) e m(r t)(cosh θ1+cosh θ2) e mt(cosh θ 1 +cosh θ 2 ) Separating diagonal pieces: ({J 1, J 2 } = {I 1, I 2 } tagok) + I 1 >I 2 = I 1 >I 2 J 1 >J 2 I 1 >I 2 J 1 >J 2

42 Diagonal pieces I {I 1, I 2} O {I 1, I 2} L = F O 4s (θ 1, θ 2) + ρ 1(θ 1)F O 2c + ρ 1(θ 2)F O 2c + ρ 2(θ 1, θ 2) O ρ 2(θ 1, θ 2) Put into diagonal part: I 1 >I 2 {I 1, I 2} O 1 {I 1, I 2} L {I 1, I 2} O 2 {I 1, I 2} L e mr(cosh θ1+cosh θ2) F 4s F 4s terms: mr(cosh θ e 1 +cosh θ 2 ) F O 1 ρ I 1 >I 2(θ 1, θ 2) 2 4s (θ 1, θ 2)F O 2 4s (θ 1, θ 2) = 2 1 e mr(cosh θ 1+cosh θ 2 ) F O 1 2 ρ 2(θ 1, θ 2) 2 4s (θ 1, θ 2)F O 2 4s (θ 1, θ 2) = 1 2 I 1,I 2 ˆ dθ1 2π ˆ dθ1 2π I 1 =I 2 ˆ dθ2 2π O(L 2 ) + O(L 3 ): 0 for L. e mr(cosh θ 1+cosh θ 2 ) F O 1 4s (θ 1, θ 2)F O 2 4s (θ 1, θ 2) ρ 2(θ 1, θ 2) e 2mR(cosh θ 1) ml cosh θ 1 ρ 2(θ 1, θ 1) 2 F O 1 4s (θ 1, θ 1)F O 2 4s (θ 1, θ 1)

43 Diagonal pieces II Similarly for other pieces, the total is: C diag 22 = ˆ dθ1 2π ˆ dθ2 2π [ 1 2 e mr(cosh θ 1+cosh θ 2 ) F O 1 2c F O 2 2c (cosh θ 1 + cosh θ 2 ) 2 cosh θ 1 cosh θ e mr(cosh θ 1+cosh θ 2 ) ( m 2 L 2 cosh θ 1 cosh θ 2 + ml(cosh θ 1 + cosh θ 2 )ϕ(θ 1 θ 2 ) ) ( ) ] O 1 O 2 + ml cosh θ 1 e mr(cosh θ 1+cosh θ 2 ) O 1 F O 2 2c + O 2 F O 1 2c 1 2 ˆ Counter terms : dθ [ ( )] 2π e 2mR cosh θ ml cosh θ O 1 O O 1 F O 2 2c + O 2 F O 1 2c Z 2 C 00 = 1 ˆ dθ 2 2π ml cosh θe 2mR cosh θ O 1 O 2 1 ˆ ˆ dθ1 dθ2 [ m 2 L 2 cosh θ 1 cosh θ 2 2 2π 2π +ml(cosh θ 1 + cosh θ 2 )ϕ(θ 1 θ 2 ) ] e mr(cosh θ 1+cosh θ 2 ) O 1 O 2 ˆ ˆ dθ1 dθ2 Z 1 D 11 = Z 1 2π 2π F O 1 2 (θ 1 + iπ, θ 2 )F O 2 2 (θ 1, θ 2 + iπ) e imx(sinh θ 1 sinh θ 2 ) e m(r t) cosh θ 1 e mt cosh θ 2 ˆ dθ ( ) Z 1 F O 1 2c 2π O 2 + F O 2 2c O mr cosh θ 1 e

44 Diagonal part III Divergent parts drop out: D (diag) 22 = 1 ˆ dθ1 dθ 2 2 2π 2π e mr(cosh θ1+cosh θ2)( F O1 4s (θ 1, θ 2 ) O 2 ) F O2 4s (θ 1, θ 2 ) O 1 ˆ dθ1 But: Z 1 D 11 remains! Z 1 ˆ dθ1 2π ˆ dθ2 2π e mr(cosh θ1+cosh θ2) F O1 2π ˆ dθ ( 2π e 2mR cosh θ O 1 F O2 2c 2c F O2 2c + O 2 F O1 2c ˆ dθ2 2π F O 1 2 (θ 1 + iπ, θ 2 )F O 2 2 (θ 1, θ 2 + iπ) e imx(sinh θ 1 sinh θ 2 ) e m(r t) cosh θ 1 e mt cosh θ 2 and will regulate the nondiagonal part. ) (cosh θ 1 + cosh θ 2 ) 2 cosh θ 1 cosh θ 2

45 Nondiagonal part of D 22 I C (nondiag) 22 = I 1>I 2 J 1>J 2 {I 1, I 2 } O 1 {J 1, J 2 } L {J 1, J 2 } O 2 {I 1, I 2 } L K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) = e imx(sinh θ1+sinh θ2 sinh θ 1 sinh θ 2 ) m(r t)(cosh θ1+cosh θ2) e e mt(cosh θ 1 +cosh θ 2 ) {I 1, I 2 } O 1 {J 1, J 2 } L = F O1 4 (θ 2 + iπ, θ 1 + iπ, θ 1, θ 2 ) ρ 2 (θ 1, θ 2 ) 1/2 ρ 2 (θ 1, θ 2 )1/2 {J 1, J 2 } O 2 {I 1, I 2 } L = F O2 4 (θ 2 + iπ, θ 1 + iπ, θ 1, θ 2 ) ρ 2 (θ 1, θ 2 ) 1/2 ρ 2 (θ 1, θ 2 )1/2 Q 1 (θ 1, θ 2 ) = ml sinh θ 1 + δ(θ 1 θ 2 ) = 2πI 1 Q 2 (θ 1, θ 2 ) = ml sinh θ 2 + δ(θ 2 θ 1 ) = 2πI 2 Q 1 (θ 1, θ 2) = ml sinh θ 1 + δ(θ 1 θ 2) = 2πJ 1 Q 2 (θ 1, θ 2) = ml sinh θ 2 + δ(θ 2 θ 1) = 2πJ 2

46 Nondiagonal part of D 22 II Using the residue theorem {I 1, I 2 } O 1 {J 1, J 2 } L {J 1, J 2 } O 2 {I 1, I 2 } L K (R) t,x (θ 1, θ 2 ; θ 1, θ 2) 1 dθ 1 dθ 2 = ρ 2 (θ 1, θ 2 ) C J1 J 2 2π 2π F O1 4 (θ 2 + iπ, θ 1 + iπ, θ 1, θ 2) 4 (θ 2 + iπ, θ 1 K (R) t,x (θ 1, θ 2 ; θ 1 + iπ, θ 1, θ 2 ), θ 2 ( ) e iq 1 (θ 1,θ 2 ) + 1 ) ( e iq 2 (θ 1,θ 2 ) + 1 ) F O2 where C J1 J 2 surrounds the solution of Q 1 (θ 1, θ 2) = ml sinh θ 1 + δ(θ 1 θ 2) = 2πJ 1 Q 2 (θ 1, θ 2) = ml sinh θ 2 + δ(θ 2 θ 1) = 2πJ 2 This is the contour we want to open : 1 2 J 1 J 2 C J1J 2 C 1 C 2 θ, θ, 1 2

47 Nondiagonal part of D 22 III But: new singularities encountered. 1. QF : partly from Q, partly from F θ 1 = θ 1 and Q 2 (θ 1, θ 2) = 2πJ 2 θ 1 = θ 2 and Q 2 (θ 1, θ 2) = 2πJ 2 θ 2 = θ 1 and Q 1 (θ 1, θ 2) = 2πJ 1 θ 2 = θ 2 and Q 1 (θ 1, θ 2) = 2πJ 1 2. FF : from F 3. QQ (vanishes for L ): θ 1 = θ 2 = θ 1 θ 1 = θ 2 = θ 2 θ 1 = θ 1 és θ 2 = θ 2 θ 1 = θ 2 és θ 2 = θ 1

48 Nondiagonal part of D 22 IV So: J 1 >J 2 dθ 1 C J1 2π J 2 dθ 2 2π = 1 dθ 1 2 C 2π dθ 2 (FF terms) (QF terms) 2π where C = C 1 C 2 (the open multi-contour). (J 1 = J 2 is not a singularity, because form factors vanish). Kinematical singularity axiom i Res θ=θ F O n+2(θ+iπ, θ, θ 1,..., θ n ) = ( 1 ) n S(θ θ k ) Fn O (θ 1,..., θ n ) k=1 can be used to compute QF and QQ residues. (Tedious and the result is lengthy, but straightforward).

49 Nondiagonal part of D 22 V Divergent part comes from second order poles in QF terms: D QF = dθ1 2π dθ 2 2π ˆ dθ 2 2π F O1 2 (θ 2 + iπ, θ 2)F O2 2 (θ 2 + iπ, θ 2 ) e imx(sinh θ2 sinh θ 2 ) e mr cosh θ1 e m(r t) cosh θ2 e mt cosh θ 2 ( (mx cosh θ 1 imt sinh θ 1 )(1 S(θ 2 θ 1 )S(θ 1 θ 2 )) ) +ϕ(θ 1 θ 2)S(θ 2 θ 1 )S(θ 1 θ 2 ) + ml cosh θ 1 ˆ dθ1 2π ˆ dθ 2 2π F O1 2 (θ 1 + iπ, θ 2)F O2 2 (θ 2 + iπ, θ 1 ) e imx(sinh θ1 sinh θ 2 ) e m(2r t) cosh θ1 e mt cosh θ 2 and is exactly cancelled by the remaining counter-term : ˆ ˆ ˆ dθ cosh θ dθ1 dθ2 ml cosh θe mr 2π 2π 2π F O1 2 (θ 1 + iπ, θ 2 )F O2 2 (θ 1, θ 2 + iπ) e imx(sinh θ1 sinh θ2) e m(r t) cosh θ1 mt cosh θ2 e

50 Conclusion 1. Systematic form factor expansion for thermal correlators Consistency: L limit is finite Explicitly constructed: D 0N, D M0, D 1N, D M1 and D Comparison to LeClair-Mussardo 2pt function formula: 2.1 LM expression not even well-defined 2.2 Higher corrections look different 3. Method was also applied to 3.1 T = 0 3-point function 3.2 second order form factor perturbation theory 4. Kormos-Pozsgay (2010): residue method works for one-point functions of bulk fields on an interval with boundaries.

51 Open issues 1. Is it possible to sum up the T -dependence in dressing factors (a la LeClair Mussardo) 1-point function: OK (but we knew that beforehand) 2-point function: need higher terms (e.g. D 2N ) to verify: in progress Can the method be simplified? (Lots of residue-crunching and redundant terms) 3. Applications: need extension of finite volume form factors to nondiagonal theories. Work in progress... result expected to be under the Christmas tree! E.g.: O(3) σ-model (Essler-Konik: M = 1, N = 2 term for spin-spin correlator).

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Continuous Distribution Arising from the Three Gap Theorem

Continuous Distribution Arising from the Three Gap Theorem Continuous Distribution Arising from the Three Gap Theorem Geremías Polanco Encarnación Elementary Analytic and Algorithmic Number Theory Athens, Georgia June 8, 2015 Hampshire college, MA 1 / 24 Happy

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα