Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
|
|
- Βλάσιος Ουζουνίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο Μακεδονίας 1
2 Άσκηση 1 α) Έστω η στοχαστική διαδικασία Υ t = ε t, t = 1,, T, όπου για το ε t ισχύει: ε t = +1 με πιθανοτητα με πιθανοτητα 1. 2 Να βρεθούν ο μέσος, η διακύμανση και οι αυτοσυνδιακυμάνσεις. Είναι η διαδικασία στάσιμη; Λύση 2
3 Είναι: T E Υ t = t=1 Υ t f(υ t ) = = T 2 Var Υ t = t=1 Υ t Ε Υ t f Υt = = Cov Y t, Y t+s = E Υ t Ε Υ t Υ t+s Ε Υ t+s = Ε Υ t Υ t+s = = ΕΥ t EΥ t+s = 0 διότι Υ t, Υ t+s είναι ανεξάρτητες μεταβλητές Άρα η Υ t είναι στάσιμη, αφού ισχύουν οι τρεις συνθήκες στασιμότητας για την Υ t, δηλαδή η μέση τιμή, η διασπορά και οι αυτοσυνδιακυμάνσεις είναι ανεξάρτητες του t. 3
4 β) Έστω ότι Υ t = ε t + ε t 1, t = 1,, T, για το ε t όπως ορίστηκε στο α). Να βρεθούν ο μέσος και οι αυτοσυνδιακυμάνσεις γ 0, γ 1. Λύση 4
5 Είναι: E Υ t = E ε t + ε t 1 = E ε t + Ε(ε t 1 ) = = 0 γ 0 = Cov Υ t, Υ t = Var Υ t = Var ε t + ε t 1 = = Var ε t + Var ε t 1 + 2Cov ε t, ε t 1 = = 2 γ 1 = Cov Υ t, Υ t 1 = E Υ t E(Υ t ) Υ t 1 E(Υ t 1 ) = = E Y t Y t 1 = E ε t + ε t 1 ε t 1 + ε t 2 = 2 = E ε t ε t 1 + ε t ε t 2 + ε t 1 + ε t 1 ε t 2 = = E ε t ε t 1 ) + Ε(ε t ε t 2 ) + Ε(ε 2 t 1 ) + Ε(ε t 1 ε t 2 = 2 2 = Ε ε t = Ε ε t 1 = 1 5
6 Άσκηση 2 Δίνεται η στάσιμη χρονοσειρά z t. α) Να δείξετε ότι και η χρονοσειρά Υ t = cz t, όπου c σταθερά, είναι στάσιμη. Λύση Η χρονοσειρά z t είναι στάσιμη. Αυτό σημαίνει: E z t = μ (σταθερό) Var(z t ) = σ 2 (σταθερό) (ανεξάρτητα του χρόνου t) Cov(z t, z t+s )= γ s (σταθερό) Για να δείξουμε ότι Υ t στάσιμη, θα πρέπει να δείξουμε ότι ισχύουν οι τρεις συνθήκες στασιμότητας και για την Υ t. 6
7 Είναι: Ιδιότητα μέσης τιμής Ε αχ + β E Υ t = E c z t = ce z t = c μ άρα σταθερό Ιδιότητα διασπορών Var αχ + β = αε Χ + β = a 2 Var Χ Var Υ t = Var c z t = c 2 Var z t = c 2 σ 2 άρα σταθερό Ιδιότητα συνδιασπορών Cov αχ + β, γυ + δ = αβcov Χ, Υ Cov Y t, Y t+s = Cov cz t, cz t+s = c 2 Cov z t, z t+s = c 2 γ s άρα σταθερό Άρα η Υ t είναι στάσιμη. 7
8 β) Να δείξετε ότι και η χρονοσειρά Υ t = c 1 z t + c 2 z t 1, όπου c 1, c 2 σταθερές, είναι στάσιμη. Γενικεύστε επαγωγικά. Λύση Η χρονοσειρά z t είναι στάσιμη. Αυτό σημαίνει: E z t σταθερό Var z t σταθερό (ανεξάρτητα του χρόνου t) Cov z t, z t+s = γ s σταθερό Επιπλέον, αφού η χρονοσειρά z t είναι στάσιμη, άρα και η z t 1 είναι στάσιμη (και άρα ισχύουν τα παραπάνω). 8
9 Για να δείξουμε ότι Υ t στάσιμη, θα πρέπει να δείξουμε ότι ισχύουν οι τρεις συνθήκες στασιμότητας για την Υ t. Είναι: E Υ t = E c 1 z t + c 2 z t 1 = c 1 E z t + c 2 E z t 1 άρα σταθερό Var Υ t = Var c 1 z t + c 2 z t 1 = Εφόσον z t, z t 1 στάσιμες χρονοσειρές, δεν είναι ανεξάρτητες, οπότε χρησιμοποιούμε την ιδιότητα των διασπορών για μη ανεξάρτητες μεταβλητές = Var c 1 z t + Var c 2 z t + 2Cov c 1 z t, c 2 z t 1 = = c 1 2 Var z t + c 2 2 Var z t + 2c 1 c 2 Cov z t, z t 1 = c 1 2 Var z t + c 2 2 Var z t + 2c 1 c 2 γ (t 1) t = c 1 2 Var z t + c 2 2 Var z t + 2c 1 c 2 γ 1 άρα σταθερό 9
10 Cov Y t, Y s = Cov c 1 z t + c 2 z t 1, c 1 z s + c 2 z s 1 = Ιδιότητα Cov Χ, Υ = Ε ΧΥ Ε Χ Ε(Υ) = E c 1 z t + c 2 z t 1 c 1 z s + c 2 z s 1 E c 1 z t + c 2 z t 1 Ε(c 1 z s + c 2 z s 1 ) σταθερό σταθερό Άρα αρκεί να δείξουμε ότι E c 1 z t + c 2 z t 1 c 1 z s + c 2 z s 1 σταθερό. E c 1 z t + c 2 z t 1 c 1 z s + c 2 z s 1 = = E(c 2 1 z t z s + c 1 c 2 z t z s 1 + c 2 c 1 z t 1 z s + c 2 2 z t 1 z s 1 ) = = c 2 1 E(z t z s ) + c 1 c 2 E(z t z s 1 ) + c 2 c 1 E(z t 1 z s ) + c 2 2 E(z t 1 z s 1 ) Αρκεί να δείξουμε ότι E(z t z s ) σταθερό 10
11 Είναι: Cov z t, z s = Ε z t, z s Ε z t Ε(z s ) Ε z t, z s = Cov z t, z s + Ε z t Ε(z s ) άρα σταθερό σταθερό σταθερά Ιδιότητα Cov Χ, Υ = Ε ΧΥ Ε Χ Ε(Υ) Οπότε Cov Y t, Y s σταθερό. Άρα η Υ t είναι στάσιμη. 11
12 Επαγωγική γενίκευση Οι Υ t = cz t και Υ t = c 1 z t + c 2 z t 1 αποδείξαμε ότι είναι στάσιμες χρονικές σειρές (θεωρώ k = 0, 1). Έστω ότι η Ζ t = c 1 z t + c 2 z t 1 + +c κ z t κ είναι στάσιμη χρονική σειρά (για k = κ). Θέλω να δείξω ότι είναι στάσιμη και για κ = k + 1, δηλ. η Ζ t = c 1 z t + c 2 z t 1 + +c k z t k +c k+1 z t k+1 είναι στάσιμη χρονική σειρά. Όπως προηγουμένως, αποδεικνύουμε ότι ισχύουν οι 3 συνθήκες στασιμότητας. 12
13 Άσκηση 3 Να ελέγξετε αν η χρονοσειρά Χ t = Ucos θt + Vsin(θt), θ ( π, π] είναι στάσιμη, όπου U, V είναι δύο ασυσχέτιστες τυχαίες μεταβλητές με μηδενικούς μέσους και μοναδιαίες διασπορές. Λύση Η χρονοσειρά Χ t θα είναι στάσιμη αν: E Χ t σταθερό Cov(X t, Χ t+s ) σταθερό 13
14 Είναι : E Χ t = Ε[Ucos θt + Vsin θt ] = Ε[U] cos θt + Ε V sin θt = = 0 cos θt + 0 sin θt = 0 (σταθερό) Cov X t, Χ t+s = E X t, Χ t+s E X t E Χ t+s = E X t, Χ t+s = = Ε( Ucos θt + Vsin θt Ucos θ t + s + Vsin θ t + s ) = Ε(U 2 cos θt cos θt + θs + UV cos θt sin θt + θs 14
15 = cos θt cos θt + θs + sin θt sin θt + θs = = cos θt θt θs = cos θs = cos θs σταθερό Άρα η Χ t στάσιμη. Var U = Ε U 2 (ΕU) 2 1 =Ε U 2 0 Ε U 2 = 1 U, V ασυσχέτιστες ρ U, V = 0 Cov U, V = 0 Ε UV E U E V = 0 Ε UV = 0 cosα cos β + sinasinβ = cos(a β) 15
16 Άσκηση 4 Να ελέγξετε αν η χρονοσειρά Χ t = cos(λt + z) είναι στάσιμη, όπου λ σταθερά και z~u( π, π). Λύση Η χρονοσειρά Χ t θα είναι στάσιμη αν: E Χ t = μ (σταθερό) Var(Χ t ) = σ 2 (σταθερό) (ανεξάρτητα του χρόνου t) Cov(X t, Χ t+s )= γ s (σταθερό) 16
17 Η ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Έστω Χ μια συνεχής τυχαία μεταβλητή ορισμένη στο διάστημα [α, β] με συνάρτηση πυκνότητας πιθανότητας f x = 1 β a, αν α x β 0, διαφορετικa H Χ ακολουθεί την συνεχή ομοιόμορφη κατανομή με παραμέτρους α, β και συμβολίζουμε Χ U( α, β). Γνωρίζουμε επίσης ότι και Ε Χ = 1 α + β 2 Ε Χ = α β xf(x) Var Χ = 1 (β a)
18 Είναι: E Χ t = Ε cos λt + z = Ε cos λt cos z sin λt sinz = = Ε cos λt) cos z E(sin λt sinz = = cos λt Ε cosz sin λt E sinz = π 1 π 1 Αν Χ U(α, β) με σ.π.π. f x : = cos λt coszdz sin λt sinzdz β π 2π π 2π Eg Χ = g X f x dx 1 π 1 π = cos λt 2π π coszdz sin λt 2π π sinzdz α 1 = cos λt (sinz) π 2π π sin λt 1 ( cosz) π 2π π 1 = cos λt [sinπ sin π ] sin λt 1 [ (cosπ cos π )] 2π 2π 1 = cos λt sin λt = 0 άρα σταθερό 2π 2π 18
19 Var Χ t = Ε X t 2 E Χ t 2 = Ε X t 2 0 = Ε X t 2 = Ε Χ t Χ t = E cos λt + z cos λt + z = = Ε (cos λt cosz sin λt sinz) (cos λt cosz sin λt sinz) = = Ε( cos λt 2 cos z 2 2 cos λt cosz sin λt sinz + sin λt 2 sin z 2 ) = = cos λt 2 Ε( cos z 2 ) 2 cos λt sin λt E cosz E(sinz) + = cos λt 2 Ε( cos z 2 ) + sin λt 2 E( sin z 2 ) = sin λt 2 E( sin z 2 ) = = cos λt sin λt = 1 2 cos λt 2 + sin λt 2 = 1 2 σταθερό [Ν.δ.ο. Ε cos z 2 = Ε sin z 2 = 1 2 ] 19
20 Cov Χ t, Χ t+s = Ε Χ t Χ t+s Ε Χ t Ε Χ t+s = Ε Χ t Χ t+s 0 = = E cos λt + z cos λ(t + s) + z = = E cos λt + z cos λt + λs + z = = 1 2 cos α cosβ = 1 [cos α + β + cos α β ] 2 Ε cos λt + z λt λs z + cos λt + z + λt + λs + z = = 1 2 Ε cos λs + cos( 2λt + 2z) + λs ) = = 1 2 Ε cos λs Ε cos 2λt + 2z cos λs sin 2λt + 2z sin(λs) = = 1 Ε cos λs + 1 Ε[(cos 2λt)cos(2z sin 2λt sin(2z)) cos λs 2 2 (sin 2λt)cos(2z + cos 2λt sin 2z )sin(λs)] = = 1 2 Ε cos λs άρα σταθερό. Άρα η χρονοσειρά Χ t είναι στάσιμη. [Ν.δ.ο. Ε(cos 2z) = Ε(sin 2z) = 0] 20
21 ΒΑΣΙΚΕΣ ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ Ανεξάρτητες και ισόνομες τυχαίες μεταβλητές Λευκός θόρυβος Γκαουσιανή στοχαστική διαδικασία Τυχαίος περίπατος 21
22 Ανεξάρτητες και ισόνομες τυχαίες μεταβλητές Μια απλή υπόθεση για τη χρονοσειρά x t, t = 1,.. είναι ότι αποτελείται από ανεξάρτητες τυχαίες μεταβλητές αλλά που όλες ακολουθούν την ίδια κατανομή, και λέγεται χρονοσειρά ανεξάρτητων και ισόνομων τυχαίων μεταβλητών (independent and identically distributed, iid). Μαθηματικά η iid ορίζεται από την ανεξαρτησία για οποιοδήποτε σύνολο T μεταβλητών X 1, X 2,, X T της x t, t = 1,.., δηλ. ισχύει P X 1 x 1, X 2 x 2,, X T x T = P(X 1 x 1 )P(X 2 x 2 ) P(X T x T ) όπου P X 1 x 1, X 2 x 2,, X T x T είναι η κοινή αθροιστική συνάρτηση πιθανότητας και P(X i x i ) οι αντίστοιχες περιθώριες συναρτήσεις πιθανότητας. 22
23 Μια iid χρονοσειρά είναι εντελώς τυχαία και δεν περιέχει αυτοσυσχετίσεις (γραμμικές ή μη-γραμμικές), δηλαδή συσχετίσεις μεταξύ στοιχείων της χρονοσειράς. Η ανεξαρτησία σε μια χρονοσειρά δηλώνει πως δεν υπάρχει καμιά πληροφορία να αντλήσουμε από τη μελέτη της και η πραγματοποίηση της αποτελείται από τυχαίες τιμές και η μόνη περιγραφή που μπορούμε είναι στατική και περιορίζεται στην περιθώρια κατανομή της. 23
24 Λευκός θόρυβος Μια iid χρονοσειρά είναι εντελώς τυχαία και δεν περιέχει αυτοσυσχετίσεις (γραμμικές ή µη-γραμμικές), δηλαδή συσχετίσεις μεταξύ στοιχείων της χρονοσειράς. Μια iid χρονοσειρά λέγεται και λευκός θόρυβος (white noise) και θα συμβολίζουμε την κατανομή της ως WN(0, σ ε 2 ), µε μέση τιμή 0 και (σταθερή) διασπορά σ ε 2. Αν επιπλέον τα στοιχεία της χρονοσειράς λευκού θορύβου ακολουθούν κανονική (Γκαουσιανή) κατανομή, τότε η χρονοσειρά λέγεται Γκαουσιανός λευκός θόρυβος (Gaussian white noise). 24
25 Παρατήρηση Σημειώνεται πως στη βιβλιογραφία δεν υπάρχει συμφωνία στην έννοια του όρου "λευκός θόρυβος". Σε κάποια συγγράμματα, ο όρος "λευκός θόρυβος" χρησιμοποιείται για χρονοσειρές ασυσχέτιστες αλλά όχι ανεξάρτητες, ενώ σε άλλα συγγράμματα ταυτίζεται με τον όρο iid, δηλ για χρονοσειρές ασυσχέτιστες και ανεξάρτητες. 25
26 Γκαουσιανή στοχαστική διαδικασία Η πιο απλή στοχαστική διαδικασία με συσχετίσεις είναι η Γκαουσιανή στοχαστική διαδικασία ή χρονοσειρά. Για κάθε τάξη Τ, δηλ. για Τ τυχαίες μεταβλητές, η κοινή κατανομή της Γκαουσιανής χρονοσειράς είναι η Τ-διάστατη Γκαουσιανή κατανομή, Χ~Ν(μ, Σ): f X1,,X T x 1,, x T = 1 (2π) T/2 Σ 1/2 exp( (x μ)t Σ 1 (x μ)) όπου μ = (μ 1,, μ T ): μέση τιμή Σ: πίνακας συνδιασπορών (συμμετρικός και θετικά ημι-ορισμένος) 26
27 Τα διαγώνια στοιχεία του Σ: η διασπορά σ i 2 της τυχαίας μεταβλητής X i Τα μη διαγώνια στοιχεία του Σ: η συνδιασπορά των τυχαίας μεταβλητών X i, X j (E(x i μ i )(x j μ j )) Παρατήρηση Για μια Γκαουσιανή χρονοσειρά η έννοια της ασθενής και αυστηρής στασιμότητας ταυτίζονται αφού η Γκαουσιανή κατανομή ορίζεται μόνο από τις δύο πρώτες ροπές. 27
28 Παρατήρηση Στην περίπτωση κανονικών τυχαίων μεταβλητών, όταν αυτές είναι ασυσχέτιστες είναι και ανεξάρτητες, το οποίο δεν ισχύει γενικά για οποιεσδήποτε τυχαίες μεταβλητές. Αν έχουμε ανεξάρτητες τυχαίες μεταβλητές, τότε ο πίνακας συνδιασπορών Σ είναι διαγώνιος: Σ = 2 σ σ 2 Ν 28
29 Τυχαίος περίπατος Ο τυχαίος περίπατος (random walk) είναι μια μη-στάσιμη χρονοσειρά Υ t +, όπου η κάθε τυχαία μεταβλητή Υ t για χρόνο t προκύπτει όταν στην προηγούμενη τυχαία μεταβλητή Υ t 1 προστεθεί ένα τυχαίο βήμα, δηλαδή μια iid τυχαία μεταβλητή Χ t : Υ t = Υ t 1 + Χ t Το όνομα υποδηλώνει ακριβώς ότι η χρονοσειρά παράγεται από την τυχαία κίνηση πάνω σε μια ευθεία γραμμή (στο ), όπου σε κάθε χρονική στιγμή t κάνει ένα τυχαίο βήμα μπρος ή πίσω (Χ t ) από το σημείο που βρίσκεται (Υ t 1 ) στο επόμενο (Υ t ). 29
30 Αρχίζοντας από κάποια τιμή Χ 0 (δηλ. για t = 0, Υ 0 = Χ 0 ) και αντικαθιστώντας επαναληπτικά στον ορισμό του τυχαίου περιπάτου Υ t = Υ t 1 + Χ t για χρόνους ως t, ο ορισμός του τυχαίου περιπάτου μπορεί να γραφεί ως Υ t = t k=0 Χ k δηλαδή ως άθροισμα όλων των τυχαίων βημάτων ως τη στιγμή t. Είναι: Ε(Υ t ) = 0 Var(Υ t ) = E Y t 2 = tσ X 2 Επειδή η διασπορά του τυχαίου περιπάτου είναι ανάλογη του χρόνου t, άρα η χρονοσειρά του τυχαίου περιπάτου είναι μη-στάσιμη. 30
31 Βιβλιογραφία 1. Ε. Μπόρα Σέντα, Χ. Μωυσιάδης. Εφαρμοσμένη στατιστική, Β έκδοση, Εκδόσεις Ζήτη, Γ. Κ. Χρήστου. Εισαγωγή στην Οικονομετρία, Β τόμος (Γ έκδοση), Εκδόσεις Gutenberg, Δ. Κουγιουμτζής. Σημειώσεις μαθήματος Χρονοσειρών. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, ΑΠΘ. 4. Γ.Ε. Κοκολάκης. Σημειώσεις ανάλυσης Χρονοσειρών. Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών, Αθήνα. 31
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ Στα πλαίσια του προπτυχιακού μαθήματος Χρονικές σειρές Τμήμα μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα 1 Μονοδιάστατες τυχαίες μεταβλητές Τυχαία μεταβλητή είναι
Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.
Μάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση
«Ποσοτικε ς Με θοδοι στα Οικονομικα : Ανα λυση οικονομικω ν χρονοσειρω ν με γραμμικε ς μεθο δους» - Με ρος Α, Διδάσκων: Κουγιουμτζής Δημήτρης Quaiaive Topics i Ecoomics: Time Series Aalysis wih Liear Mehods
Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα
Οικονομικές εφαρμοές υπολοιστικών πακέτων Στοχαστικά υποδείματα Στοχαστική διαδικασία Στοχαστικά υποδείματα: κάθε χρονολοική σειρά δημιουρείται μέσα από ένα μηχανισμό παραωής δεδομένων που αποτελεί μια
Τυχαία Διανύσματα και Ανεξαρτησία
Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα
Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου
Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Στοχαστικές Διαδικασίες 2 Στοχαστική Διαδικασία Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Στοχαστική Διαδικασία ως συλλογή από συναρτήσεις χρόνου
Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.
ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών
Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.
ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 4ο ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ 4.1 ΕΙΣΑΓΩΓΗ 4. ΔΙΑΔΙΚΑΣΙΕΣ ΛΕΥΚΟΥ ΘΟΡΥΒΟΥ 4.3 ΥΠΟΔΕΙΓΜΑΤΑ ΤΥΧΑΙΟΥ ΠΕΡΙΠΑΤΟΥ 4.4 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ 4.5 ΜΕΡΙΚΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗ
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
X 1 X 2. X d X = 2 Y (x) = e x 2. f X+Y (x) = f X f Y (x) = f X (y)f Y (x y)dy. exp. exp. dy, (1) f X+Y (x) = j= σ2 2) exp x 2 )
Εστω X : Ω R d τυχαίο διάνυσμα με ΠΟΛΥΔΙΑΣΤΑΤΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ X Εχουμε δει ότι η γνώση της κατανομής καθεμιάς από τις X, X,, X d δεν αρκεί για να προσδιορίσουμε την κατανομή του X, αφού δεν περιέχει
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5.4: Στατιστικοί Μέσοι Όροι 5.5 Στοχαστικές Ανελίξεις (Stochastic Processes)
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Στατικές (Στάσιμες) Διαδικασίες Στατική (Stationary) ορίζεται η διαδικασία της οποίας οι στατιστικές ιδιότητες δεν μεταβάλλονται με την πάροδο του χρόνου.
Χρονικές σειρές 1 o μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 1 o μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA
Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 4 η ενότητα: Προβλήματα αντικατάστασης εργαλείων Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
MAJ. MONTELOPOIHSH II
MAJ MONTELOPOIHSH II ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 009 ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΙV Οι ασκήσεις είναι από το βιβλίο του Simon Haykin Θα ακολουθήσει ακόμη ένα φυλλάδιο τις επόμενες μέρες Άσκηση
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Τυχαίες μεταβλητές: Βασικές έννοιες Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (σε αντίθεση με τις
Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.
Μέση Τιµή Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: E( ) µ xf ( x) E( ) µ xf ( x) dx Παραδείγµατα: = = x = = αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.
ΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Στοχαστικά προβλήματα διαδρομής Μεθοδολογία (1) Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 018-019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 4: Πολυδιάστατες Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας
Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής
Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε
Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος =, όπου ~ N ( 0, και όλα τα μεταξύ τους ανεξάρτητα Τότε = (,, = ( 0, ( 0, f x f
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας
Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0
Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας
Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί
ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.
ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές
Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa
ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
Χρονοσειρές Μάθημα 1
Χρονοσειρές Μάθημα Περιεχόμενα - Στασιμότητα, αυτοσυσχέτιση, μερική αυτοσυσχέτιση, απομάκρυνση στοιχείων μη-στατικότητας, έλεγχος ανεξαρτησίας για χρονικές σειρές - Γραμμικές στοχαστικές διαδικασίες: αυτοπαλινδρομούμενη
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ. Σημειώσεις Πανεπιστημιακών Παραδόσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 07 ΚΕΦΑΛΑΙΟ ΧΡΟΝΟΣΕΙΡΕΣ- ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. ΟΡΙΣΜΟΣ
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 5 η ενότητα: Στοχαστικά προβλήματα αντικατάστασης εργαλείων Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ &
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
Τµ. Επιστήµης των Υλικών ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k ειγµατοληψία Με ιάταξη
3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ
20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ
Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.
Χρονικές σειρές 4 Ο μάθημα: Μη στάσιμες χρονοσειρές Μετασχηματισμός σε στάσιμες Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 4 Ο μάθημα: Μη στάσιμες χρονοσειρές Μετασχηματισμός σε στάσιμες Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
E(X(t)) = 1 k + k sin(2π) + k cos(2π) = 1 k + k 0 + k 1 = 1
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών ΤΗΛ 2: ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΥΧΑΙΑ ΣΗΜΑΤΑ 4ο Εξάμηνο 2009-200 4η ΕΡΓΑΣΙΑ ΑΣΚΗΣΗ Εστω τυχαία διαδικασία X(t) =
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )
Μέρος IV Πολυδιάστατες τυχαίες μεταβλητές Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Παν. Ιωαννίνων Δ5 ( ) Πολυδιάστατες μεταβλητές Πολλά ποσοτικά χαρακτηριστικά που σχετίζονται με
1.4 Λύσεις αντιστρόφων προβλημάτων.
.4 Λύσεις αντιστρόφων προβλημάτων. Ο τρόπος παρουσίασης της λύσης ενός αντίστροφου προβλήµατος µπορεί να διαφέρει ανάλογα µε τη «φιλοσοφία» επίλυσης που ακολουθείται και τη δυνατότητα παροχής πρόσθετης
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 5.9 Η Στοχαστική Ανέλιξη Gauss (οι διαφάνειες ακολουθούν διαφορετική
Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Κεφάλαιο 1: Εισαγωγή. Κοκολάκης Γεώργιος
Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο Στοχαστικές Ανελίξεις Κεφάλαιο 1: Εισαγωγή Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Var(X 1 + X 2 ) = σ 2 X 1. E(Y ) = np (3) xf X (x) xp(x = x) (x 1 + x 2 )f X1 X 2. x 1 f X1 X 2. (x 1, x 2 ) + x 2 f X1 X 2. (x 1, x 2 ) + x 1,x 2
Ροπές πίνακας περιεχομένων Πότε χρειάζεται η ανεξαρτησία;....................... 3 Ιδιότητες κλιμάκωσης.............................. 8 Μέση τιμή και ccdf.............................. 1 Ο νόμος των μεγάλων
Περιεχόμενα. Ιδιότητες του cov(x, Y) Ιδιότητες των εκτιμητών Παράδειγμα. 1 Συσχέτιση Μεταβλητών. 2 Εκτιμητές και κατάλοιπα
Περιεχόμενα 1 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y 2 Ιδιότητες των εκτιμητών BEΠ (UPatras Γραμμικά Μοντέλα 4η, 5η Διάλεξη, 2018-19 1 / 12 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y Ένα μέτρο της
ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ
ΚΕΦΑΛΑΙΟ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ Στο κεφάλαιο αυτό θα μελετήσουμε κάποια βασικά χαρακτηριστικά των χρονοσειρών μέσα από πραγματικά παραδείγματα. Συγκεκριμένα θα μελετήσουμε στοιχεία μη-στασιμότητας,
Στοχαστικές Στρατηγικές. διαδρομής (2)
Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 018-019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5 5.10: Θόρυβος (Πηγές Θορύβου, Κατανομή Poisson, Λευκός Θόρυβος, Ισοδύναμο
Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες
Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.
Συνεχείς Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Συνεχείς Κατανομές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglos.gr / 0 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας
P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)
Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 5 η ενότητα: Στοχαστικά προβλήματα αντικατάστασης εργαλείων (3) Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )
Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:
Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 2010
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι (ΝΠΣ) ΠΙΘΑΝΟΤΗΤΕΣ Ι (ΠΠΣ) Φεβρουάριος 1 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Θέμα 1 Θέμα Θέμα 3 Θέμα 4 Θέμα 5 Θέμα 5* Βαθμός ΝΠΣ ΠΠΣ / / / / / /1 / / / / / / /1 ΘΕΜΑ 1: Στο ράφι
X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας
close index close index Μάθημα : Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας Σταθεροποίηση διασποράς Απαλοιφή τάσης και περιοδικότητας / εποχικότητας Έλεγχοι μοναδιαίας ρίζας
Στατιστική Συμπερασματολογία
Στατιστική Συμπερασματολογία Διαφάνειες 1 ου κεφαλαίου Βιβλίο: Κολυβά Μαχαίρα, Φ. & Χατζόπουλος Στ. Α. (2016). Μαθηματική Στατιστική, Έλεγχοι Υποθέσεων. [ηλεκτρ. βιβλ.] Αθήνα: Σύνδεσμος Ελληνικών Ακαδημαϊκών
Στοχαστικές Στρατηγικές. διαδρομής (1)
Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
c(x 1)dx = 1 xf X (x)dx = (x 2 x)dx = 2 3 x3 x 2 x 2 2 (x 1)dx x 2 f X (x)dx = (x 3 x 2 )dx = 2 4 x4 2 3 x3
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Θεωρία Πιθανοτήτων ιδάσκων : Π. Τσακαλίδης Λύσεις Τελικής Εξέτασης - 9 Ιανουαρίου 05 Θέµα. α Η γραφική παράσταση της σ.π.π. f X x ϕαίνεται στο σχήµα :
Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, T ( ) μεταξύ τους ανεξάρτητα. Τότε
Η πολυδιάστατη κανονική κατανομή Ορίζουμε την τυπική πολυδιάστατη κανονική, σαν την κατανομή του τυχαίου (,, διανύσματος X X X ), όπου X ~ N (,) και όλα τα X μεταξύ τους ανεξάρτητα Τότε ( ) (,, ) (, )
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Βασικές έννοιες θεωρίας πιθανοτήτων
Βασικές έννοιες θεωρίας πιθανοτήτων Ορισµός πιθανότητας Έστω Ω το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος Συµβολίζουµε µε ω τα στοιχεία του Ω Ονοµάζουµε ενδεχόµενο (evet ένα υποσύνολο του Ω Για
ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
- - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Στοχαστικές Στρατηγικές. διαδρομής (3)
Στοχαστικές Στρατηγικές 6 η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει