Τεχνική Υδρολογία (Ασκήσεις)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τεχνική Υδρολογία (Ασκήσεις)"

Transcript

1 Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 2 ο : Κατακρημνίσματα Φώτιος Π. ΜΑΡΗΣ Αναπλ. Καθηγητής

2 Παράδειγμα 2.1 Μια λεκάνη απορροής διαθέτει δίκτυο 5 βροχογράφων, Η ετήσια βροχόπτωση που καταγράφηκε από αυτούς τους βροχογράφους, είναι: Πίνακα 2.2 Ετήσια ύψη βροχής ανά βροχογράφο. Βροχογράφος Ετήσια βροχόπτωση (cm) Υπολογίστε το βέλτιστο αριθμό βροχογράφων για αυτήν τη λεκάνη, για λάθος της τάξης του 10% στον υπολογισμό της μέσης επιφανειακής βροχόπτωσης.

3 Λύση Η μέση τιμή των ετήσιων βροχοπτώσεων είναι: και η τυπική απόκλιση προκύπτει ίση με: Ο συντελεστής C u λαμβάνει την τιμή: και ο βέλτιστος αριθμός βροχογράφων στην υπό εξέταση λεκάνη απορροής είναι: Συνεπώς, απαιτείται η εγκατάσταση 3 επιπλέον βροχογράφων.

4 Παράδειγμα 2.2 Η ετήσια βροχόπτωση του σταθμού Χ και η μέση βροχόπτωση 15 γειτονικών σταθμών δίνονται στον Πίνακα 2.3. Να προσδιοριστεί η ομοιογένεια των μετρήσεων του σταθμού Χ. Σε ποιο έτος επήλθε η αλλαγή; Να υπολογιστεί η μέση ετήσια βροχόπτωση στο σταθμό Χ για την περίοδο των 30 ετών χωρίς την ομοιογενοποίηση και με την ομοιογενοποίηση των τιμών.

5 Πίνακας 2.3 Ετήσιες βροχοπτώσεις σταθμού Χ και μέση τιμή 15 σταθμών. Υδρολογικό έτος Σταθμός Χ (cm) Μέση τιμή15 Σταθμών (cm) Υδρολογικό έτος Σταθμός Χ (cm) Μέση τιμή 15 σταθμών (cm)

6 Λύση Γίνεται η παραδοχή ότι οι πιο πρόσφατα καταγεγραμμένες τιμές είναι ορθότερες από τις παλαιότερες τιμές, οι οποίες και θα διορθωθούν. Συνεπώς, κατατάσσονται καταρχήν οι τιμές σε αντίστροφη χρονική σειρά, όπως φαίνεται στον Πίνακα 2.4 (στήλες( 4, 5 και 6).

7 Πίνακας 2.4 Κατάταξη τιμών σε αντίστροφη χρονική σειρά (1) (2) (3) (4) (5) (6) Αρχικά δεδομένα Αντίστροφη χρονική σειρά Έτος Σταθμός Χ Μέση τιμή 15 σταθμών Έτος Σταθμός Χ Μέση τιμή 15 σταθμών

8 Στη συνέχεια, υπολογίζονται οι αθροιστικές τιμές των δύο σταθμών στον Πίνακα 2.5 (στήλες( 7 και 8) και χαράσσεται η διπλή αθροιστική καμπύλη, όπως φαίνεται στο Σχήμα 2.6. Παρατηρούμε γραφικά, ότι εμφανίζεται θλάση στη διπλή αθροιστική καμπύλη, στην τιμή που αντιστοιχεί στο έτος Κατά συνέπεια θα διορθωθούν οι τιμές του σταθμού Χ από τα έτη έως τα έτη

9 Πίνακας 2.5 Κατασκευή διπλής αθροιστικής καμπύλης. (7) (8) Αθροιστικά Έτος Σταθμός Χ Μέση τιμή 15 σταθμών

10 (7) (8) Αθροιστικά Έτος Σταθμός Χ Μέση τιμή 15 σταθμών Με γραμμική συσχέτιση των στηλών 7 και 8, προκύπτει ότι η κλίση της καμπύλης για τα έτη ~ είναι λ 1 = και για τα έτη ~ είναι λ 2 = Ο λόγος των δύο κλίσεων είναι μ = λ 1 / λ 2 = Με την τιμή αυτή θα πολλαπλασιαστούν οι τιμές της στήλης 5 από τα έτη έως τα έτη , ώστε να προκύψουν οι νέες τιμές για το σταθμό Χ. Οι νέες τιμές βροχόπτωσης του σταθμού Χ δίνονται στον Πίνακα 2.6 (στήλη 9), όπου επίσης υπολογίζονται και οι νέες αθροιστικές τιμές του Σταθμού Χ (στήλη 10).

11 Πίνακας 2.6 Νέες αθροιστικές τιμές. (9) (10) (11) Νέες τιμές Αθροιστικά Έτος Σταθμός Χ Νέες Μέση τιμή 15 αθροιστικές σταθμών Σταθμού Χ

12 Αν σχεδιαστεί η νέα διπλή αθροιστική καμπύλη, με τα δεδομένα των στηλών 10 και 11 του Πίνακα 2.6, παρατηρούμε ότι αυτή έχει ενιαία κλίση. Σχήμα 2.7 Νέα διπλή αθροιστική καμπύλη. Η μέση ετήσια βροχόπτωση στο σταθμό Χ πριν την ομοιογενοποίηση των τιμών ήταν 32.8 cm και μετά την ομοιογενοποίηση έγινε 29.7 cm.

13 Παράδειγμα 2.3 Βροχομετρικός σταθμός Χ βρέθηκε εκτός λειτουργίας για ένα χρονικό διάστημα του μήνα όπου σημειώθηκε βροχή. Οι μετρήσεις της βροχής για το εν λόγω επεισόδιο που καταγράφηκαν σε τρεις παρακείμενους (παρόμοιους μετεωρολογικά) σταθμούς Α, Β και C ήταν 107, 89 και 122 mm. Οι ετήσιες βροχοπτώσεις στους σταθμούς Χ, Α, Β και C είναι 978, 1120, 935 και 1200 mm αντίστοιχα. Να υπολογιστεί η βροχόπτωση για το σταθμό Χ.

14 Λύση Τα δεδομένα της άσκησης συνοψίζονται στον Πίνακα 2.7. ΣΤΑΘΜΟΣ ΥΨΟΣ ΒΡΟΧΗΣ (mm) ΣΤΑΘΜΟΣ ΕΤΗΣΙΟ ΥΨΟΣ (mm) Α 107 X 978 B 89 A 1120 C 122 B 935 C 1200 Η βροχόπτωση στο σταθμό Χ μπορεί να προσδιοριστεί με τη μέθοδο των κανονικών λόγων ως εξής:

15 Η βροχόπτωση στο σταθμό Χ μπορεί να προσδιοριστεί με τη μέθοδο των κανονικών λόγων ως εξής:

16 Παράδειγμα 2.4 Υπολογίστε τη βροχή στο σταθμό Α του Σχήματος 2.8, χρησιμοποιώντας τη μέθοδο αντίστροφων αποστάσεων. Στον Πίνακα 2.8 δίνονται οι τετμημένες και τεταγμένες πέντε γειτονικών σταθμών, σε σύστημα αναφοράς με αρχή των αξόνων το σημείο Α. Στον ίδιο πίνακα δίνονται οι βροχοπτώσεις που καταγράφηκαν στους πέντε γειτονικούς σταθμούς. Πίνακας 2.8 Τετμημένες και τεταγμένες γειτονικών σταθμών. Σταθμός X i -X o (km) Y i -Y 0 (km) Βροχή (cm)

17 Σχήμα 2.8 Διάταξη βροχομετρικών σταθμών.

18 Λύση Σύμφωνα με τη μέθοδο των αντίστροφων αποστάσεων, η βροχόπτωση στο σταθμό Α, δίνεται από τη σχέση: Pa ( Pi Wi) όπου Ρ i το ύψος βροχόπτωσης σε κάθε γειτονικό σταθμό και w i ο συντελεστής συμμετοχής του σταθμού, που δίνεται ως συνάρτηση της απόστασης του d i από το σταθμό Α, από τη σχέση:

19 που k =5. Τα γινόμενα p i w i υπολογίζονται στον παρακάτω πίνακα: Πίνακας 2.9 Διαδικασία μεθόδου αντίστροφων αποστάσεων. Σταθμός P i (cm) x i -x 0 (km) y i -y 0 (km) d i2 (km) d i -2 (km) w i P i -w i (cm) 1 2,5 1,2 0,9 2,25 0,44 0,12 0,3 2 3,4 0,5 1,1 1,46 0,19 0,19 0,65 3 1,5 0,8 0,3 0,73 0,38 0,38 0,57 4 2,2 0,5 1,2 1,69 0,16 0,16 0,35 5 1,8 1,1 0,8 1,85 0,15 0,15 0,27 και το ζητούμενο ύψος βροχής θα είναι:

20 Παράδειγμα 2.5 Στον παρακάτω πίνακα δίνονται τα ετήσια ύψη βροχής δύο σταθμών σε mm για τη χρονική περίοδο μέχρι με ελλείψεις σε μερικά χρόνια λόγω προβλημάτων σε έναν από τους δύο σταθμούς. Ζητείται η συμπλήρωση των ελλείψεων στο σταθμό 2 με την εφαρμογή της στατιστικής μεθόδου της απλής γραμμικής παλινδρόμησης. Πίνακας 2.10 Ετήσια ύψη βροχής σταθμών. Υδρολογικό έτος Σταθμός 1 Σταθμός

21 Υδρολογικό έτος Σταθμός 1 Σταθμός

22 Λύση Η γραμμική παλινδρόμηση μεταξύ των υψών βροχής των δύο σταθμών (μη λαμβάνοντας υπόψη τις χρονιές για τις οποίες δεν υπάρχουν στοιχεία για το Σταθμό 2), δίνει την ευθεία: με συντελεστή γραμμικής συσχέτισης r = Η συμπλήρωση των ζητούμενων τιμών γίνεται με εφαρμογή της τελευταίας σχέσης για τις αντίστοιχες τιμές του x. Τα αποτελέσματα παρουσιάζονται στον πίνακα που ακολουθεί:

23 Πίνακας 2.11 Συμπλήρωση τιμών με γραμμική παλινδρόμηση. Υδρολογικό έτος Σταθμός 1 (x)( Σταθμός Σταθμός 2 (y)(

24 Υδρολογικό έτος Σταθμός 1 (x)( Σταθμός Σταθμός 2 (y)(

25 Παράδειγμα 2.6 Στον Πίνακα 2.12 δίνονται τα μηνιαία δεδομένα βροχής και τα αντίστοιχα υψόμετρα για δέκα βροχομετρικούς σταθμούς μιας υπολεκάνης του ποταμού Πηνειού στη Θεσσαλία, που φαίνεται Σχήμα Να υπολογιστεί η μέση επιφανειακή βροχόπτωση με τη μέθοδο του αριθμητικού μέσου, Thiessen και ισοϋέτιων. Επιπλέον να γίνει αναγωγή της μέσης επιφανειακής βροχόπτωσης που υπολογίστηκε με τη μέθοδο Thiessen, στο μέσο υψόμετρο της λεκάνης. Δίνεται η έκταση της λεκάνης ίση με 2940 km 2 και το μέσο υψόμετρο της λεκάνης ίσο με 532 m.

26 Πίνακας 2.12 Υψόμετρο και μηνιαία βροχόπτωση σταθμών. α/α Σταθμός Υψόμετρο (m) Βροχόπτωση (mm) 1 ΜΟΥΖΑΚΙ ΤΑΥΡΩΠΟΣ ΑΓΙΟΦΥΛΛΟ ΜΑΛΑΚΑΣΙΟ ΜΕΓΑΛΗ ΚΕΡΑΣΙΑ ΜΕΤΕΩΡΑ ΠΑΛΑΙΟΧΩΡΙ ΣΤΟΥΡΝΑΡΕΪΚΑ ΤΡΙΚΑΛΑ ΦΑΡΚΑΔΩΝΑ 87 70

27 Σχήμα 2.11 Θέσεις σταθμών στη λεκάνη.

28 Λύση α) Μέθοδος αριθμητικού μέσου Η μέθοδος του αριθμητικού μέσου δίνει επιφανειακό ύψος βροχής, ίσο με το μέσο όρο των σημειακών βροχοπτώσεων των 10 σταθμών: Ρ= ( )/ 10 = 88 mm 64

29 β) Μέθοδος Thiessen Η σχεδίαση των πολυγώνων Thiessen γίνεται με χάραξη των μεσοκαθέτων στα ευθύγραμμα τμήματα που ενώνουν τους σταθμούς ανά δύο, όπως φαίνεται στο Σχήμα Να σημειωθεί ότι τα πολύγωνα Thiessen ορίζονται κατά μοναδικό τρόπο σε ένα συγκεκριμένο δίκτυο βροχογράφων λεκάνης απορροής Η διαδικασία υπολογισμού της επιφανειακής βροχόπτωσης με τη μέθοδο Thiessen συνοψίζεται στον πίνακα που ακολουθεί. Σε αυτόν, το ποσοστό w που αντιστοιχεί σε κάθε σταθμό, προκύπτει ως πηλίκο της έκτασης του πολυγώνου Thiessen προς τη συνολική έκταση της λεκάνης απορροής.

30 Σχήμα 2.12 Χάραξη πολυγώνων Thiessen.

31 Πίνακας 2.13 Διαδικασία μεθόδου Thiessen. Σταθμός Έκταση (km 2 ) Ποσοστό w Βροχόπτωση Ρ (mm) w x P Σταθμός Έκταση (km 2 ) Ποσοστό w Βροχό- πτωση P(mm) W*P Η επιφανειακή βροχόπτωση κατά Thiessen, προκύπτει ίση με 86 mm Σύνολο

32 γ) Μέθοδος ισοϋέτιων Στο Σχήμα 2.13 έχουν χαραχθεί οι ισοϋέτιες με βήμα 5 mm. Σχηματίζονται συνολικά 10 διαστήματα τιμών. Η χάραξη των ισοϋέτιων, δεν γίνεται κατά μοναδικό τρόπο, όπως στη μέθοδο Thiessen, αλλά εξαρτάται από τη μέθοδο παρεμβολής των ισοϋέτιων καμπυλών που επιλέγεται. Ο πιο απλός τρόπος είναι η γραφική χάραξη των καμπυλών, στην οποία υπεισέρχεται η κρίση του μελετητή, ενώ στα συστήματα γεωγραφικών πληροφοριών (GIS) συνήθως χρησιμοποιείται η μέθοδος αντίστροφων αποστάσεων ή του πλησιέστερου γείτονα Στον Πίνακα 2.14 δίνεται η διαδικασία υπολογισμού της επιφανειακής βροχόπτωσης με τη μέθοδο των ισουέτιων.

33 Σχήμα 2.13 Χάραξη ισοϋέτιων καμπυλών

34 Πίνακας 2.14 Διαδικασία μεθόδου ισουέτιων καμπυλών Διάστημα τιμών {mm) Έκταση (km 2 ) Ποσοστό w Βροχόπτωση Ρ (mm) W*P Σύνολο Η επιφανειακή βροχόπτωση με τη μέθοδο των ισουέτιων καμπυλών, προκύπτει ίση με 87 mm.

35 δ) Αναγωγή στο μέσο υψόμετρο της λεκάνης Το επιφανειακό ύψος βροχής που υπολογίστηκε με τη μέθοδο Thiessen, δε λαμβάνει υπόψη το πραγματικό μέσο υψόμετρο της λεκάνης, αλλά το υψόμετρο των σταθμών. Συνεπώς, σε μια λεκάνη απορροής που οι περισσότεροι σταθμοί έχουν εγκατασταθεί στα πεδινά, η μέθοδος Thiessen υποεκτιμά την πραγματική επιφανειακή βροχόπτωση και αντίστροφα. Για το λόγο αυτό, απαιτείται η διόρθωση της επιφανειακής βροχόπτωσης που προκύπτει από τη μέθοδο Thiessen με βάση το πραγματικό μέσο υψόμετρο της λεκάνης, το οποίο εδώ δίνεται ίσο με 532 m. Η διόρθωση προϋποθέτει την εκτίμηση της βροχοβαθμίδας και της διαφοράς του μέσου σταθμισμένου υψομέτρου των σταθμών (που χρησιμοποιεί η μέθοδος Thiessen) από το πραγματικό μέσο υψόμετρο της λεκάνης.

36 Για την εύρεση της μηνιαίας βροχοβαθμίδας, συσχετίζεται γραμμικά η βροχόπτωση των σταθμών και το υψόμετρο τους, σύμφωνα με το Σχήμα Η κλίση της ευθείας που σχηματίζεται (λ=0.039) είναι η μηνιαία βροχοβαθμίδα, δίνει δηλαδή, την αύξηση του μηνιαίου ύψους βροχόπτωσης με το υψόμετρο. Συνήθως η βροχοβαθμίδα εκφράζεται σε γπγπ ύψους βροχής ανά 100 μέτρα μεταβολής του υψομέτρου, δηλαδή, εδώ είναι Ίση με Σχήμα 2.14 Γραμμική παλινδρόμηση μεταξύ βροχόπτωσης και υψομέτρου.

37 Το μέσο σταθμισμένο υψόμετρο των σταθμών μπορεί να προκύψει χρησιμοποιώντας τους συντελεστές Thiessen που υπολογίστηκαν στο προηγούμενο βήμα, σύμφωνα με τη διαδικασία του Πίνακα Πίνακας 2.15 Υπολογισμός του σταθμισμένου υψομέτρου των σταθμών. Σταθμός Ποσοοτό Τhiessen w Υψόμετρο Η (m) W*H Σύνολο 1 449

38 Το ανηγμένο επιφανειακό ύψος βροχής δίνεται από την εξίσωση: όπου: Ρ t = 86 mm η βροχόπτωση που προέκυψε από τη μέθοδο Τhiessen, λ =0.039 (mm/m( mm/m) η βροχοβαθμίδα και Δh=Η KB επιφάνειας Η σταθμισμένο,σταθμών σταθμών = = 83m Με αντικατάσταση των τιμών προκύπτει ότι το ανηγμένο επιφανειακό ύψος βροχής είναι ίσο με: διαφοροποιείται δηλαδή, κατά 3 mm περίπου από αυτό που προέκυψε αρχικά με τη μέθοδο Τhiessen.

Έλεγχος και αποκατάσταση συνέπειας χρονοσειρών βροχόπτωσης Παράδειγµα Η ετήσια βροχόπτωση του σταθµού Κάτω Ζαχλωρού Χ και η αντίστοιχη βροχόπτωση του γειτονικού του σταθµού Τσιβλός Υ δίνονται στον Πίνακα

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 2: Στοιχεία Μετεωρολογίας Υετόπτωση: Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων

ΥΔΡΟΛΟΓΙΑ. Ενότητα 2: Στοιχεία Μετεωρολογίας Υετόπτωση: Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 2: Στοιχεία Μετεωρολογίας Υετόπτωση: Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ. Κατακρηµνίσεις (2 η Άσκηση)

ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ. Κατακρηµνίσεις (2 η Άσκηση) ΤΕΧΝΙΚΗ Υ ΡΟΛΟΓΙΑ Κατακρηµνίσεις ( η Άσκηση) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ιάρθρωση ου Μαθήµατος Ασκήσεων Έλεγχος οµοιογένειας

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 1 ο : Εισαγωγή

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 5 ο : Απορροή

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 7 ο : Διόδευση

Διαβάστε περισσότερα

ΕΜΠ Σχολή Πολιτικών Μηχανικών Τεχνική Υδρολογία Διαγώνισμα κανονικής εξέτασης

ΕΜΠ Σχολή Πολιτικών Μηχανικών Τεχνική Υδρολογία Διαγώνισμα κανονικής εξέτασης ΕΜΠ Σχολή Πολιτικών Μηχανικών Τεχνική Υδρολογία Διαγώνισμα κανονικής εξέτασης 2011-2012 1 ΠΡΩΤΗ ΕΞΕΤΑΣΗ-ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 30 ΛΕΠΤΑ ΜΟΝΑΔΕΣ: 3 ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΡΑΛΛΑΓΗ Α Θέμα 1 (μονάδες

Διαβάστε περισσότερα

Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις

Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις ΕΞΑΡΧΟΥ ΝΙΚΟΛΟΠΟΥΛΟΣ ΜΠΕΝΣΑΣΣΩΝ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε. ΛΑΖΑΡΙ ΗΣ & ΣΥΝΕΡΓΑΤΕΣ ΑΝΩΝΥΜΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΩΝ Α.Ε. ΓΕΩΘΕΣΙΑ ΣΥΜΒΟΥΛΟΙ ΑΝΑΠΤΥΞΗΣ Ε.Π.Ε. Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις

Διαβάστε περισσότερα

Εφαρµογές γεωγραφικών επεξεργασιών

Εφαρµογές γεωγραφικών επεξεργασιών ΕΞΑΡΧΟΥ ΝΙΚΟΛΟΠΟΥΛΟΣ ΜΠΕΝΣΑΣΣΩΝ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε. ΛΑΖΑΡΙ ΗΣ & ΣΥΝΕΡΓΑΤΕΣ ΑΝΩΝΥΜΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΩΝ Α.Ε. ΓΕΩΘΕΣΙΑ ΣΥΜΒΟΥΛΟΙ ΑΝΑΠΤΥΞΗΣ Ε.Π.Ε. Εφαρµογές γεωγραφικών επεξεργασιών Α. Κουκουβίνος

Διαβάστε περισσότερα

ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ-ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 30 ΛΕΠΤΑ ΜΟΝΑΔΕΣ: 3 ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ ΣΗΜΕΙΩΣΕΙΣ

ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ-ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 30 ΛΕΠΤΑ ΜΟΝΑΔΕΣ: 3 ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ ΣΗΜΕΙΩΣΕΙΣ ΕΜΠ Σχολή Πολιτικών Μηχανικών Τεχνική Υδρολογία Διαγώνισμα επαναληπτικής εξέτασης 2012-2013 1 ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ-ΘΕΩΡΙΑ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 30 ΛΕΠΤΑ ΜΟΝΑΔΕΣ: 3 ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ ΣΗΜΕΙΩΣΕΙΣ Θέμα 1 (μονάδες

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 6 ο : Υδρολογία

Διαβάστε περισσότερα

1. Η σπορά νεφών για τη δηµιουργία τεχνητής βροχής έχει στόχο: 2. Το κρίσιµο βήµα για τη δηµιουργία βροχής είναι:

1. Η σπορά νεφών για τη δηµιουργία τεχνητής βροχής έχει στόχο: 2. Το κρίσιµο βήµα για τη δηµιουργία βροχής είναι: 1. Η σπορά νεφών για τη δηµιουργία τεχνητής βροχής έχει στόχο: Τον τεχνητό εµπλουτισµό της ατµόσφαιρας σε υδρατµούς. Την τεχνητή µείωση της θερµοκρασίας για την ψύξη των υδρατµών. Τον τεχνητό εµπλουτισµό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

1. ΥΔΡΟΛΟΓΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Εξάμηνο: Κωδικός μαθήματος:

1. ΥΔΡΟΛΟΓΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Εξάμηνο: Κωδικός μαθήματος: ΕΞΑΜΗΝΟ Δ 1. ΥΔΡΟΛΟΓΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Εξάμηνο: 4 Κωδικός μαθήματος: ΖTΠO-4011 Επίπεδο μαθήματος: Υποχρεωτικό Ώρες ανά εβδομάδα Θεωρία Εργαστήριο Συνολικός αριθμός ωρών: 5 3 2 Διδακτικές Μονάδες

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: CSE420 Τεχνική Υδρολογία Αντιπλημμυρικά Έργα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: CSE420 Τεχνική Υδρολογία Αντιπλημμυρικά Έργα ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: CSE420 Τεχνική Υδρολογία Αντιπλημμυρικά Έργα (1) ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ και ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό

Διαβάστε περισσότερα

(2.8) Η αθροιστική πιθανότητα, που προκύπτει με ολοκλήρωση της παραπάνω σχέσης (2.8), δίνεται από τη σχέση: σ π

(2.8) Η αθροιστική πιθανότητα, που προκύπτει με ολοκλήρωση της παραπάνω σχέσης (2.8), δίνεται από τη σχέση: σ π Κεφάλαιο Στατιστικές έννοιες στην Υδρολογία Τα φυσικά γεγονότα όπως είναι οι βροχοπτώσεις, η εξατμισοδιαπνοή και η απορροή είναι από τη φύση τους τυχαία. Οι παρατηρήσεις μας γι αυτά συχνά περιλαμβάνουν

Διαβάστε περισσότερα

Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις

Τυπικές και εξειδικευµένες υδρολογικές αναλύσεις Προς µια ορθολογική αντιµετώπιση των σύγχρονων υδατικών προβληµάτων: Αξιοποιώντας την Πληροφορία και την Πληροφορική για την Πληροφόρηση Υδροσκόπιο: Εθνική Τράπεζα Υδρολογικής & Μετεωρολογικής Πληροφορίας

Διαβάστε περισσότερα

ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΗΣ ΕΠΟΠΤΕΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΤΩΝ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΔΡΕΥΣΗΣ ΤΗΣ ΑΘΗΝΑΣ

ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΗΣ ΕΠΟΠΤΕΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΤΩΝ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΥΔΡΕΥΣΗΣ ΤΗΣ ΑΘΗΝΑΣ ΕΤΑΙΡΕΙΑ ΥΔΡΕΥΣΗΣ ΚΑΙ ΑΠΟΧΕΤΕΥΣΗΣ ΠΡΩΤΕΥΟΥΣΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τομέας Υδατικών Πόρων, Υδραυλικών και Θαλάσσιων Έργων ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΗΣ ΕΠΟΠΤΕΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΤΩΝ ΥΔΑΤΙΚΩΝ

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων. Τμήμα Πολιτικών Μηχανικών

ΥΔΡΟΛΟΓΙΑ. Ενότητα 4: Όμβριες Καμπύλες. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων. Τμήμα Πολιτικών Μηχανικών Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Πολυτεχνική Σχολή Σχέσεις Έντασης Διάρκειας

Διαβάστε περισσότερα

Εκτίμηση της μεταβολής των τιμών μετεωρολογικών παραμέτρων σε δασικά οικοσυστήματα στην Ελλάδα

Εκτίμηση της μεταβολής των τιμών μετεωρολογικών παραμέτρων σε δασικά οικοσυστήματα στην Ελλάδα Εκτίμηση της μεταβολής των τιμών μετεωρολογικών παραμέτρων σε δασικά οικοσυστήματα στην Ελλάδα Δ. Παπαδήμος ΕΚΒΥ καθ. Δ. Παπαμιχαήλ - ΑΠΘ 8- Νοεμβρίου 204, Θεσσαλονίκη Περιοχές Μελέτης 4 πιλοτικές περιοχές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΣΤΑΘΜΟΣ ΚΑΤΑΚΡΗΜΝΙΣΕΙΣ ΕΞΑΤΜΙΣΗ. Μ 1 450 mm 150 mm. Μ 2 560 mm 190 mm. Μ 3 480 mm 165 mm. Μ 4 610 mm 173 mm.

ΑΣΚΗΣΗ ΣΤΑΘΜΟΣ ΚΑΤΑΚΡΗΜΝΙΣΕΙΣ ΕΞΑΤΜΙΣΗ. Μ 1 450 mm 150 mm. Μ 2 560 mm 190 mm. Μ 3 480 mm 165 mm. Μ 4 610 mm 173 mm. Στην περιοχή που φαίνεται στον χάρτη υπάρχουν πέντε µετεωρολογικοί σταθµοί. Ποίος είναι ο µέσος ισοδύναµος όγκος νερού µε τον οποίο τροφοδοτείται ο υπόγειος υδροφορέας από την κατείσδυση στην περιοχή αυτή

Διαβάστε περισσότερα

Τεχνική Υδρολογία. Κεφάλαιο 2 ο : Κατακρημνίσματα. Φώτιος Π. ΜΑΡΗΣ

Τεχνική Υδρολογία. Κεφάλαιο 2 ο : Κατακρημνίσματα. Φώτιος Π. ΜΑΡΗΣ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία Κεφάλαιο 2 ο : Κατακρημνίσματα

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 13ο: Ξηρασία

ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 13ο: Ξηρασία Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Μεταπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 13ο:

Διαβάστε περισσότερα

Πλημμύρες Υδρολογικές εφαρμογές με τη χρήση GIS

Πλημμύρες Υδρολογικές εφαρμογές με τη χρήση GIS Πλημμύρες Υδρολογικές εφαρμογές με τη χρήση GIS Νίκος Μαμάσης Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Αθήνα 2014 Υδρολογικές εφαρμογές με τη χρήση GIS Γενικά Η τεχνολογία των Συστημάτων Γεωγραφικής

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Εκτίμηση της διακύμανσης της παροχής αιχμής σε λεκάνες της Πελοποννήσου με συγκριτική αξιολόγηση δύο διαδεδομένων

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 3 ο : Εξάτμιση

Διαβάστε περισσότερα

Περίπου ίση µε την ελάχιστη τιµή του δείγµατος.

Περίπου ίση µε την ελάχιστη τιµή του δείγµατος. 1. Η µέση υπερετήσια τιµή δείγµατος µέσων ετήσιων παροχών Q (m3/s) που ακολουθούν κατανοµή Gauss, ξεπερνιέται κατά µέσο όρο κάθε: 1/0. = 2 έτη. 1/1 = 1 έτος. 0./1 = 0. έτος. 2. Έστω δείγµα 20 ετών µέσων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Στην έξοδο λεκάνης απορροής µετρήθηκε το παρακάτω καθαρό πληµµυρογράφηµα (έχει αφαιρεθεί η βασική ροή):

ΑΣΚΗΣΗ 2 Στην έξοδο λεκάνης απορροής µετρήθηκε το παρακάτω καθαρό πληµµυρογράφηµα (έχει αφαιρεθεί η βασική ροή): ΑΣΚΗΣΗ 1 Αρδευτικός ταµιευτήρας τροφοδοτείται κυρίως από την απορροή ποταµού που µε βάση δεδοµένα 30 ετών έχει µέση τιµή 10 m 3 /s και τυπική απόκλιση 4 m 3 /s. Ο ταµιευτήρας στην αρχή του υδρολογικού

Διαβάστε περισσότερα

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:

Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες: Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.

Διαβάστε περισσότερα

Περιεχόµενα Ευρετήριο Σχηµάτων Ευρετήριο Πινάκων Υδατικό Περιβάλλον Στοιχεία Υδρολογικής Ανάλυσης... 8

Περιεχόµενα Ευρετήριο Σχηµάτων Ευρετήριο Πινάκων Υδατικό Περιβάλλον Στοιχεία Υδρολογικής Ανάλυσης... 8 Περιεχόµενα Περιεχόµενα... 2 Ευρετήριο Σχηµάτων... 5 Ευρετήριο Πινάκων... 7 1. Υδατικό Περιβάλλον Στοιχεία Υδρολογικής Ανάλυσης... 8 1.1 Γενική εισαγωγή...8 1.2 Υδρολογικός κύκλος...9 1.3 Υδρολογικές µεταβλητές...10

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ : " ΙΕΡΕΥΝΗΣΗ ΥΝΑΤΟΤΗΤΩΝ ΗΜΙΟΥΡΓΙΑΣ ΤΑΜΙΕΥΤΗΡΑ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΥΛΙΣΟΥ ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΓΙΑ ΑΠΟΘΗΚΕΥΣΗ ΝΕΡΩΝ ΠΗΓΗΣ ΑΛΜΥΡΟΥ"

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ :  ΙΕΡΕΥΝΗΣΗ ΥΝΑΤΟΤΗΤΩΝ ΗΜΙΟΥΡΓΙΑΣ ΤΑΜΙΕΥΤΗΡΑ ΣΤΗΝ ΠΕΡΙΟΧΗ ΤΥΛΙΣΟΥ ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΓΙΑ ΑΠΟΘΗΚΕΥΣΗ ΝΕΡΩΝ ΠΗΓΗΣ ΑΛΜΥΡΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΕΠΙΣΤΗΜΟΝΙΚΟ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ "ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ" ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ : " ΙΕΡΕΥΝΗΣΗ ΥΝΑΤΟΤΗΤΩΝ ΗΜΙΟΥΡΓΙΑΣ ΤΑΜΙΕΥΤΗΡΑ ΣΤΗΝ ΠΕΡΙΟΧΗ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION

Διαβάστε περισσότερα

ιάρθρωση παρουσίασης 1. Ιστορικό διαχείρισης της λίµνης Πλαστήρα 2. Συλλογή και επεξεργασία δεδοµένων 3. Μεθοδολογική προσέγγιση

ιάρθρωση παρουσίασης 1. Ιστορικό διαχείρισης της λίµνης Πλαστήρα 2. Συλλογή και επεξεργασία δεδοµένων 3. Μεθοδολογική προσέγγιση Ανδρέας Ευστρατιάδης, υποψήφιος διδάκτορας Εθνικό Μετσόβιο Πολυτεχνείο Τοµέας Υδατικών πόρων Ποσοτική και ποιοτική θεώρηση της λειτουργίας του ταµιευτήρα Πλαστήρα Περιβαλλοντικές Επιπτώσεις από Υδραυλικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

1. ROSIN-RAMMLERRAMMLER

1. ROSIN-RAMMLERRAMMLER ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΝΟΜΗΣ ΜΕΓΕΘΟΥΣ ΤΕΜΑΧΙΩΝ. OSIN-AMMLEAMMLE 2. GATES-GAUDIN-SCHUHMANN Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π.-2008 Κατανομή osi mmler - - k 00 = e ή = 00 k e 00 % e k = αθροιστικό παραμένον σε

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

Τεχνική Υδρολογία - Αντιπλημμυρικά Έργα

Τεχνική Υδρολογία - Αντιπλημμυρικά Έργα ΤΕΙ-Αθήνας Τμήμα Πολιτικών Μηχανικών ΤΕ & Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τεχνική Υδρολογία - Αντιπλημμυρικά Έργα Διδάσκων: Ιωάννης Συμπέθερος Καθηγητής Εαρινό Εξάμηνο Σχ. Έτους 2013-14 ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΧΡΟΝΟΣΕΙΡΕΣ. Αδρανή 12,00% 10,00% 8,00% 6,00% Ποσοστό % 4,00% 2,00% 0,00% εβδοµάδες

ΧΡΟΝΟΣΕΙΡΕΣ. Αδρανή 12,00% 10,00% 8,00% 6,00% Ποσοστό % 4,00% 2,00% 0,00% εβδοµάδες ΧΡΟΝΟΣΕΙΡΕΣ Ένα σύνολο διαδοχικών δεδοµένων αποτελεί µια σειρά. εδοµένα που σχηµατίζουν σειρές προέρχονται γενικά από την καταγραφή της τιµής µιας µεταβλητής κατά την εξέλιξή της. Χρονοσειρά είναι η καταγραφή

Διαβάστε περισσότερα

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k.

Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ. οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους ν με k. Δ Ι Α Γ Ω Ν Ι Σ Μ Α Σ Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση () είναι παραγωγίσιμη στο R με () Α Έστω k οι τιμές μιας μεταβλητής Χ ενός δείγματος πλήθους

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 6: Υδρολογικές απώλειες, Υδρογράφημα - Υετογράφημα: Ασκήσεις. Καθ. Αθανάσιος Λουκάς

ΥΔΡΟΛΟΓΙΑ. Ενότητα 6: Υδρολογικές απώλειες, Υδρογράφημα - Υετογράφημα: Ασκήσεις. Καθ. Αθανάσιος Λουκάς Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 6: Υδρολογικές απώλειες, Υδρογράφημα - Υετογράφημα: Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Μαθηματικός Περιηγητής σχ. έτος

Μαθηματικός Περιηγητής σχ. έτος =================================================================== ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 06 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 ΒΡΟΧΗ. 1. Βροχομετρικές παράμετροι. 2. Ημερήσια πορεία της βροχής

ΑΣΚΗΣΗ 6 ΒΡΟΧΗ. 1. Βροχομετρικές παράμετροι. 2. Ημερήσια πορεία της βροχής ΑΣΚΗΣΗ 6 ΒΡΟΧΗ Η βροχή αποτελεί μία από τις σπουδαιότερες μετεωρολογικές παραμέτρους. Είναι η πιο κοινή μορφή υετού και αποτελείται από σταγόνες που βρίσκονται σε υγρή κατάσταση. 1. Βροχομετρικές παράμετροι

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ. Ενότητα 1: Εισαγωγή στις υδρολογικές διεργασίες- Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων

ΥΔΡΟΛΟΓΙΑ. Ενότητα 1: Εισαγωγή στις υδρολογικές διεργασίες- Ασκήσεις. Καθ. Αθανάσιος Λουκάς. Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΑ Ενότητα 1: Εισαγωγή στις υδρολογικές διεργασίες- Ασκήσεις Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Φυσικοί και Περιβαλλοντικοί Κίνδυνοι (Εργαστήριο) Ενότητα 7 Πλημμύρες πλημμυρικές απορροές ρ. Θεοχάρης Μενέλαος

Φυσικοί και Περιβαλλοντικοί Κίνδυνοι (Εργαστήριο) Ενότητα 7 Πλημμύρες πλημμυρικές απορροές ρ. Θεοχάρης Μενέλαος Φυσικοί και Περιβαλλοντικοί Κίνδυνοι (Εργαστήριο) Ενότητα 7 Πλημμύρες πλημμυρικές απορροές ρ. Θεοχάρης Μενέλαος 3.4 Πλημμυρικές απορροές Πλημμυρικές απορροές θεωρούνται οι απορροές που ακολουθούν κάποια

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΩΡΙΑ. Γραµµική εξίσωση µε δύο αγνώστους, y Λέγεται κάθε εξίσωση της µορφής α + βy = γ, µε α 0 ή β 0. Γραφική παράσταση γραµµικής εξίσωσης Κάθε γραµµική εξίσωση α + βy = γ παριστάνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΜΑΘΗΜΑ: ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΜΑΘΗΜΑ: ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Παναγιώτα Γαλιατσάτου

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών

Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Επιµέλεια: ηµάδη Αγόρω Ερµηνεία Τοπογραφικού Υποβάθρου στη Σύνταξη και Χρήση Γεωλoγικών Χαρτών ΙΣΟΫΨΕΙΣ ΚΑΜΠΥΛΕΣ: είναι

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ

ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑ 16_10_2012 ΙΣΟΥΨΕΙΣ ΚΑΜΠΥΛΕΣ- ΣΗΜΕΙΩΣΕΙΣ 2.1 Απεικόνιση του ανάγλυφου Μια εδαφική περιοχή αποτελείται από εξέχουσες και εισέχουσες εδαφικές μορφές. Τα εξέχοντα εδαφικά τμήματα βρίσκονται μεταξύ

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΠΡΟΒΛΗΜΑΤΑ ΑΠΟΧΕΤΕΥΣΗΣ ΟΜΒΡΙΩΝ ΥΔΑΤΩΝ ΣΕ ΠΕΡΙΟΧΗ ΣΤΟΥΣ ΑΓΙΟΥΣ ΑΝΑΡΓΥΡΟΥΣ & ΕΠΙΚΙΝΔΥΝΗ ΣΤΕΝΩΣΗ ΟΔΟΣΤΡΩΜΑΤΟΣ

ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΠΡΟΒΛΗΜΑΤΑ ΑΠΟΧΕΤΕΥΣΗΣ ΟΜΒΡΙΩΝ ΥΔΑΤΩΝ ΣΕ ΠΕΡΙΟΧΗ ΣΤΟΥΣ ΑΓΙΟΥΣ ΑΝΑΡΓΥΡΟΥΣ & ΕΠΙΚΙΝΔΥΝΗ ΣΤΕΝΩΣΗ ΟΔΟΣΤΡΩΜΑΤΟΣ ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΑΘΗΝΑ ΔΕΚΕΜΒΡΙΟΣ 2014 ΘΕΜΑ: ΠΡΟΒΛΗΜΑΤΑ ΑΠΟΧΕΤΕΥΣΗΣ ΟΜΒΡΙΩΝ ΥΔΑΤΩΝ ΣΕ ΠΕΡΙΟΧΗ ΣΤΟΥΣ ΑΓΙΟΥΣ ΑΝΑΡΓΥΡΟΥΣ & ΕΠΙΚΙΝΔΥΝΗ ΣΤΕΝΩΣΗ ΟΔΟΣΤΡΩΜΑΤΟΣ 1.0 ΕΙΣΑΓΩΓΗ - ΕΝΤΟΛΕΣ Αντικείμενο της παρούσας Τεχνικής

Διαβάστε περισσότερα

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ

7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ 7.2.1 Εκτίμηση της Καμπύλης Παλινδρόμησης της Μεταβλητής Υ πάνω στην Μεταβλητή Χ Για να προσδιορισθεί η καμπύλη παλινδρόμησης, η οποία αποτελείται από όλα τα ζεύγη σημείων τα οποία μπορούν προσδιορισθούν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ

ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ ΜΑΘΗΜΑ ΠΛΗΜΜΥΡΕΣ ΚΑΙ ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ Μελέτη χαρτογράφησης πληµµύρας (flood mapping) µε χρήση του υδραυλικού µοντέλου HEC RAS Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων Μάϊος 2006 1 Εκτίµηση

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα

Υδρολογική θεώρηση της λειτουργίας του υδροηλεκτρικού έργου Πλαστήρα

Υδρολογική θεώρηση της λειτουργίας του υδροηλεκτρικού έργου Πλαστήρα Διημερίδα για τη διαχείριση των υδατικών πόρων στη λίμνη Πλαστήρα Νεοχώρι Καρδίτσας 26-27 Ιανουαρίου 21 Υδρολογική θεώρηση της λειτουργίας του υδροηλεκτρικού έργου Πλαστήρα Δημήτρης Κουτσογιάννης Τομέας

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ

ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ Τάφροι Οχετοί Δίκτυα ομβρίων Στραγγιστικά δίκτυα Ρείθρα Διευθετήσεις ποταμών και χειμάρρων ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΟΔΟΠΟΙΙΑΣ :ΟΧΕΤΟΙ ΥΔΡΑΥΛΙΚΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΚΕΣ ΑΠΩΛΕΙΕΣ ΣΤΟ ΕΔΑΦΟΣ

ΥΔΡΟΛΟΓΙΚΕΣ ΑΠΩΛΕΙΕΣ ΣΤΟ ΕΔΑΦΟΣ ΥΔΡΟΛΟΓΙΚΕΣ ΑΠΩΛΕΙΕΣ ΣΤΟ ΕΔΑΦΟΣ Το νερό των κατακρημνισμάτων ακολουθεί διάφορες διαδρομές στη πορεία του προς την επιφάνεια της γης. Αρχικά συναντά επιφάνειες που αναχαιτίζουν την πορεία του όπως είναι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Α. Η ΣΥΝΑΡΤΗΣΗ : y = α.x ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Δίνεται η ευθεία y = 3x. α) Να υπολογίσετε την κλίση της ευθείας. β) Να κάνετε την γραφική της παράσταση. 2. Μια ευθεία διέρχεται από την αρχή των

Διαβάστε περισσότερα

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ

Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ Υ ΡΟΛΟΓΙΚΗ ΜΕΛΕΤΗ ΛΕΚΑΝΗΣ ΞΗΡΙΑ ΜΑΓΝΗΣΙΑΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 Εισαγωγή 1 1.1 Αντικείµενο και διάρθρωση της µελέτης...1 1.2 Περιοχή µελέτης...1 1.2.1 Φυσιογραφικά χαρακτηριστικά...1 1.2.2 Γεωλογικά χαρακτηριστικά...1

Διαβάστε περισσότερα

Κεφάλαιο 3. 3 Κλιματικές παράμετροι. 3.1 Καιρός και κλίμα. 3.2 Ακτινοβολίες

Κεφάλαιο 3. 3 Κλιματικές παράμετροι. 3.1 Καιρός και κλίμα. 3.2 Ακτινοβολίες Κεφάλαιο 3 3 Κλιματικές παράμετροι 3.1 Καιρός και κλίμα Οι βροχοπτώσεις που δέχεται μια περιοχή εξαρτώνται από το κλίμα της, το οποίο σχετίζεται άμεσα με τη γεωγραφική της θέση. Σημαντικοί κλιματικοί παράγοντες

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

Εξάτμιση και Διαπνοή

Εξάτμιση και Διαπνοή Εξάτμιση και Διαπνοή Εξάτμιση, Διαπνοή Πραγματική και δυνητική εξατμισοδιαπνοή Μέθοδοι εκτίμησης της εξάτμισης από υδάτινες επιφάνειες Μέθοδοι εκτίμησης της δυνητικής και πραγματικής εξατμισοδιαπνοής (ΕΤ)

Διαβάστε περισσότερα

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο

AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... xi Foreword... xv ΠΗΓΕΣ ΚΑΙ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... xi Foreword... xv ΠΗΓΕΣ ΚΑΙ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... xi Foreword... xv Κεφάλαιο 1 Εισαγωγή 1.1 Διαχείριση Υδατικών Πόρων (ΔΥΠ)... 1 1.2 Λογισμικό (Software) για τη Διαχείριση Υδατικών Πόρων... 5 1.3 Συστήματα Διαχείρισης Υδατικών

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

Υδρολογικές Μελέτες και Διαθεσιμότητα Δεδομένων στην Ελλάδα:

Υδρολογικές Μελέτες και Διαθεσιμότητα Δεδομένων στην Ελλάδα: Υδρολογικές Μελέτες και Διαθεσιμότητα Δεδομένων στην Ελλάδα: Ιωάννης Α. Νιάδας Πολιτικός Μηχανικός Ε.Μ.Π., M.Sc. Υδρολογίας Ζ&Α Π. Αντωναρόπουλος και Σ/τες Α.Μ.Ε. Ενότητες της παρουσίασης Η ΕΜΠΕΙΡΙΑ ΑΠΟ

Διαβάστε περισσότερα

Παράρτημα Α Αναλυτικά αποτελέσματα βελτιστοποίησης

Παράρτημα Α Αναλυτικά αποτελέσματα βελτιστοποίησης - 152 - Παράρτημα Α Αναλυτικά αποτελέσματα βελτιστοποίησης Το Παράρτημα Α περιέχει τα τελικά αποτελέσματα βελτιστοποίησης των κυριότερων σεναρίων μελέτης Α1 (έργα κάτω Αχελώου), Α2 (έργα κάτω Αχελώου με

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

Λειτουργία σηµείο γραµµή σε πολύγωνο

Λειτουργία σηµείο γραµµή σε πολύγωνο Λειτουργία σηµείο γραµµή σε πολύγωνο 2 5 7 3 1 6 8 4 2 5 1 6 7 8 3 4 Υπολογισµός του ελάχιστου περιβάλλοντος ορθογώνιου παραλληλόγραµµου του πολυγώνου που εξετάζεται. Ο υπολογισµός αυτών γίνεται εύκολα

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5ο: Στοιχεία γεωμορφολογίας

ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5ο: Στοιχεία γεωμορφολογίας Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Μεταπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΟΛΟΓΙΑ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Κεφάλαιο 5ο: Στοιχεία

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

Τα Άνυδρα νησιά που µελετώνται στις Κυκλάδες

Τα Άνυδρα νησιά που µελετώνται στις Κυκλάδες ΠΕΡΙΛΗΨΗ Στόχος της διαχείρισης των υδατικών πόρων είναι η ορθολογική αξιοποίηση του νερού και η εφαρµογή δράσεων για την εναρµόνιση των αντιθέσεων που υπάρχουν ανάµεσα στην προσφορά του νερού και τη ζήτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 5

ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 5 ΠΕΡΙΓΡΑΦΗ ΨΗΦΙΑΚΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΜΕΘΟ ΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ 5 1. ΑΡΧΕΙΟ EXCEL 1.1 Ε ΟΜΕΝΑ Το αρχείο EXCEL ask5_data περιέχει φύλλα που περιλαµβάνουν τα δεδοµένα της άσκησης, υλοποίηση των ζητούµενων

Διαβάστε περισσότερα

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 Ζήτηµα 1ο Α.1. Α.2. Β.1. Β.2. Β.3. Α.1. Να αποδείξετε ότι για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω ισχύει ότι: Ρ (Α Β) = Ρ (Α)

Διαβάστε περισσότερα

ιαχείριση και επεξεργασία χρονοσειρών

ιαχείριση και επεξεργασία χρονοσειρών ΕΞΑΡΧΟΥ ΝΙΚΟΛΟΠΟΥΛΟΣ ΜΠΕΝΣΑΣΣΩΝ ΣΥΜΒΟΥΛΟΙ ΜΗΧΑΝΙΚΟΙ Ε.Π.Ε. ΛΑΖΑΡΙ ΗΣ & ΣΥΝΕΡΓΑΤΕΣ ΑΝΩΝΥΜΗ ΤΕΧΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΩΝ Α.Ε. ΓΕΩΘΕΣΙΑ ΣΥΜΒΟΥΛΟΙ ΑΝΑΠΤΥΞΗΣ Ε.Π.Ε. ιαχείριση και επεξεργασία χρονοσειρών Ι. Μαρκόνης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 Ε_3.Μλ3Γ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 1 Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Α1. Για δύο ενδεχόµενα Α και Β ενός δειγµατικού χώρου

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα