ΕΡΓΑΣΤΗΡΙΟ. Άσκηση 2: Βυθοµετρικός χάρτης Βυθοµετρική τοµή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΡΓΑΣΤΗΡΙΟ. Άσκηση 2: Βυθοµετρικός χάρτης Βυθοµετρική τοµή"

Transcript

1 ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ Άσκηση 2: Βυθοµετρικός χάρτης Βυθοµετρική τοµή ιδάσκοντες Καθ. Γ. Φερεντίνος Λέκτορας Μ. Γεραγά Μεταπτυχιακοί φοιτητές: Μαργαρίτα Ιατρού ηµήτρης Χριστοδούλου

2 Βυθοµέτρηση Βυθοµέτρηση (sounding) ονοµάζεται η εξακρίβωση του βάθους (ύψος υδάτινης στήλης) µε χρήση οργάνων σε οποιοδήποτε σηµείο (καλούµενο βυθοµετρικό στίγµα). Σκοπός της βυθοµέτρησης είναι η κατασκευή βυθοµετρικών χαρτών Βυθοµετρικό στίγµα χαρακτηρίζεται ο γεωγραφικός τόπος (σηµείο στην επιφάνεια της θάλασσας, ποταµού ή λίµνης) στο οποίο γίνεται βυθοµέτρηση, κατά την οποία διαπιστώνεται το βάθος και η ποιότητα του βυθού Α x x Β Βάθος 1 οργιά (fathom) = m = 6 πόδια (feet) 1 πόδι (feet) = µέτρα (m) Ισοδιάσταση ανά 100 µέτρα Ύψη σε µέτρα Κλίµακα 1: Μέτρα

3 Ισοβαθείς καµπύλες Ισοβαθείς καµπύλες ονοµάζονταιοιγραµµές οι οποίες ενώνουν σηµεία µείδιοβάθος Ισοδιάσταση είναι η απόσταση µεταξύ δύο ισοβαθών καµπύλων γραµµών. Όσο πιο µικρή είναι η ισοδιάσταση τόσο καλύτερη απεικόνιση του ανάγλυφου έχουµε Οι ισοβαθείς είναι συνεχείς καµπύλες εν διακόπτονται και δεν διαιρούνται Κάθε ισοβαθής καµπύλη σηµατοδοτεί ένα συγκεκριµένο βάθος Οι ισοβαθείς δεν διασταυρώνονται Όταν οι ισοβαθείς είναι πυκνές αναπαριστούν απότοµη κλίση του πυθµένα Όταν είναι αραιές τότε ο πυθµένας έχει ήπια κλίση

4 Ισοβαθείς καµπύλες Για την αναπαράσταση ενός καναλιού οι ισοβαθείς σχηµατίζουν ένα -V-. H κορυφή του δείχνει πάντα το άνω µέρος του καναλιού Οµόκεντρες ισοβαθείς καµπύλες αναπαριστούν υψώµατα ή βυθίσµατα του πυθµένα. Στα υψώµατα οι τιµές των καµπύλων οποίων αυξάνεται προς το εσωτερικό. Στα βυθίσµατα µικρές γραµµώσεις δείχνουν προς το εσωτερικό του βυθίσµατος

5 Άσκηση 2 Σας δίνεται ο βυθοµετρικόςχάρτηςτουστενούζακύνθου- Κυλλήνης. 1. Χαράξτε τις ισοβαθείς καµπύλες µε ισοδιάσταση 50 µέτρων 2. Κατασκευάστε τις τοµές ΑΒ, Γ και ΕΖ σε ισοµετρική κλίµακα και σε παραµορφωµένη κλίµακα 3. ώστε µια σύντοµη περιγραφή του ανάγλυφου του πυθµένα (εάν είναι οµαλός ή απότοµος και που, προς τα πού βαθαίνει κλπ) κατά την τοµή ΑΒ 4. Να υπολογίσετε την κλίση του πυθµέναστηνπλαγιάτης Ζακύνθου και στην πλαγιά της Κυλλήνης κατά µήκος της τοµής ΑΒ σε ισοµετρική και παραµορφωµένη κλίµακα. ώστε το αποτέλεσµα σεµοίρες και επί τοις 100 (%).

6

7 Χάραξη ισοβαθών καµπύλων Σε περίπτωση που µια ισοβαθής καµπύλη πρέπει να περάσει µεταξύ δύο σηµείων Α και Β, που έχουν αντίστοιχα µεγαλύτερο (α) και µικρότερο βάθος (β) από αυτό που αναφέρεται η ισοβαθής, εφαρµόζεται ο παρακάτω τύπος: I - β Χ = S ( ) α - β Όπου: X, η απόσταση ισοβαθούς από το σηµείο β σε cm S, η απόσταση µεταξύ των σηµείων Α και Β σε cm a, το βάθος στο σηµείο Α σε m β, το βάθος στο σηµείο Β σε m Ι, το βάθος της ισοβαθούς που θα χαράξουµε σεm

8 a= 700 m β= 600 m Ι= 650 m S = 1.5 cm I - β Χ = S ( ) α - β s x = 1.5 {( )/( )} x = 1.5 x 0.5=0.75 cm Η ισοβαθής των 650 m θα χαραχθεί σε 0,75 cm από την ισοβαθή των 600 m

9 Κατασκευή βυθοµετρικής τοµής 1. Χαράσσουµε τηντοµή ανάµεσα στα δύο σηµεία Α-Β πάνωστοχάρτη 2. Κατασκευάζουµε σύστηµα αξόνωνx, y. 3. Στον άξονα x τοποθετούµε την απόσταση ΑΒ και στον άξονα y το βάθος του νερού. (Στα 0 m η επιφάνεια της θάλασσας) 4. Όπου οι ισοβαθείς καµπύλες τέµνουν την τοµή Α-Β σηµειώνονται τα σηµεία τοµής πάνω στον άξονα x 5. Για κάθε σηµείο τοµής σηµειώνουµε το αντίστοιχο βάθος της κάθε ισοβαθούς στον άξονα y 6. Ενώνουµε τασηµεία µε (x,y) µε µια καµπύλη γραµµή 1 4 6

10 Ισοµετρική και Παραµορφωµένη Κλίµακα Κλίµακα 1: Ισοµετρική τοµή κατακόρυφη κλίµακα=οριζόντια κλίµακα Παραµορφωµένη τοµή η κατακόρυφη κλίµακα παραµορφώνεται Στο παράδειγµα: 1 cm = 1000 m (x 2,5 φορές)

11 Υπολογισµός κλίσης πυθµένα Η κλίση της πλαγίας σε µια Ισοµετρική τοµή, µπορεί να µετρηθεί απευθείας πάνω στην τοµή (µε µοιρογνωµόνιο) ή µε την εφαπτοµένη: εφθ=μν/κν ΜΝ = 0.4 cm, KN =0.8cm εφθ =ΜΝ/ΚΝ = 0.4 cm/0.8 cm = 0,5 δηλ. θ = 26,5 ο 1 2 3

12 Κλίση πυθµένα Αυτό δεν είναι δυνατό στην παραµορφωµένη κλίµακα Για να µετρηθεί η κλίση στην παραµορφωµένη τοµή πρέπεινα µετατραπούν οι αποστάσεις µε βάσητηνκλίµακα

13 Υπολογισµός της πραγµατικής κλίσης από την παραµορφωµένη κλίµακα Υπολογίζουµε τηνεφθ, όπου εφ θ = ΜΝ/ΝΚ Μετράµε τις αποστάσεις ΜΝ και ΝΚ σε cm πάνω στην τοµή στους άξονες y και x αντίστοιχα Μετατρέπουµε τις«παραµορφωµένες» αποστάσεις MN και ΝΚ σε πραγµατικές µε βάση την κλίµακα της τοµής ηλ. για το παράδειγµα: ΜΝ = 1 cm στην τοµή = 1000 m στην πραγµατικότητα ΚΝ = 0,8 cm στην τοµή = 2000 m στην πραγµατικότητα Οπότε εφ θ = 1000/2000=0,5 δηλ 26,5 ο

14 Κλίση πυθµένα-παραµορφωµένη Κλίµακα εφθ = MN / KN KN = 0.8 cm = 2000m MN =1 cm=1000m, ΛΑΘΟΣ εφ θ = 1 cm / 0,8 cm = 1.25 δηλ. θ ~ 51 ο ΣΩΣΤΟ εφ θ = 1000 m / 2000 m = 0,5 δηλ. θ ~26,5 ο 1 2 3

15 Κλίση πυθµένα (%) Κλίση (%) = εφ θ x100 Ηκλίσηεπίτοις% εκφράζει τη µεταβολή του υψόµετρου, που αντιστοιχεί σε οριζόντια απόσταση 100 µονάδων µήκους. Κλίση, π.χ., 10% σηµαίνει ότι σε οριζόντια απόσταση 100 µονάδων το υψόµετρο αυξάνεται ή ελαττώνεται κατά 10 αντίστοιχες µονάδες Η κλίση επί τοις εκατό δεν χρησιµοποιείται σε κλίσεις µεγαλύτερες των 45 o ιότι: εφ45 =1 εφ45 (%) = 1 x 100 =100%

2o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ

2o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ 2o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ Πως αποτυπώνεται το ανάγλυφο από ένα χάρτη Δημιουργία μια τομής χρησιμοποιώντας ένα χάρτη Έννοιες της ισομετρικής κλίμακας και της κατακόρυφης παραμόρφωσης σε μια τομή Κατασκευή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 Τοπογραφικοί Χάρτες Περίγραμμα - Ορισμοί - Χαρακτηριστικά Στοιχεία - Ισοϋψείς Καμπύλες - Κατασκευή τοπογραφικής τομής

Διαβάστε περισσότερα

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Επιµέλεια: ηµάδη Αγόρω Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΙΣΟΫΨΕΙΣ ΚΑΜΠΥΛΕΣ: είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Φύλλο Εργασίας. Θέμα : Περπατώντας στο Πήλιο Θέλετε να οργανώσετε έναν ορειβατικό περίπατο από την Αγριά στην Δράκεια Πηλίου.

Φύλλο Εργασίας. Θέμα : Περπατώντας στο Πήλιο Θέλετε να οργανώσετε έναν ορειβατικό περίπατο από την Αγριά στην Δράκεια Πηλίου. Ενότητα Χάρτες Φύλλο Εργασίας Μελέτη χαρτών Τάξη Α Γυμνασίου Ονοματεπώνυμο.Τμήμα..Ημερομηνία. Σκοποί του φύλλου εργασίας Η εξοικείωση 1. Με την χρήση των χαρτών 2. Με την χρήση της πυξίδας 3. Με την εργασία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 1: ΒΑΘΥΜΕΤΡΙΑ

ΕΡΓΑΣΤΗΡΙΟ 1: ΒΑΘΥΜΕΤΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΡΑΚΤΙΑΣ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΒΑΘΥΜΕΤΡΙΑ ΑΓΡΙΝΙΟ, 2016 ΕΡΓΑΣΤΗΡΙΟ 1: ΒΑΘΥΜΕΤΡΙΑ Είμαστε όλοι ενήμεροι

Διαβάστε περισσότερα

Εισηγητής: Καραγιώργος Θωμάς, MSc, PhD candidate in Sport Management & Recreation ΤΜΗΜΑ ΕΠΙΣΤΙΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΑΡΙΣΤOΤΕΛΕΙΟ

Εισηγητής: Καραγιώργος Θωμάς, MSc, PhD candidate in Sport Management & Recreation ΤΜΗΜΑ ΕΠΙΣΤΙΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΑΡΙΣΤOΤΕΛΕΙΟ Εισηγητής: Καραγιώργος Θωμάς, MSc, PhD candidate in Sport Management & Recreation ΤΜΗΜΑ ΕΠΙΣΤΙΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ ΑΡΙΣΤOΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Γεωδαιτικό σύστημα Χάρτης Πυξίδα Χάραξη

Διαβάστε περισσότερα

Άλλοι χάρτες λαμβάνουν υπόψη και το υψόμετρο του αντικειμένου σε σχέση με ένα επίπεδο αναφοράς

Άλλοι χάρτες λαμβάνουν υπόψη και το υψόμετρο του αντικειμένου σε σχέση με ένα επίπεδο αναφοράς ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Ένας χάρτης είναι ένας τρόπος αναπαράστασης της πραγματικής θέσης ενός αντικειμένου ή αντικειμένων σε μια τεχνητά δημιουργουμένη επιφάνεια δύο διαστάσεων Πολλοί χάρτες (π.χ. χάρτες

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΟΣ ΧΑΡΤΗΣ. Στοιχεία τοπογραφικών χαρτών

ΤΟΠΟΓΡΑΦΙΚΟΣ ΧΑΡΤΗΣ. Στοιχεία τοπογραφικών χαρτών ΤΟΠΟΓΡΑΦΙΚΟΣ ΧΑΡΤΗΣ Στοιχεία τοπογραφικών χαρτών ρ. Ε. Λυκούδη Αθήνα 2005 Τοπογραφικοί χάρτες Βασικό στοιχείο του χάρτη αποτελεί : το τοπογραφικό υπόβαθρο, που αναπαριστά µε τη βοήθεια γραµµών (ισοϋψών)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 3: ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2016 ΕΡΓΑΣΤΗΡΙΟ 3:

Διαβάστε περισσότερα

Προσανατολισµός ονοµάζεται ο καθορισµός της θέσης των σηµείων του ορίζοντα. Το να γνωρίζουµε να προσανατολιζόµαστε σωστά, είναι χρήσιµο για όλους

Προσανατολισµός ονοµάζεται ο καθορισµός της θέσης των σηµείων του ορίζοντα. Το να γνωρίζουµε να προσανατολιζόµαστε σωστά, είναι χρήσιµο για όλους Προσανατολισµός ονοµάζεται ο καθορισµός της θέσης των σηµείων του ορίζοντα. Το να γνωρίζουµε να προσανατολιζόµαστε σωστά, είναι χρήσιµο για όλους µας. Ένας µεγάλος αριθµός ατυχηµάτων οφείλεται, άµεσα ή

Διαβάστε περισσότερα

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ 16_10_2012 ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ 2.1 Απεικόνιση του ανάγλυφου Μια εδαφική περιοχή αποτελείται από εξέχουσες και εισέχουσες εδαφικές μορφές. Τα εξέχοντα εδαφικά τμήματα βρίσκονται μεταξύ

Διαβάστε περισσότερα

Τεχνικό Τοπογραφικό Σχέδιο

Τεχνικό Τοπογραφικό Σχέδιο Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ασκηση 9 η : «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού Θερμοκρασία Αλατότητα

Ασκηση 9 η : «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού Θερμοκρασία Αλατότητα Ασκηση 9 η : «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού Θερμοκρασία Αλατότητα H Αλατότητα (S: salinity) είναι το μέτρο συγκέντρωσης του συνόλου των διαλυμένων αλάτων στο θαλασσινό νερό Τα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 6.1. από. την τομή. την. τομή δύο είναι καμπύλη. γραμμή. υψόμετρο. γεωλογία. Στη. επιπέδου (Σχ παράταξη.

ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 6.1. από. την τομή. την. τομή δύο είναι καμπύλη. γραμμή. υψόμετρο. γεωλογία. Στη. επιπέδου (Σχ παράταξη. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΠΑΡΑΤΑΞΗ Παράταξη μιας επιφάνειας (strike line) καλούμε τη γραμμή που προκύπτει από την τομή της επιφάνειας αυτής, με τυχαίο οριζόντιο επίπεδο. Όταν η επιφάνεια είναι

Διαβάστε περισσότερα

2.1 ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ

2.1 ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ 1 2.1 ΕΦΠΤΟΜΕΝΗ ΟΞΕΙΣ ΩΝΙΣ ΘΕΩΡΙ Εφαπτοµένη οξείας γνίας : Έστ ένα ορθογώνιο τρίγνο και µία από τις οξείες γνίες του. Ονοµάζουµε εφαπτοµένη της γνίας και συµβολίζουµε µε εφ το λόγο της απέναντι κάθετης

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΟΙΚΟΛΟΓΙΚΗΣ ΧΑΡΤΟΓΡΑΦΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΟΙΚΟΛΟΓΙΚΗΣ ΧΑΡΤΟΓΡΑΦΗΣΗΣ Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων Εργαστήριο Οικολογίας & Διαχείρισης της Βιοποικιλότητας ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΟΙΚΟΛΟΓΙΚΗΣ ΧΑΡΤΟΓΡΑΦΗΣΗΣ Διδάσκων: Καθηγητής Παναγιώτης Δ. Δημόπουλος Επιμέλεια

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία»

Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία» ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ: «ΕΦΑΡΜΟΣΜΕΝΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΛΟΓΙΑ» Κατεύθυνση:«Τεχνικής Γεωλογία και Περιβαλλοντική Υδρογεωλογία» Βασικά εργαλεία Τεχνικής Γεωλογίας και Υδρογεωλογίας Επικ. Καθηγ. Μαρίνος

Διαβάστε περισσότερα

1] Σχεδιασμός Τεχνικογεωλογικής Μηκοτομής.

1] Σχεδιασμός Τεχνικογεωλογικής Μηκοτομής. Το Εργαστήριο Τεχνικής Γεωλογίας στην προσπάθεια να βοηθήσει τους αποτυχόντες φοιτητές του εργαστηριακού μέρους αποφάσισε επανεξέταση με διευρυμένη ύλη του εργαστηρίου ώστε να μην αδικηθούν οι επιτυχόντες

Διαβάστε περισσότερα

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής *Βασικές μορφές προσανατολισμού *Προσανατολισμός με τα ορατά σημεία προορισμού στη φύση *Προσανατολισμός με τον ήλιο *Προσανατολισμός από τη σελήνη

Διαβάστε περισσότερα

8ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού θερμοκρασία

8ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού θερμοκρασία 8ο ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Φυσικές ιδιότητες θαλασσινού νερού θερμοκρασία Πηγές θέρμανσης του ωκεανού Ηλιακή ακτινοβολία (400cal/cm 2 /day) Ροή θερμότητας από το εσωτερικό της Γης (0,1cal/cm

Διαβάστε περισσότερα

2. Να κατασκευάσετε µια γωνία α τέτοια ώστε: εφ (90 - α) = 7. 3. Να κατασκευάσετε ένα τρίγωνο ΑΒΓ µε ύψος ΑΗ έτσι ώστε: 1 και εφγ = 3

2. Να κατασκευάσετε µια γωνία α τέτοια ώστε: εφ (90 - α) = 7. 3. Να κατασκευάσετε ένα τρίγωνο ΑΒΓ µε ύψος ΑΗ έτσι ώστε: 1 και εφγ = 3 Προβλήµατα 1. Να κατασκευάσετε µια γωνία xαy, γνωρίζοντας ότι: 3 α) εφ xay = 5 β) συν xay = 0,8 γ) ηµ xay = 0,4 2. Να κατασκευάσετε µια γωνία α τέτοια ώστε: εφ (90 - α) = 7 4. 3. Να κατασκευάσετε ένα τρίγωνο

Διαβάστε περισσότερα

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου 1. Στο ορθογώνιο τρίγωνο ΑΒΓ του διπλανού σχήματος η πλευρά ΒΓ που βρίσκεται απέναντι από την ορθή

Διαβάστε περισσότερα

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες: Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.

Διαβάστε περισσότερα

Απόδοση θεματικών δεδομένων

Απόδοση θεματικών δεδομένων Απόδοση θεματικών δεδομένων Ποιοτικές διαφοροποιήσεις Σημειακά Γραμμικά Επιφανειακά Ποσοτικές διαφοροποιήσεις Ειδικές θεματικές απεικονίσεις Δασυμετρική Ισαριθμική Πλάγιες όψεις Χαρτόγραμμα Χάρτης κουκίδων

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης

Διαβάστε περισσότερα

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ):

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μιχάλης Βραχνάκης Αναπληρωτής Καθηγητής ΤΕΙ Θεσσαλίας ΠΕΡΙΕΧΟΜΕΝΑ 6 ΟΥ ΜΑΘΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1. Η ΓΗ ΚΑΙ Η ΑΤΜΟΣΦΑΙΡΑ ΤΗΣ ΚΕΦΑΛΑΙΟ 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΚΕΦΑΛΑΙΟ 3. ΘΕΡΜΟΚΡΑΣΙΑ

Διαβάστε περισσότερα

Περιβαλλοντική Υδρογεωλογία. Υδροκρίτης-Πιεζομετρία

Περιβαλλοντική Υδρογεωλογία. Υδροκρίτης-Πιεζομετρία Περιβαλλοντική Υδρογεωλογία Υδροκρίτης-Πιεζομετρία Οριοθέτηση υδρολογικής λεκάνης Χάραξη υδροκρίτη Η λεκάνη απορροής, παρουσιάζει ορισμένα γνωρίσματα που ονομάζονται φυσιογραφικά χαρακτηριστικά και μπορούν

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τ Μ Η Μ Α Γ Ε Ω Γ Ρ Α Φ Ι Α Σ ΕΛ. ΒΕΝΙΖΕΛΟΥ, 70 17671 ΚΑΛΛΙΘΕΑ-ΤΗΛ: 210-9549151 FAX: 210-9514759 ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ Δ ΕΞΑΜΗΝΟ ΒΥΘΟΜΕΤΡΙΚΟΙ ΧΑΡΤΕΣ Από Καψιμάλη Βασίλη Κύριο

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ

Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ ΤΟ ΜΠΡΕΤΟΝ ΚΑΙ ΟΙ ΓΩΝΙΑΣΕΙΣ ΤΟΥ Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ Δεν σας κρύβω ότι στην προσέγγιση μου για την παρουσίαση των

Διαβάστε περισσότερα

ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ ΠΑΡΑΔΕΙΓΜΑ. Δίνεται ο παρακάτω γεωλογικός χάρτης και ζητείται να κατασκευαστεί η γεωλογική τομή Α-Β.

ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ ΠΑΡΑΔΕΙΓΜΑ. Δίνεται ο παρακάτω γεωλογικός χάρτης και ζητείται να κατασκευαστεί η γεωλογική τομή Α-Β. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ ΠΑΡΑΔΕΙΓΜΑ Δίνεται ο παρακάτω γεωλογικός χάρτης και ζητείται να κατασκευαστεί η γεωλογική τομή Α-Β. Προσοχή! Ο παραπάνω χάρτης για εκπαιδευτικούς λόγους έχει από πριν

Διαβάστε περισσότερα

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή.

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή. ΠΕΜΠΤΟ ΠΑΚΕΤΟ ΣΗΜΕΙΩΣΕΩΝ ΣΤΑΤΙΣΤΙΚΑ ΙΑΓΡΑΜΜΑΤΑ Χρησιµότητα των διαγραµµάτων Η παρουσίαση των στατιστικών στοιχείων µπορεί να γίνει όχι µόνο µε πίνακες, αλλά και µε διαγράµµατα ή γραφικές απεικονίσεις.

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης κίνησης με το Multilog με χρήση του αισθητήρα απόστασης

Μελέτη ευθύγραμμης κίνησης με το Multilog με χρήση του αισθητήρα απόστασης Μελέτη ευθύγραμμης κίνησης με το Multilog με χρήση του αισθητήρα απόστασης Η χρησιμοποιούμενη διάταξη φαίνεται στο ακόλουθο σχήμα: Πάνω στο αμαξίδιο τοποθετήσαμε μικρό μεταλλικό τούβλο ώστε η συνολική

Διαβάστε περισσότερα

ΑΠΕΙΚΟΝΙΣΗ ΤΗΣ ΜΟΡΦΗΣ ΤΗΣ ΓΗΪΝΗΣ ΕΠΙΦΑΝΕΙΑΣ. 22/5/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1

ΑΠΕΙΚΟΝΙΣΗ ΤΗΣ ΜΟΡΦΗΣ ΤΗΣ ΓΗΪΝΗΣ ΕΠΙΦΑΝΕΙΑΣ. 22/5/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1 ΑΠΕΙΚΟΝΙΣΗ ΤΗΣ ΜΟΡΦΗΣ ΤΗΣ ΓΗΪΝΗΣ ΕΠΙΦΑΝΕΙΑΣ 22/5/2006 Λύσανδρος Τσούλος Χαρτογραφία Ι 1 Τοποθέτηση του προβλήµατος Η γήϊνη επιφάνεια [ανάγλυφο] αποτελεί ένα ορατό, φυσικό, συνεχές φαινόµενο, το οποίο εµπίπτει

Διαβάστε περισσότερα

9 εύτερη παράγωγος κι εφαρµογές

9 εύτερη παράγωγος κι εφαρµογές 9 εύτερη παράγωγος κι εφαρµογές Εστω ότι η y = f x είναι παραγωγίσιµη σε κάποιο διάστηµα το οποίο περιέχει τον x 0 και ότι η f x η οποία ορίζεται στο διάστηµα αυτό έχει µε την σειρά της παράγωγο στο x

Διαβάστε περισσότερα

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG )

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος,

Διαβάστε περισσότερα

Επειδή ο μεσημβρινός τέμνει ξανά τον παράλληλο σε αντιδιαμετρικό του σημείο θα θεωρούμε μεσημβρινό το ημικύκλιο και όχι ολόκληρο τον κύκλο.

Επειδή ο μεσημβρινός τέμνει ξανά τον παράλληλο σε αντιδιαμετρικό του σημείο θα θεωρούμε μεσημβρινό το ημικύκλιο και όχι ολόκληρο τον κύκλο. ΝΑΥΣΙΠΛΟΪΑ Η ιστιοπλοΐα ανοιχτής θαλάσσης δεν διαφέρει στα βασικά από την ιστιοπλοΐα τριγώνου η οποία γίνεται με μικρά σκάφη καi σε προκαθορισμένο στίβο. Όταν όμως αφήνουμε την ακτή και ανοιγόμαστε στο

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ 1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο)

ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ. (Μέρος πρώτο) ΤΕΙ ΛΑΡΙΣΑΣ - Παράρτημα Καρδίτσας ΤΜΗΜΑ ΣΧΕΔΙΑΣΜΟΥ & ΤΕΧΝΟΛΟΓΙΑΣ ΞΥΛΟΥ ΕΠΙΠΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΤΕΧΝΙΚΟΥ ΣΧΕΔΙΟΥ ΙΙ (Μέρος πρώτο) - ΠΛΑΓΙΑ ΠΡΟΒΟΛΗ - ΑΞΟΝΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ - ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΚΟΛΛΑΤΟΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς

ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς ΠΕΙΡΑΜΑ Ι-β Μελέτη Φυσικού Εκκρεµούς Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε το φυσικό εκκρεµές και θα µετρήσουµε την επιτάχυνση της βαρύτητας. Θα εξετάσουµε λοιπόν πειραµατικά τα εξής: Την ταλάντωση

Διαβάστε περισσότερα

3, ( 4), ( 3),( 2), 2017

3, ( 4), ( 3),( 2), 2017 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β

ΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Β ΥΜΝΑΣΙΟ - 010 48 Α. Τι λέγεται τετραγωνική ρίζα ενός θετικού αριθμού α και πώς συμβολίζεται αυτή; Β. Ποιος αριθμός ονομάζεται άρρητος;. Πώς ορίζονται οι πραγματικοί αριθμοί; Α. Τι λέγεται ημίτονο μιας

Διαβάστε περισσότερα

Ορισμοί Μεταβολές ημιτόνου, συνημιτόνου και εφαπτομένης οξείας γωνίας ω.

Ορισμοί Μεταβολές ημιτόνου, συνημιτόνου και εφαπτομένης οξείας γωνίας ω. ΜΕΡΟΣ Β 2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ, ΣΥΝΗΜΙΤΟΝΟΥ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗΣ 271 2.3 ΜΕΤΑΒΟΛΕΣ ΗΜΙΤΟΝΟΥ, ΣΥΝΗΜΙΤΟΝΟ ΚΑΙ ΕΦΑΠΤΟ- ΜΕΝΗΣ Ορισμοί Μεταβολές ημιτόνου, συνημιτόνου και εφαπτομένης οξείας γωνίας ω. Όταν μια οξεία

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 2 ο : Κατακρημνίσματα

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

lim f ( x) x + f ( x) x a x a x a 2x 1

lim f ( x) x + f ( x) x a x a x a 2x 1 Ασύµπτωτες γραφικής παραστάσεως συναρτήσεως Ασύµπτωτες της γραφικής παραστάσεως συναρτήσεως y f ( ) ονοµάζονται οι ευθείες που για πολύ µικρές ή µεγάλες τιµές των, y προσεγγίζουν ικανοποιητικά την γραφική

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ

Εισαγωγή ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ ΕΙΣΑΓΩΓΗ ΣΤΑ ΓΣΠ Τα τελευταία 25 χρόνια, τα προβλήµατα που σχετίζονται µε την διαχείριση της Γεωγραφικής Πληροφορίας αντιµετωπίζονται σε παγκόσµιο αλλά και εθνικό επίπεδο µε την βοήθεια των Γεωγραφικών

Διαβάστε περισσότερα

Άσκηση 2 ΕΛΕΓΧΟΣ ΤΗΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΔΙΠΛΩΝ ΑΘΡΟΙΣΤΙΚΩΝ ΚΑΜΠΥΛΩΝ

Άσκηση 2 ΕΛΕΓΧΟΣ ΤΗΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΔΙΠΛΩΝ ΑΘΡΟΙΣΤΙΚΩΝ ΚΑΜΠΥΛΩΝ Άσκηση 2 ΕΛΕΓΧΟΣ ΤΗΣ ΟΜΟΙΟΓΕΝΕΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΔΙΠΛΩΝ ΑΘΡΟΙΣΤΙΚΩΝ ΚΑΜΠΥΛΩΝ Στον παρακάτω πίνακα, δίνονται τα ετήσια ύψη δύο γειτονικών βροχομετρικών σταθμών Α και Β. Ζητείται να γίνει έλεγχος της συνέπειας

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

2. ΓΕΩΓΡΑΦΙΑ ΤΗΣ Υ ΡΟΣΦΑΙΡΑΣ

2. ΓΕΩΓΡΑΦΙΑ ΤΗΣ Υ ΡΟΣΦΑΙΡΑΣ 2. ΓΕΩΓΡΑΦΙΑ ΤΗΣ Υ ΡΟΣΦΑΙΡΑΣ 2.1 Ωκεανοί και Θάλασσες. Σύµφωνα µε τη ιεθνή Υδρογραφική Υπηρεσία (International Hydrographic Bureau, 1953) ως το 1999 θεωρούντο µόνο τρεις ωκεανοί: Ο Ατλαντικός, ο Ειρηνικός

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ uiopasdfghjklzxcvbnmqwertyui 30/7/2016 ΣΩΤΗΡΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

Έλεγχος και αποκατάσταση συνέπειας χρονοσειρών βροχόπτωσης Παράδειγµα Η ετήσια βροχόπτωση του σταθµού Κάτω Ζαχλωρού Χ και η αντίστοιχη βροχόπτωση του γειτονικού του σταθµού Τσιβλός Υ δίνονται στον Πίνακα

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3)

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική 17-01-2009 Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) Επισηµάνσεις από τη θεωρία Πάνω στον πάγκο

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

1.5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ

1.5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ 1 5 ΜΕΤΡΗΣΗ ΣΥΓΚΡΙΣΗ ΓΩΝΙΩΝ ΘΕΩΡΙ Μονάδα µέτρησης γωνιών : Είναι η 1 µοίρα που γράφεται 1 ο Υποδιαιρέσεις της 1 ο : 1 ο = 60 (πρώτα λεπτά) και 1 = 60 ( δεύτερα λεπτά) 3. Μέτρο γωνίας : Είναι ο αριθµός

Διαβάστε περισσότερα

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.

Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ. Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

Β Γυμνασίου. Θέματα Εξετάσεων

Β Γυμνασίου. Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων υμνασίου Θέματα Εξετάσεων Θέμα 1. α. Ποια ποσά λέγονται ανάλογα και ποια σχέση τα συνδέει; β. Τι γνωρίζετε για τη γραφική παράσταση της συνάρτησης y=αx

Διαβάστε περισσότερα

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης 1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

6 Γεωμετρικές κατασκευές

6 Γεωμετρικές κατασκευές 6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά

Διαβάστε περισσότερα

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ

ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΟΣ ΣΥΝΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ -.Μ.Κ. 10.98 1 ΕΛ Λ Ε Ι Ψ Η - ΚΥΚΛΣ Ε1 Μ 2γ Ε2 2β 1. ΡΙΣΜΙ ΡΙΣΜΙ - ΚΤΣΚΕΥΕΣ Η έλλειψη είναι επίπεδη καµπύλη 2 ου βαθµού, είναι δε ο γεωµετρικός τόπος των σηµείων, των οποίων το άθροισµα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

Ρ Υ Θ Μ Ο Σ Μ Ε Τ Α Β Ο Λ Η Σ

Ρ Υ Θ Μ Ο Σ Μ Ε Τ Α Β Ο Λ Η Σ Ρ Υ Θ Μ Ο Σ Μ Ε Τ Α Β Ο Λ Η Σ Ο Ρ Ι Σ Μ Ο Ι ) Αν δύο μεταβλητά μεγέθη χ, ψ συνδέονται με την σχέση ψ = f ( χ ), όταν f μία παραγωγίσιμη συνάρτηση στο χ 0, τότε ονομάζουμε ρυθμό μεταβολής του ψ ως προς

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

Συγγραφέας: Νικόλαος Παναγιωτίδης

Συγγραφέας: Νικόλαος Παναγιωτίδης Τίτλος: Β Νόμος του Newton. Τάξη: Α Λυκείου Συγγραφέας: Νικόλαος Παναγιωτίδης e-mail: ekfe@dide.ioa.sch.gr ΕΚΦΕ: Ιωαννίνων 1 Υλικά: 1. Αμαξίδιο, 2. Τροχαλία, 3. Νήμα, 4. Κυλινδρικές μάζες 200 g με γάντζο,

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Κύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Κύκλος Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyks.gr 1 3 / 1 1 / 2 0 1 6 Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις και τεχνικές σε 5 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για

Διαβάστε περισσότερα

3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ

3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ 1 3.5 ΣΧΕΤΙΚΗ ΘΕΣΗ ΕΥΘΕΙΑΣ ΚΑΙ ΚΩΝΙΚΗΣ ΘΕΩΡΙΑ 1. Σχετική θέση ευθείας και κωνικής τοµής Έστω η ευθεία ε : y = λx + β και µία κωνική τοµή C µε εξίσωση την φ(x, y) =. Το πλήθος των κοινών σηµείων της ε και

Διαβάστε περισσότερα

Σύνολα. Γνωστά µας σύνολα: Ν σύνολο φυσικών αριθµών Q σύνολο ρητών αριθµών Ζ σύνολο ακεραίων αριθµών R σύνολο πραγµατικών αριθµών

Σύνολα. Γνωστά µας σύνολα: Ν σύνολο φυσικών αριθµών Q σύνολο ρητών αριθµών Ζ σύνολο ακεραίων αριθµών R σύνολο πραγµατικών αριθµών Σύνολα Σελ. 40 Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΝΟΜΟΣ COULOMB Πριν την ανάπτυξη της μεθοδογίας κρίνεται σκόπιμο να τονίσουμε τον τρόπο γραφής της δύναμης Coulomb που ασκείται μεταξύ δύο φορτίων. Συγκεκριμένα για αποφυγή των λαθών των μαθητών στις δυνάμεις

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

T (K) m 2 /m

T (K) m 2 /m Ορθοί και λανθασµένοι τρόποι απεικονίσεως δεδοµένων σε διάγραµµα Από µετρήσεις σηµείου ζέσεως σειράς διαλυµάτων προκύπτουν τα εξής δεδοµένα: m /m.5..5..5.55.. Σύµφωνα µε την θεωρία τα δεδοµένα πρέπει να

Διαβάστε περισσότερα

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης.

µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. 1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ µε την βοήθεια του Συστήµατος Συγχρονικής Λήψης Απεικόνισης. Το φύλλο εργασίας στηρίζεται στο αντίστοιχο του Παιδαγωγικού Ινστιτούτου που

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα