ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα"

Transcript

1 ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα

2 Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση των χρονικών σειρών είναι οι έλεγχοι μοναδιαίας ρίζας (unit root tests). Με τον όρο μοναδιαία ρίζα στις μακροοικονομικές σειρές εννοούμε ότι κάποια ρίζα του πολυωνύμου f(x) = 1 - ρ 1 x-ρ 2 x 2 - ρ 3 x ρ n x n = 0 ισούται με τη μονάδα, βρίσκεται δηλαδή πάνω στο μοναδιαίο κύκλο.

3 Στην περίπτωση αυτή κάθε εξωγενής μεταβολή πάνω σε μια ενδογενή μακροοικονομική μεταβλητή μπορεί να έχει μόνιμη επίδραση σ αυτή. Αυτό το αποτέλεσμα μπορούμε να το λάβουμε από ένα αυτοπαλινδρομούμενο υπόδειγμα πρώτης τάξης (first order autoregressive model) AR(1) με συντελεστή αυτοσυσχέτισης κοντά στη μονάδα και το λευκό θόρυβο u t να παίζει το ρόλο της τυχαίας μεταβλητής. Y t = ρy t-1 + u t όπου u t η διαδικασία λευκού θορύβου (white noise) με μέσο μηδέν και σταθερή διακύμανση.

4 ) ρ Σ αυτό το αυτοπαλινδρομούμενο υπόδειγμα έχει αποδειχθεί ) ότι ο εκτιμητής ρ είναι μεροληπτικός και υποεκτιμά την παράμετρο ρ. Στην περίπτωση όμως για ρ < 1 ) ο εκτιμητήςρ είναι συνεπής. Στην περίπτωση που ο συντελεστής αυτοπαλινδρόμησης ισούται με μονάδα (ρ = 1) έχει δηλαδή μοναδιαία ρίζα (unit root) το υπόδειγμα είναι μια διαδικασία μη στατική. Τότε η παραπάνω συνάρτηση γράφεται: Y t = Y t-1 + u t Η συνάρτηση αυτή λέγεται τυχαίος περίπατος (random walk) και η χρονική σειρά χαρακτηρίζεται ως μη στάσιμη.

5 Στην περίπτωση που ο συντελεστής αυτοπαλινδρόμησης είναι μικρότερος της μονάδος ρ < 1 το υπόδειγμα είναι μια διαδικασία στάσιμη. Άρα έχουμε τις δύο παρακάτω υποθέσεις: Ηο: ρ = 1 η διαδικασία Y t είναι μη στάσιμη (υπάρχει μοναδιαία ρίζα). Ηα: ρ < 1 η διαδικασία Y t είναι στάσιμη (δεν υπάρχει μοναδιαία ρίζα). Στην περίπτωση που ισχύει η Η 0 δηλαδή έχουμε μοναδιαία ρίζα τότε έχουμε τη διαδικασία του τυχαίου περιπάτου, δηλαδή έχουμε μία μη στάσιμη διαδικασία.

6 Έλεγχοι για μοναδιαία ρίζα Οι έλεγχοι αυτοί που καλούνται έλεγχοι μοναδιαίας ρίζας (unit root tests) αντιστοιχούν στην υπόθεση Ηο: ρ = 1 για την εξίσωση αυτοπαλινδρόμησης. Εύλογο είναι να σκεφτεί κανείς ότι εκτιμώντας την εξίσωση Y t = ρy t-1 + u t με τη μέθοδο των ελαχίστων τετραγώνων να κάνουμε τον έλεγχο της Ηο: ρ = 1 με την κατανομή t - Student. Ο εκτιμητής όμως μπορεί να είναι μεροληπτικός οπότε η κατανομή t - Student (λόγω συμμετρίας) να μην είναι η κατάλληλη για τον έλεγχο της μεταβλητής αυτής που χρησιμοποιούμε πολύ δε περισσότερο όταν η διαδικασία είναι και μη στατική.

7 Οι Dickey - Fuller μέσω των πειραμάτων Monte - Carlo βρήκαν μια κατάλληλη ασύμμετρη κατανομή που χρησιμοποίησαν για τον έλεγχο της υπόθεσης Ηο: ρ = 1. Την κατανομή αυτή μπορούμε να χρησιμοποιήσουμε για να ξεχωρίσουμε ένα ΑR(1) υπόδειγμα από μια ολοκληρωμένη σειρά, δηλαδή την ύπαρξη μοναδιαίας ρίζας Ι(1). Ο έλεγχος των D - F γίνεται με την κατανομή t - Student αλλά η σύγκριση για την αποδοχή ή όχι της Ηο γίνεται από τις κριτικές τιμές του MacKinnon. Οι γνωστοί έλεγχοι των Dickey-Fuller(DF) για μοναδιαία ρίζα γίνονται από τις παρακάτω εξισώσεις. Y t = ρy t-1 + u t

8 Αν αφαιρέσω το Y t-1 από τα δύο μέλη της προηγούμενης συνάρτησης θα έχω: Y t Y t-1 = ρ Y t-1 Y t-1 + u t Y t Y t-1 = (ρ 1)Y t-1 + u t ή ΔY t = δy t-1 + u t όπου δ = ρ 1 Δηλαδή αν οι εξισώσεις αυτές έχουν μοναδιαία ρίζα Ηο: ρ = 1 ήδ= 0 παίρνω τις πρώτες διαφορές και ελέγχω αν οι διαφορές αυτές βοήθησαν στην απομάκρυνση της ρίζας αυτής. όπου ΔY t = Y t Y t-1 είναι η πρώτη διαφορά και u t είναι μια ανεξάρτητη και στάσιμη διαδικασία.

9 Άρα οι δύο παρακάτω υποθέσεις μπορούν να γραφούν και ως εξής: Ηο: δ = 0 η διαδικασία Y t είναι μη στάσιμη. (υπάρχει μοναδιαία ρίζα) Ηα: δ < 0 η διαδικασία Y t είναι στάσιμη. (δεν υπάρχει μοναδιαία ρίζα) Επομένως θα μπορούσαμε εδώ να πούμε ότι το πρόβλημα της μοναδιαίας ρίζας μπορεί να εκφραστεί είτε με ρ = 1 (από την προηγούμενη συνάρτηση) είτε με δ = 0 (από την παραπάνω συνάρτηση). Βέβαια οι έλεγχοι των εκτιμημένων συντελεστών δεν μπορούν να ελεγχθούν με τη συνηθισμένη κατανομή t Student, αλλά με μία μη τυπική και μη συμμετρική κατανομή που προτάθηκε από τον MacKinnon (1991).

10 Έλεγχος των Dickey - Fuller (DF) Ο έλεγχος Dickey-Fuller(DF) εξετάζει: Την συνθήκη κατά την οποία μια διαδικασία έχει μοναδιαία ρίζα. Κατά πόσο οι πρώτες διαφορές βοηθούν στην απομάκρυνση της ρίζας αυτής. Έστω το υπόδειγμα ΔΧ t = δ 2 Χ t-1 + e t όπου: e t είναι μια ανεξάρτητη και στάσιμη διαδικασία Οι υποθέσεις που έχουμε για το υπόδειγμα είναι:

11 Ηο: δ 2 = 0 (η χρονική σειρά Χ t είναι τυχαίος περίπατος δηλαδή περιέχει μια μοναδιαία ρίζα άρα είναι μη - στάσιμη). Ηα: δ 2 < 0 (δεν ισχύει η Ηο). Η μηδενική υπόθεση απορρίπτεται όταν το στατιστικό t - student του συντελεστή δ 2 είναι μικρότερο (t δ2 < τ 1 ) από την κριτική τιμή τ 1 των πινάκων Dickey - Fuller (1979). Η σύγκριση της τιμής t - student του συντελεστή δ 2 γίνεται με την τιμή τ 1 που έχουμε από τους πίνακες των Dickey - Fuller και όχι με τη γνωστή κατανομή t - student. Σε πολλές περιπτώσεις είναι πιθανόν η χρονική σειρά που εξετάζουμε να έχει και κάποιο σταθερό όρο, δηλαδή να συμπεριφέρεται σαν ένα υπόδειγμα τυχαίου περιπάτου με περιπλάνηση (drift).

12 Στην περίπτωση αυτή το υπόδειγμα είναι: ΔΧ t = δ 0 + δ 2 Χ t-1 + e t Οι υποθέσεις που έχουμε για το παραπάνω υπόδειγμα είναι: Ηo: δ 2 = 0 (ησειράχ t είναι τυχαίος περίπατος με περιπλάνηση, δηλαδή περιέχει μια μοναδιαία ρίζα άρα είναι μη - στάσιμη). Ηα: δ 2 < 0 (δεν ισχύει η Ηο). Η μηδενική υπόθεση απορρίπτεται όταν το στατιστικό t student του συντελεστή δ 2 είναι μικρότερο (t δ2 < τ 2 ) από την κρίσιμη τιμή τ 2 των πινάκων Dickey - Fuller. Επίσης υπάρχουν περιπτώσεις που στη χρονική σειρά που εξετάζουμε να υπάρχει εκτός του σταθερού όρου και η χρονική τάση. Τότε λέμε ότι η σειρά Χ t είναι τυχαίος περίπατος με περιπλάνηση γύρω από μια στοχαστική τάση.

13 Στην περίπτωση αυτή το υπόδειγμα είναι: ΔΧ t = δ 0 + δ 1 t + δ 2 Χ t-1 + e t Οι υποθέσεις που έχουμε για το παραπάνω υπόδειγμα είναι: Ηο: δ 2 = 0 (ησειράχ t είναι τυχαίος περίπατος με περιπλάνηση γύρω από μια στοχαστική τάση, δηλαδή περιέχει μια μοναδιαία ρίζα άρα είναι μη - στάσιμη). Ηα: δ 2 < 0 (δεν ισχύει η Ηο). Η μηδενική υπόθεση απορρίπτεται όταν το στατιστικό t - student του συντελεστή δ 2 είναι μικρότερο (t δ2 < τ 3 ) από την κρίσιμη τιμή τ 3 των πινάκων Dickey - Fuller. Στους τρεις ελέγχους που εξετάζουμε, έχουμε την υπόθεση ότι η μεταβλητή e t είναι μια ανεξάρτητη και στάσιμη διαδικασία.

14 Τα αποτελέσματα από τη μεταβλητή της εθνικής ιδιωτικής κατανάλωσης του παραδείγματος 1 από την πρώτη συνάρτηση των Dickey-Fuller δίνονται στον παρακάτω πίνακα.

15 Dependent Variable: DNNI Method: Least Squares Sample(adjusted): Included observations: 19 after adjusting endpoints Variable Coefficient Std. Error t-statistic Prob. NNI(-1) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood Durbin-Watson stat

16 Τα αποτελέσματα από τη μεταβλητή της εθνικής ιδιωτικής κατανάλωσης του παραδείγματος 1 από την δεύτερη συνάρτηση των Dickey-Fuller δίνονται στον παρακάτω πίνακα.

17 Dependent Variable: DNNI Method: Least Squares Sample(adjusted): Included observations: 19 after adjusting endpoints Variable Coefficient Std. Error t-statistic Prob. C NNI(-1) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

18 Τα αποτελέσματα από τη μεταβλητή της εθνικής ιδιωτικής κατανάλωσης του παραδείγματος 1 από την τρίτη συνάρτηση των Dickey-Fuller δίνονται στον παρακάτω πίνακα.

19 Dependent Variable: DNNI Method: Least Squares Sample(adjusted): Included observations: 19 after adjusting endpoints Variable Coefficient Std. Error t-statistic Prob. C NNI(-1) R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ Μάθηµα: Εφαρµοσµένη Οικονοµετρία (Aκαδηµαϊκό έτος: 2008-2009) Σπύρος Σκούρας Ονοµατεπώνυµο: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΙΟΥΛΙΟΥ 2009

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΕΤΡΙΑΣ LAB 2

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΕΤΡΙΑΣ LAB 2 Landis Conrad conrad@aueb.gr AΣΥΜΠΤΩΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΣΤΑΣΙΜΕΣ- ΑΣΘΕΝΩΣ ΕΞΑΡΤΩΜΕΝΕΣ ΧΡΟΝΟΣΕΙΡEΣ ΔΙΑΔΙΚΑΣΙΕΣ ΜΟΝΑΔΙΑΙΑΣ ΡΙΖΑΣ Οι παρατηρήσεις που θα χρησιµοποιήσουµε σε

Διαβάστε περισσότερα

Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7)

Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7) Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7) 1 Dependent Variable: T_BILLS3 Method: Least Squares Sample: 1948-2003 C 1.25 0.44 2.83 0.01 INFLATION 0.61 0.08 8.09 0.00 DEFICIT 0.70

Διαβάστε περισσότερα

Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10)

Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10) Καμπύλη Phillips (10.1, 11.5, 12.1, 12.5, 18.3, 18.8, 18.10) 1 2 y t = β 0 + β 1 x t + u t y t = Πληθωρισμός x t = Ανεργία 3 Dependent Variable: INFLATION Method: Least Squares Sample: 1948-1996 (49) C

Διαβάστε περισσότερα

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε

Διαβάστε περισσότερα

ΧΡΟΝΟΣΕΙΡΕΣ TUTORIAL 3 ΣΤΑΣΘΜΟΤΗΤΑ ΔΘΑΔΘΚΑΣΘΕΣ ΜΟΝΑΔΘΑΣ ΡΘΖΑΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗ

ΧΡΟΝΟΣΕΙΡΕΣ TUTORIAL 3 ΣΤΑΣΘΜΟΤΗΤΑ ΔΘΑΔΘΚΑΣΘΕΣ ΜΟΝΑΔΘΑΣ ΡΘΖΑΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗ ΦΡΟΝΤΙΣΤΗΡΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΙΙ 7-6-1012 Landis Conrad ΧΡΟΝΟΣΕΙΡΕΣ TUTORIAL 3 ΣΤΑΣΘΜΟΤΗΤΑ ΔΘΑΔΘΚΑΣΘΕΣ ΜΟΝΑΔΘΑΣ ΡΘΖΑΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗ Για τθν άςκθςθ χρθςιμοποιοφμε τισ παρακάτω μεταβλθτζσ, ςε θμεριςια κλίμακα,

Διαβάστε περισσότερα

Μοντελοποίηση των αποδόσεων των κρατικών ομολόγων των χωρών της Ευρωζώνης

Μοντελοποίηση των αποδόσεων των κρατικών ομολόγων των χωρών της Ευρωζώνης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΝΑΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ & ΔΙΟΙΚΗΤΙΚΗ ΚΙΝΔΥΝΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μοντελοποίηση των αποδόσεων των κρατικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Προβλέψεις ισοτιμιών στο EViews

Προβλέψεις ισοτιμιών στο EViews Προβλέψεις ισοτιμιών στο EViews Θεωρητικό πλαίσιο προβλέψεων σημείου Σημαντικές επιλογές πλαισίου: Τί θα κάνουμε με την πρόβλεψη; Θα την μοιραστούμε με πολλούς πελάτες, που θα την χρησιμοποιήσουν με διαφορετικό

Διαβάστε περισσότερα

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Ογενικός(πλήρης) έλεγχος των Dickey Fuller ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη.

Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη. ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ, ΑΕΠ, ΕΞΑΓΩΓΕΣ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΕΛΛΑΔΑ- ΙΣΠΑΝΙΑ-ΠΟΡΤΟΓΑΛΙΑΠΟΡΤΟΓΑΛΙΑ Επιβλέπων καθηγητής: Δριτσάκης Νικόλαος Εκπονήθηκε από: Τέμπου Αικατερίνη (11/37) ΕΙΣΑΓΩΓΙΚΑ Μελέτη

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 10ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 10ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 10ο Έλεγχοι συνολοκλήρωσης Αφού διαπιστωθεί πως οι εξεταζόμενες μεταβλητές είναι ολοκληρωμένες της ίδιας τάξης, τότε εκτελείται ο έλεγχος

Διαβάστε περισσότερα

ΔΗΜΗΤΡΗΣ- ΘΕΟΔΩΡΟΣ ΦΙΛΙΠΠΑΚΟΣ

ΔΗΜΗΤΡΗΣ- ΘΕΟΔΩΡΟΣ ΦΙΛΙΠΠΑΚΟΣ ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Τμήμα Δημόσιας Διοίκησης Μεταπτυχιακό Πρόγραμμα Σπουδών:Οικονομικά της Παραγωγής και των Διακλαδικών Σχέσεων ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΔΙΕΡΕΥΝΗΣΗ ΚΙΝΔΥΝΟΥ

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΙΟΙΚΗΤΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΣΥΜΜΕΤΡΙΑ ΣΤΙΣ ΤΙΜΕΣ ΤΩΝ ΑΚΙΝΗΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΙΟΙΚΗΤΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΣΥΜΜΕΤΡΙΑ ΣΤΙΣ ΤΙΜΕΣ ΤΩΝ ΑΚΙΝΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΙΟΙΚΗΤΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΣΥΜΜΕΤΡΙΑ ΣΤΙΣ ΤΙΜΕΣ ΤΩΝ ΑΚΙΝΗΤΩΝ ΕΥΕΛΥΝ ΣΑΚΚΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΝΙΚΟΛΑΟΣ ΑΠΕΡΓΗΣ ΕΠΙΤΡΟΠΗ: ΛΕΚΤΟΡΑΣ Ν. ΚΟΥΡΟΓΕΝΗΣ

Διαβάστε περισσότερα

β) (βαζκνί: 2) Έζησ όηη ε ρξνλνινγηθή ζεηξά έρεη κέζε ηηκή 0 θαη είλαη αληηζηξέςηκε. Δίλεηαη ην αθόινπζν απνηέιεζκα από ην EViews γηα ηε :

β) (βαζκνί: 2) Έζησ όηη ε ρξνλνινγηθή ζεηξά έρεη κέζε ηηκή 0 θαη είλαη αληηζηξέςηκε. Δίλεηαη ην αθόινπζν απνηέιεζκα από ην EViews γηα ηε : 1 ΝΑ ΑΠΑΝΤΗΘΟΥΝ 2 ΑΠΟ ΤΑ 3 ΘΕΜΑΤΑ ΘΕΜΑ 1 α) (βαζκνί: 3) Έζησ όηη ε ρξνλνινγηθή ζεηξά είλαη ζηάζηκε, αληηζηξέςηκε θαη αθνινπζεί ην ΑR(1) ππόδεηγκα. Να βξεζνύλ ε κέζε ηηκή, ε δηαζπνξά θαη ε απηνζπζρέηηζε

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

1.2 Βασικές έννοιες. Στοχαστική διαδικασία

1.2 Βασικές έννοιες. Στοχαστική διαδικασία .2 Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγµατα αυτά η τρέχουσα τιµή µιας οικονοµικής µεταβλητής, εκφράζεται ως

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0 Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib

Διαβάστε περισσότερα

Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το

Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το ΜΑΘΗΜΑ 9ο ΣΥΝΟΛΟΚΛΗΡΩΣΗ (Έννοιες, Ορισµοί) Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το πρόβληµα της

Διαβάστε περισσότερα

Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων

Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων Υπολογιστική πολυπλοκότητα του πρωτεύοντος αλγόριθμου εξωτερικών σημείων Γεώργιος Παπανίκος Τμ. Εφ. Πληροφορικής, Πανεπιστήμιο Μακεδονίας Εγνατία 156, 54006 Θεσσαλονίκη it0837@uom.gr Νικόλαος Σαμαράς Τμ.

Διαβάστε περισσότερα

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της

Διαβάστε περισσότερα

( ) 2011 :, :, - 2 -

( ) 2011 :, :, - 2 - : : : 2011 : : : ( ) 2011 :, :, - 2 - - 3 - ... 6. 6.. 8.. 9...10 1 1.1... 12 1.2... 13 1.3.. 13 2 2.1. 15 2.2... 15 2.3...... 19 2.4. 24 2.5... 25 3 3.1 28 3.2 28 3.3.. 31 3.4... 32 3.5 39 3.6. 40 3.7.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «Μαθηματική Προτυποποίηση στις Σύγχρονες Τεχνολογίες και την Οικονομία» ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ «ΕΞΕΤΑΣΗ ΠΡΟΒΛΕΠΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΧΡΗΜ/ΩΝ ΑΝΑΛΥΤΩΝ» ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : Κ. ΠΙΤΤΗΣ ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ: Κ. ΠΙΤΤΗΣ

Διαβάστε περισσότερα

Βήματα για την επίλυση ενός προβλήματος

Βήματα για την επίλυση ενός προβλήματος ΜΑΘΗΜΑ 2ο Βήματα για την επίλυση ενός προβλήματος 1. Κατανόηση του προβλήματος με τη σχετική επιστήμη (όπως οικονομία, διοίκηση, γενικές επιστήμες) π.χ το πρόβλημα της κατανάλωσης κάποιας περιοχής σε σχέση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος

Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ

ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Διπλωματική Εργασία Η ΑΞΙΟΛOΓΗΣΗ ΤΟΥ ΚΕΦΑΛΑΙΟΥ ΚΙΝΗΣΗΣ

Διαβάστε περισσότερα

ADF Test Statistic % Critical Value*

ADF Test Statistic % Critical Value* ΘΕΜΑ 1 Έζησ όηη δηαζέηνπκε ζηνηρεία πνπ αθνξνύλ αιηήζεις τορήγηζης επιδόμαηος ανεργίας (unemployment claims) ζηελ αξκόδηα ππεξεζία ηεο πνιηηείαο ηεο Ιληηάλα ησλ ΗΠΑ. (α) Αλ ε κεηαβιεηή luclms είλαη ν ινγάξηζκνο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΕΝΑ ΜΟΝΤΕΛΟ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΤΗΣ ΑΝΕΡΓΙΑΣ, ΤΩΝ ΜΙΣΘΩΝ ΚΑΙ ΤΟΥ ΠΛΗΘΩΡΙΣΜΟΥ ΣΕ ΧΩΡΕΣ ΤΗΣ Ε.Ε.

ΕΝΑ ΜΟΝΤΕΛΟ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΤΗΣ ΑΝΕΡΓΙΑΣ, ΤΩΝ ΜΙΣΘΩΝ ΚΑΙ ΤΟΥ ΠΛΗΘΩΡΙΣΜΟΥ ΣΕ ΧΩΡΕΣ ΤΗΣ Ε.Ε. ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΝΑ ΜΟΝΤΕΛΟ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΤΗΣ ΑΝΕΡΓΙΑΣ,

Διαβάστε περισσότερα

TΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ

TΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ TΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ Η ΕΠΙΔΡΑΣΗ ΤΩΝ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΩΝ ΔΕΙΚΤΩΝ ΣΤΟ Χ.Α.Α. Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΧΡΗΜΑΤΙΣΤΗΡΙΟΥ Υπεύθυνη Πτυχιακής: ΠΑΤΕΡΟΥ ΑΙΚΑΤΕΡΙΝΗ Α.Μ.: 28 Υπεύθυνος

Διαβάστε περισσότερα

Το πρόβλημα της διαχείρισης των μεταβλητών δαπανών αποτελεί αντικείμενο που χρήζει

Το πρόβλημα της διαχείρισης των μεταβλητών δαπανών αποτελεί αντικείμενο που χρήζει ΔIOIKHTIKH ENHMEPΩΣH 95 ΔΙΟΙΚΗΣΗ ΔΗΜΟΣΙΩΝ ΝΟΣΟΚΟΜΕΙΑΚΩΝ ΜΟΝΑΔΩΝ- ΕΦΑΡΜΟΓΗ ΜΕΘΟΔΩΝ ΠΟΣΟΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΣΤΟΝ ΕΛΕΓΧΟ ΤΩΝ ΔΑΠΑΝΩΝ Tου Μάριου Τσάκα 1. ΕΙΣΑΓΩΓΗ Το πρόβλημα της διαχείρισης των μεταβλητών δαπανών

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Αυτοσυσχέτιση Αν τα σφάλµατα δεν συσχετίζονται µεταξύ τους, Corr(u t, u s ) = 0 για κάθε t s, t, s

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

Ειδικά Θέματα Οικονομετρίας-Χρονολογικές Σειρές Ι (εκδ. 1.1)

Ειδικά Θέματα Οικονομετρίας-Χρονολογικές Σειρές Ι (εκδ. 1.1) Ειδικά Θέματα Οικονομετρίας-Χρονολογικές Σειρές Ι (εκδ. 1.1) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Περιγραφή 1 Εισαγωγή στις Χρονολογικές Σειρές Οι

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΚΑΤΕΥΘΥΝΣΗ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΚΑΤΕΥΘΥΝΣΗ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΚΑΤΕΥΘΥΝΣΗ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΦΟΡΟΙ ΠΑΡΑΓΩΓΗΣ- ΕΙΣΑΓΩΓΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής Διαγνωστικοί Έλεγχοι Διαπίστωσης της Αυτοσυσχέτισης Οι περισσότεροι από τους διαγνωστικούς ελέγχους της αυτοσυσχέτισης αναφέρονται σε αυτοσυσχέτιση

Διαβάστε περισσότερα

Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ:

Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: Ο ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΗΣ ΙΔΙΩΤΙΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ, ΤΩΝ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΤΩΝ ΣΥΝΟΛΙΚΩΝ ΕΙΣΑΓΩΓΩΝ. ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΜΕΛΕΤΗ ΓΙΑ ΤΗΝ ΑΥΣΤΡΙΑ,

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ

ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ ΠΡΟΒΛΗΜΑ ΑΥΤΟΣΥΣΧΕΤΙΣΤΩΝ ΣΦΑΛΜΑΤΩΝ ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ ΔΙΟΡΘΩΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΣΥΝΕΠΕΙΕΣ ΠΡΟΒΛΗΜΑΤΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ 1 ΤΡΟΠΟΙ ΕΛΕΓΧΟΥ Γραφική παράσταση των υπολοίπων (ή των μαθητικοποιημένων υπολοίπων) ως προς την

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

ΕΠΟΧΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΤΟΥΡΙΣΤΙΚΩΝ ΕΣΟΔΩΝ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ

ΕΠΟΧΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΤΟΥΡΙΣΤΙΚΩΝ ΕΣΟΔΩΝ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ. 109118 ΕΠΟΧΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΤΟΥΡΙΣΤΙΚΩΝ ΕΣΟΔΩΝ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ Νικόλαος Δριτσάκης Τμήμα Εφαρμοσμένης

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Η Τουριστική Ζήτηση στην Ελλάδα

Η Τουριστική Ζήτηση στην Ελλάδα Η Τουριστική Ζήτηση στην Ελλάδα Εισαγωγή στο θέμα της διπλωματικής Ο ρόλος του τουρισμού στην οικονομική ανάπτυξη και στην πρόοδο των σύγχρονων κοινωνιών είναι αναμφισβήτητος. Συνδέεται άμεσα με την ανάπτυξη

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

Μελέτη των spreads των ελληνικών ομολόγων.

Μελέτη των spreads των ελληνικών ομολόγων. Master in Business Administration Τμήμα Διοίκησης Επιχειρήσεων, Πανεπιστημίου Πατρών Μελέτη των spreads των ελληνικών ομολόγων. Διπλωματική Εργασία Χριστόφορος Κωνσταντάτος ΑΜ. 323 Μελέτη των spreads των

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

«ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ-ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΤΟΥ Ν. ΠΙΕΡΙΑΣ»

«ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ-ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΤΟΥ Ν. ΠΙΕΡΙΑΣ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ «ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ-ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΤΟΥ Ν. ΠΙΕΡΙΑΣ» ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΠΑΓΚΟΣΜΙΟΠΟΙΗΣΗ: ΠΑΡΑΓΟΝΤΕΣ, ΔΙΑΧΡΟΝΙΚΗ ΕΞΕΛΙΞΗ ΚΑΙ Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΛΛΑΔΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: κ. ΓΕΩΡΓΙΟΣ ΕΜΜ. ΧΑΛΚΟΣ

ΠΑΓΚΟΣΜΙΟΠΟΙΗΣΗ: ΠΑΡΑΓΟΝΤΕΣ, ΔΙΑΧΡΟΝΙΚΗ ΕΞΕΛΙΞΗ ΚΑΙ Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΛΛΑΔΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: κ. ΓΕΩΡΓΙΟΣ ΕΜΜ. ΧΑΛΚΟΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΟΛΟΣ 2007 ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: ΠΑΓΚΟΣΜΙΟΠΟΙΗΣΗ: ΠΑΡΑΓΟΝΤΕΣ, ΔΙΑΧΡΟΝΙΚΗ ΕΞΕΛΙΞΗ ΚΑΙ Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΛΛΑΔΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: κ. ΓΕΩΡΓΙΟΣ ΕΜΜ. ΧΑΛΚΟΣ ΕΠΙΜΕΛΕΙΑ ΕΡΓΑΣΙΑΣ:

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. ιπλωµατική Εργασία

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. ιπλωµατική Εργασία ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ιπλωµατική Εργασία ΠΡΟΒΛΕΨΗ ΣΥΝΑΛΛΑΓΜΑΤΙΚΩΝ ΙΣΟΤΙΜΙΩΝ: Η ΠΕΡΙΠΤΩΣΗ ΕΥΡΩ - ΟΛΑΡΙΟΥ του ΘΩΜΑ ΛΑΖΟΥ

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ &ΑΣΦΑΛΙΣΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ &ΑΣΦΑΛΙΣΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ &ΑΣΦΑΛΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΚΡΑΤΩΝ-ΜΕΛΩΝ ΤΗΣ ΕΥΡΩΠΑΙ-

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΤΟ ΠΛΗΡΟΦΟΡΙΑΚΟ ΠΕΡΙΕΧΟΜΕΝΟ ΤΩΝ ΓΝΩΣΤΟΠΟΙΗΣΕΩΝ ΣΤΟΝ ΚΛΑ Ο ΤΩΝ ΚΑΤΑΣΚΕΥΑΣΤΙΚΩΝ ΕΤΑΙΡΕΙΩΝ ΜΕ ΒΑΣΗ ΤΑ ΙΕΘΝΗ ΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ Νικηφοράκη Σταυρούλα

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: «ΜΕΛΕΤΗ ΓΙΑ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΚΡΙΣΗΣ ΣΤΑ

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ:

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ονοµατεπώνυµο : Αγγελική Βαλαή Υπεύθυνος καθηγητής: Αναστάσιος Β. Κάτος ΤΙΤΛΟΣ: Ο προσδιορισµός του επιπέδου της ιδιωτικής κατανάλωσης, των επενδύσεων

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών

ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών Τμήμα Πολιτικών Μηχανικών Πανεπιστήμιο Θεσσαλίας ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών Καθ. Αθανάσιος Λουκάς Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Οι παραβιάσεις των σημαντικότερων υποθέσεων των γραμμικών υποδειγμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package)

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package) ΜΑΘΗΜΑ 2 ο ΗχρήσητουπακέτουEviews (Using Eviews econometric package) Για να καλέσετε το πρόγραμμα πρέπει να εργαστείτε ως εξής: 1. Κάντε δύο κλικ στο εικονίδιο του Eviews 2. Από την εντολή File πάω στο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ απόκλιση από την κανονικότητα µπορεί να σηµαίνει Ύπαρξη θετικής ή αρνητικής ασυµµετρίας Ύπαρξη λεπτοκύρτωσης, δηλαδή παρουσία ακραίων τιµών που δεν είναι συµβατές

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΚΤΙΚΗ Μεταπτυχιακή Διπλωματική Εργασία Η ΑΥΞΗΣΗ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΦΠΑ ΣΤΗ ΤΡΙΕΤΙΑ 2009-2011 ΩΣ ΕΠΕΙΓΟΝ

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Στοχαστικές Τυχαίες Μεταβλητές/ Στοχαστικά Σήματα Πειραματικά δεδομένα >Επιλογή τύπου μοντέλου >Επιλογή κριτηρίου >Υπολογισμός >Επικύρωση Προσαρμογή καμπύλης (Curve

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών

Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών Χρονοσειρές - Μάθημα 8 Μη-γραμμική ανάλυση χρονοσειρών Γραμμική ανάλυση / Γραμμικά μοντέλα αυτοσυσχέτιση AR μοντέλο ARMA(,q) μοντέλο x x x z z z q q Πλεονεκτήματα:. Απλά. Κανονική διαδικασία, ανεπτυγμένη

Διαβάστε περισσότερα