ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ"

Transcript

1 Τµ. Επιστήµης των Υλικών

2 ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k

3 ειγµατοληψία Με ιάταξη ειγµατοληψία Χωρίς ιάταξη Χωρίς Επανατοποθέτηση (n)k Με Επανατοποθέτηση n k Χωρίς Επανατοποθέτηση ( n k) Με Επανατοποθέτηση ( n+k 1 ) k Επ. ειγµατοληψία ιακεκριµένα Σφαιρίδια Μη ιακεκριµένα Σφαιρίδια Με Περιορισµούς n! Χωρίς Περιορισµούς n 1!n 2!...n k! k n ( n 1 ) Με Περιορισµούς k 1 Χωρίς Περιορισµούς ( n+k 1 ) n

4 Παραδείγµατα Παράδειγµα 1 Σύµφωνα µε τις διαθέσεις της κυβέρνησης, 118 υπάλληλοι του Π.Π. τίθενται σε διαθεσιµότητα. Αν για αυτούς τους υπαλλήλους υπάρχουν τρεις ισοπίθανες περιπτώσεις, είτε να υπηρετήσουν άλλες ακαδηµαϊκές µονάδες, είτε να µετατεθούν σε άλλες υπηρεσίες του κράτους, είτε να απολυθούν, τότε 1 υπολογίστε την πιθανότητα 52 υπάλληλοι να υπηρετήσουν σε άλλη ακαδηµαϊκή µονάδα, 40 υπάλληλοι να µετατεθούν σε άλλη υπηρεσία του κράτους και οι υπόλοιποι να απολυθούν. 2 Ποια είναι η πιθανότητα το πολύ 10 να απολυθούν;

5 εσµευµένες Πιθανότητες Ορισµός Τα σύνολα A 1, A 2,...,A n,... αποτελούν µια διαµέριση του συνόλου Ω, εάν αυτά είναι ξένα µεταξύ τους ανά δύο (δηλ. A i A j =, i j) και j=1aj = Ω. Θεώρηµα Ολικής Πιθανότητας (Θ.Ο.Π.) Εστω {A j, j = 1, 2,...} µια διαµέριση του δειγµατοχώρου Ω, τότε για κάθε σύνολο Β του δειγµατοχώρου ισχύει η σχέση P(B) = P(A j)p(b A j). j=1 Θεώρηµα Bayes Υπό τις προϋποθέσεις του Θ.Ο.Π. και εφ οσον P(B) > 0, P(A j B) = P(Aj)P(B Aj) P(B) όπου P(A j) ονοµάζεται εκ των προτέρων πιθανότητα και P(A j B) ονοµάζεται εκ των υστέρων πιθανότητα., j = 1, 2,...,

6 Παραδείγµατα Παράδειγµα 2 Μετά το δεύτερο µεγάλο σεισµό στο Ληξούρι της Κεφαλλονιάς, το 30% των σπιτιών κρίθηκαν µη κατοικίσηµα, οπότε το 40% των κατοίκων, όπου το σπίτι τους κρίθηκε ως µη κατοικίσηµο, έφυγαν από το νησί, όπως έφυγαν και το 25% των κατοίκων, όπου το σπίτι τους κρίθηκε ως κατοικίσηµο. 1 Υπολογίστε το ποσοστό των κατοίκων του Ληξουρίου που έφυγε από το νησί. 2 Για τον κάτοικο του Ληξουρίου, ο οποίος δεν έφυγε από το νησί, υπολογίστε την πιθανότητα, το σπίτι του να έχει κριθεί ως κατοικίσηµο.

7 ιακριτές Κατανοµές ιωνυµική κατανοµή Η τυχαία µεταβλητή X ακολουθεί τη διωνυµική κατανοµή ή X είναι µια διωνυµική τυχαία µεταβλητή, εάν ( ) n f(x) = P(X = x) = p x (1 p) n x, x = 0, 1,...,n, 0 < p < 1. x Συµβολικά: X B(n, p). EX = np, VarX = np(1 p).

8 ιακριτές Κατανοµές ιωνυµική κατανοµή Η τυχαία µεταβλητή X ακολουθεί τη διωνυµική κατανοµή ή X είναι µια διωνυµική τυχαία µεταβλητή, εάν ( ) n f(x) = P(X = x) = p x (1 p) n x, x = 0, 1,...,n, 0 < p < 1. x Συµβολικά: X B(n, p). Poisson κατανοµή EX = np, VarX = np(1 p). Η τυχαία µεταβλητή X ακολουθεί τη Poisson κατανοµή ή X είναι µια Poisson τυχαία µεταβλητή, εάν f(x) = P(X = x) = e λλx x! Συµβολικά: X P(λ). EX = VarX = λ., x = 0, 1,..., λ > 0.

9 ιακριτές Κατανοµές Υπεργεωµετρική κατανοµή Η τυχαία µεταβλητή X ακολουθεί τη υπεργεωµετρική κατανοµή ή X είναι µια υπεργεωµετρική τυχαία µεταβλητή, εάν ( m ( n ) f(x) = P(X = x) = x) ), x = 0, 1,... min{m, r}, m, n, r Z +. r x ( m+n r Συµβολικά: X H(x : n, m, r).

10 ιακριτές Κατανοµές Αρνητική ιωνυµική κατανοµή Η τυχαία µεταβλητή X ακολουθεί την αρνητική διωνυµική κατανοµή ή X είναι µια αρνητική διωνυµική τυχαία µεταβλητή, εάν ( ) r + x 1 f(x) = P(X = x) = p r (1 p) x, x = 0, 1,..., 0 < p < 1. x Συµβολικά: X NB(r, p).

11 ιακριτές Κατανοµές Αρνητική ιωνυµική κατανοµή Η τυχαία µεταβλητή X ακολουθεί την αρνητική διωνυµική κατανοµή ή X είναι µια αρνητική διωνυµική τυχαία µεταβλητή, εάν ( ) r + x 1 f(x) = P(X = x) = p r (1 p) x, x = 0, 1,..., 0 < p < 1. x Συµβολικά: X NB(r, p). Παρατήρηση Για r = 1, P(X = x) = p(1 p) x, x = 0, 1, 2,... και η κατανοµή ονοµάζεται γεωµετρική κατανοµή ή κατανοµή του Pascal. Συµβολικά: X Ge(p). EX = 1 p p, VarX = 1 p p 2.

12 Συνεχείς Κατανοµές Κανονική κατανοµή ή κατανοµή του Gauss Η τυχαία µεταβλητή X ακολουθεί την κανονική κατανοµή ή X είναι µια κανονική τυχαία µεταβλητή, εάν f(x) = 1 2πσ 2 e (x µ)2 2σ 2, x R, µ R, σ > 0. Συµβολικά: X N(µ,σ 2 ). EX = µ, VarX = σ 2.

13 Συνεχείς Κατανοµές Κανονική κατανοµή ή κατανοµή του Gauss Η τυχαία µεταβλητή X ακολουθεί την κανονική κατανοµή ή X είναι µια κανονική τυχαία µεταβλητή, εάν f(x) = 1 2πσ 2 e (x µ)2 2σ 2, x R, µ R, σ > 0. Συµβολικά: X N(µ,σ 2 ). EX = µ, VarX = σ 2. Παρατήρηση Για µ = 0, σ 2 = 1 f(x) = 1 2π e x2 /2, x R ονοµάζεται τυπική κανονική κατανοµή. Συµβολικά: X N(0, 1). και η κατανοµή

14 Συνεχείς Κατανοµές Οµοιόµορφη κατανοµή Η τυχαία µεταβλητή X ακολουθεί την οµοιόµορφη κατανοµή ή X είναι µια οµοιόµορφη τυχαία µεταβλητή, εάν 1, x [a,β] f(x) = β a 0, x [a,β] Συµβολικά: X U(a,β). EX = a +β 2, VarX = β a)2. 12

15 Συνεχείς Κατανοµές Γάµµα κατανοµή Η τυχαία µεταβλητή X ακολουθεί την Γάµµα κατανοµή ή X είναι µια Γάµµα τυχαία µεταβλητή, εάν f(x) = Συµβολικά: X G(a,β). 1 Γ(a)β a xa 1 e x/β, x > 0, a,β > 0. EX = aβ, VarX = aβ 2.

16 Συνεχείς Κατανοµές Γάµµα κατανοµή Η τυχαία µεταβλητή X ακολουθεί την Γάµµα κατανοµή ή X είναι µια Γάµµα τυχαία µεταβλητή, εάν f(x) = Συµβολικά: X G(a,β). Εκθετική κατανοµή 1 Γ(a)β a xa 1 e x/β, x > 0, a,β > 0. EX = aβ, VarX = aβ 2. Η τυχαία µεταβλητή X ακολουθεί την εκθετική κατανοµή ή X είναι µια εκθετική τυχαία µεταβλητή, εάν f(x) = λ e λx, x > 0, λ > 0. Συµβολικά: X E(λ) G(a = 1,β = 1/λ). EX = 1 λ, VarX = 1 λ 2.

17 Παραδείγµατα Παράδειγµα 3 Θεωρούµε ότι το πλήθος των πελατών που εξυπηρετούνται από ένα ταµείο ενός supermarket είναι µια Poisson τ.µ., µε µέση τιµή 20 πελάτες την ώρα. 1 Υπολογίστε την πιθανότητα να εξυπηρετηθούν τουλάχιστον 2 πελάτες τα επόµενα 15 λεπτά. 2 Για τις επόµενες 2 ώρες, ποια είναι η πιθανότητα για µισή ώρα (από αυτές τις δύο ώρες) να εξυπηρετούνται από το συγκεκριµένο ταµείο τουλάχιστον 2 πελάτες το 15λεπτο; 3 Ο διευθυντής του supermarket καταγράφει ανά 15λεπτο, το πλήθος των πελατών που εξυπηρετούνται από το συγκεκριµένο ταµείο. Ποια είναι η πιθανότητα στο λεπτο αυτής της καταγραφής να εξυπηρετούνται τουλάχιστον 2 πελάτες;

18 Τυχαία ιανύσµατα Περιθώρια Πυκνότητα Πιθανότητας f X1 (x 1 ) = x 2 f(x 1, x 2 ), = (X 1, X 2 ) διακριτό τ.δ. X + f(x 1, x 2 )dx 2, = (X 1, X 2 ) συνεχές τ.δ. X

19 Τυχαία ιανύσµατα Περιθώρια Πυκνότητα Πιθανότητας f X1 (x 1 ) = x 2 f(x 1, x 2 ), = (X 1, X 2 ) διακριτό τ.δ. X + f(x 1, x 2 )dx 2, = (X 1, X 2 ) συνεχές τ.δ. X εσµευµένη Πυκνότητα Πιθανότητας f X1 X 2 (x 1 x 2 ) = f(x 1, x 2 ) ονοµάζεται δεσµευµένη π.π. της X 1 δοθείσης f X2 (x 2 ) της X 2. f X2 X 1 (x 2 x 1 ) = f(x 1, x 2 ) f X1 (x 1 ) της X 1. ονοµάζεται δεσµευµένη π.π. της X 2 δοθείσης

20 εσµευµένες Ροπές τυχαίων µεταβλητών εσµευµένη Μέση Τιµή της X 1 δοθείσης της X 2 E(X 1 X 2 ) = x 1 f X1 X 2 (x 1 x 2 ), X 1 διακριτή τ.µ. + x 1 f X1 X 2 (x 1 x 2 )dx 1, X 1 συνεχής τ.µ. εσµευµένη Μέση Τιµή της X 2 δοθείσης της X 1 E(X 2 X 1 ) = x 2 f X2 X 1 (x 2 x 1 ), X 2 διακριτή τ.µ. + x 2 f X2 X 1 (x 2 x 1 )dx 2, X 2 συνεχής τ.µ.

21 Συντελεστής Συσχέτισης ύο Τυχαίων Μεταβλητών Συντελεστής Συσχέτισης = E[(X 1 EX 1 )(X 2 EX 2 )] Var(X1 )Var(X 2 ) E[(X 1 EX 1 )(X 2 EX 2 )] = E(X 1 X 2 ) E(X 1 )E(X 2 ) = Cov(X 1, X 2 ) ονοµάζεται συνδιασπορά των τ.µ. X 1 και X 2. Παρατήρηση Ο συντελεστής συσχέτισης (όπως και η συνδιασπορά) µας λένε αν και πως σχετίζονται γραµµικά µεταξύ τους οι δύο τυχαίες µεταβλητές. 1 1 = 1, έχουµε αυστηρά ϑετική γραµµική συχέτιση ανάµεσα στις δύο τ.µ. = 1, έχουµε αυστηρά αρνητική γραµµική συχέτιση ανάµεσα στις δύο τ.µ. = 0, οι τ.µ. X 1 και X 2 ονοµάζονται ασυσχέτιστες.

22 Παραδείγµατα Παράδειγµα 4 Το τυχαίο διάνυσµα (X, Y) είναι οµοιόµορφο στον χώρο που περικλείεται από τις ευθείες X Y = 2, X = 0, Y = 0. 1 Να ϐρεθεί η πυκνότητα πιθανότητας του τ.δ. (X, Y). 2 Να υπολογιστούν οι περιθώριες π.π. των τ.µ. X και Y. 3 Υπολογίστε τη συνδιασπορά των τ.µ. X και Y. 4 Υπολογίστε την P(X > 1 Y < 1/2).

23 Παραδείγµατα Παράδειγµα 5 ίνεται η από κοινού πυκνότητα πιθανότητας των τ.µ. X και Y, f X,Y (x, y) = { c x 3 y 3, x > y > 1. 0, διαφορετικά. 1 Να προσδιοριστεί η σταθερά c. 2 Να υπολογιστούν οι περιθώριες π.π. των τ.µ. X και Y. 3 Υπολογίστε τη συνδιασπορά των τ.µ. X και Y. 4 Υπολογίστε την E(X Y = 2).

24 Στοχαστική Ανεξαρτησία Ανεξαρτησία τ.µ. Οι τυχαίες µεταβλητές X 1, X 2,...,X k ονοµάζονται ανεξάρτητες P(X 1 A 1, X 2 A 2,...,X k A k ) = P(X 1 A 1 )P(X 2 A 2 )...P(X k A k ) Παραγοντικό Θεώρηµα k X 1, X 2,...,X k ανεξ. τ.µ. F X (x ) = F X1 (x 1 )...F Xk (x k ) = F Xi (x i ) f X (x ) = f X1 (x 1 )...f Xk (x k ) = i=1 k f Xi (x i ) i=1 Παρατήρηση Αν X 1, X 2,...,X k είναι ανεξάρτητες τ.µ. Var(X 1 + X X k ) = Var(X 1 )+Var(X 2 )+...+Var(X k ).

25 Αναπαραγωγικές Ιδιότητες Θεωρούµε X 1, X 2,...,X k ανεξάρτητες τ.µ. k k 1 X i B(n i, p), i = 1, 2,...,k X i B( n i, p) i=1 i=1 k k 2 X i P(λ i ), i = 1, 2,...,k X i P( λ i ) i=1 i=1 k k k 3 X i N(µ i,σi 2), i = 1, 2,...,k X i N( µ i, σ 2 i ) i=1 i=1 i=1 i=1 k k 4 X i G(a i,β), i = 1, 2,...,k X i G( a i,β) k 5 X i E(λ) G(1, 1/λ), i = 1, 2,...,k X i G(n,λ) i=1 i=1

26 Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) Κ.Ο.Θ. Εστω X 1, X 2,...,X n ανεξάρτητες και ισόνοµες τυχαίες µεταβλητές, µε E(X i ) = µ και VarX i = σ 2, i = 1, 2,...,n, τότε n n X i E( X i ) i=1 i=1 n Var( X i ) i=1 Z N(0, 1).

27 Παραδείγµατα Παράδειγµα 6 Υποθέτουµε ότι η πιθανότητα για έναν νέο επιστήµονα να µεταναστεύσει στο εξωτερικό είναι 1/3. 1 Ρωτάµε 1800 νέους επιστήµονες αν πρόκειται να µεταναστεύσουν, υπολογίστε την πιθανότητα, µέσω Κ.Ο.Θ., όπως το πολύ 640 από αυτούς να ϕύγουν για το εξωτερικό. 2 Ρωτάµε νέους επιστήµονες αν πρόκειται να ϕύγουν για το εξωτερικό. Ποιο ϑα είναι το αναµενόµενο πλήθος των ερωτηθέντων, έτσι ώστε η διαδικασία αυτή να σταµατήσει όταν ϕτάσουµε στο 500 οστό άτοµο που δηλώνει ότι πρόκειται να ϕύγει για το εξωτερικό. Χρησιµοποιήστε την 1η ταυτότητα του Wald.

28 Στοχαστικές ιαδικασίες Ορισµός Μία στοχαστική διαδικασία είναι µία οικογένεια τυχαίων µεταβλητών {X(t) : t T}, όπου t είναι µία παράµετρος που παίρνει τιµές σε ένα κατάλληλα ορισµένο σύνολο T.

29 Στοχαστικές ιαδικασίες Ορισµός Μία στοχαστική διαδικασία είναι µία οικογένεια τυχαίων µεταβλητών {X(t) : t T}, όπου t είναι µία παράµετρος που παίρνει τιµές σε ένα κατάλληλα ορισµένο σύνολο T. Αν t [0, a), έχουµε στοχαστική διαδικασία σε συνεχή χρόνο. Αν t = 0, 1, 2,..., έχουµε στοχαστική διαδικασία σε διακριτό χρόνο.

30 Στοχαστικές ιαδικασίες Ορισµός Μία στοχαστική διαδικασία είναι µία οικογένεια τυχαίων µεταβλητών {X(t) : t T}, όπου t είναι µία παράµετρος που παίρνει τιµές σε ένα κατάλληλα ορισµένο σύνολο T. Αν t [0, a), έχουµε στοχαστική διαδικασία σε συνεχή χρόνο. Αν t = 0, 1, 2,..., έχουµε στοχαστική διαδικασία σε διακριτό χρόνο. Εστω Ε το πεδίο τιµών της τ.µ. X(t) (ή X n ), τότε το Ε ονοµάζεται χώρος καταστάσεων. Αν Ε είναι ένα πεπερασµένο ή αριθµήσιµο σύνολο, έχουµε στοχαστική διαδικασία µε διακριτό χώρο καταστάσεων. Αν Ε είναι ένα διάστηµα ή το R, έχουµε στοχαστική διαδικασία µε συνεχή χώρο καταστάσεων.

31 Στοχαστικές ιαδικασίες Ταυτότητα του Wald Αν X 1, X 2,... ανεξάρτητες και ισόνοµες τ.µ. µε EX i <, i = 1, 2,... και N είναι τ.µ. που αναπαριστά τη στιγµή τερµατισµού της ακολουθίας των τ.µ. τότε, N E( X i ) = (EX)(EN) i=1 όπου X είναι τ.µ. ισόνοµη µε τις X 1, X 2,...

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Είδη τυχαίων διανυσµάτων 1. ιακριτού τύπου X = (X 1, X 2,...,X k ) ονοµάζεται διακριτό τυχαίο διάνυσµα αν το πεδίο τιµών του είναι της µορφής, S = {x 1 x 2 n,,...,x,...}.

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ Τµ. Επιστήµης των Υλικών Συνάρτηση Κατανοµής Ορισµός F(x) = P(X x) = f(t) x t x f(t)dt, X διακριτή τ.µ., X συνεχής τ.µ. Ιδιότητες 0 F(x). 2 F είναι αύξουσα συνάρτηση. 3 F είναι συνεχής εκ δεξιών. 4 lim

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Στοιχεία Θεωρίας Συνόλων Θεωρούµε Ω το σύνολο αναφοράς. σ-άλγεβρα Εστω A είναι µια κλάση υποσυνόλων του Ω. τ.ω. A είναι µη κενή. 2 A A A c A. 3 A, A 2,... A A A 2...

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ Τµ. Επιστήµης των Υλικών Εστω (Ω,A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο (ή µια πιθανότητα) P

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Κατανομές Πιθανότητας Ως τυχαία μεταβλητή ορίζεται το σύνολο των τιμών ενός χαρακτηριστικού

Διαβάστε περισσότερα

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΕΣΜΕΥΜΕΝΕΣ ΠΙΘΑΝΟΤΗΤΕΣ Τµ. Επιστήµης των Υλικών εσµευµένες Πιθανότητες Εστω (Ω, A, P) ένας πιθανοθεωρητικός χώρος. Αξιωµατικός Ορισµός της Πιθανότητας (Kolmogorov) Θεωρούµε (Ω, A) έναν µετρήσιµο χώρο. Ενα πιθανοθεωρητικό µέτρο

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ

ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος Τµ. Επιστήµης των Υλικών Στοχαστικές ιαδικασίες Ορισµός Μία στοχαστική διαδικασία είναι µία οικογένεια τυχαίων µεταβλητών

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαίες Μεταβλητές (τ.µ.) Τυχαίες Μεταβλητές (τ.µ.) Τυχαία Μεταβλητή (τ.µ.) : συνάρτηση Χ (.) µε πεδίο ορισµού τον δειγµατικό χώρο Ω και πεδίο τιµών ένα σύνολο πραγµατικών αριθµών. X (.) : Ω D ιακριτές τ.µ. Συνεχείς τ.µ. Η πιθανοτική

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις.

Συνεχείς Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Συνεχείς Κατανομές. τεχνικές. 30 ασκήσεις. Συνεχείς Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Συνεχείς Κατανομές τεχνικές 0 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglos.gr / 0 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

II. Τυχαίες Μεταβλητές

II. Τυχαίες Μεταβλητές II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο

Διαβάστε περισσότερα

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Δ.Φουσκάκης- Πολυδιάστατες Τυχαίες Μεταβλητές 1 ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Συνάρτηση Κατανομής: Έστω Χ=(Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ.

Διαβάστε περισσότερα

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Μέση Τιµή. Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής. Μέση Τιµή Έστω Χ τ.µ. και f Χ (x) ησ.π. ήσ.π.π. της Χ Μέση ή αναµενόµενη τιµή της Χ είναι ο αριθµός: E( ) µ xf ( x) E( ) µ xf ( x) dx Παραδείγµατα: = = x = = αν η Χ είναι διακριτή, και αν η Χ είναι συνεχής.

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 28 ιδάσκων: Π. Τσακαλίδης Λύσεις Εβδοµης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης: 3/2/28 Ηµεροµηνία Παράδοσης: 7/2/28

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Συστήματα Αναμονής. Ενότητα 2: Τυχαίες Μεταβλητές. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Συστήματα Αναμονής Ενότητα 2: Τυχαίες Μεταβλητές Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Τυχαία Διανύσματα και Ανεξαρτησία

Τυχαία Διανύσματα και Ανεξαρτησία Τυχαία Διανύσματα και Ανεξαρτησία Θα γενικεύσουμε την έννοια της τυχαίας μεταβλητής από συνάρτηση στο R σε συνάρτηση στο R n. Ακολούθως, θα επεκτείνουμε τις έννοιες με τις οποίες ασχοληθήκαμε μέχρι τώρα

Διαβάστε περισσότερα

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 εκεµβρίου 29 5.1. Στο τυχαίο πείραµα της ϱίψης δύο διακεκριµένων κύβων έστω X η ένδειξη του πρώτου κύβου και Y η µεγαλύτερη από τις δύο ενδείξεις. Να προσδιορισθούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 21 εκεµβρίου 2009 ΑΝΕΞΑΡΤΗΣΙΑ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Ορισµός (α) Εστω (X, Y) διακριτή διδιάστατη τυχαία µεταβλητή µε συνάρτηση πιθανότητας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Η «ύλη» του προπτυχιακού µαθήµατος

Η «ύλη» του προπτυχιακού µαθήµατος ΠΙΘΑΝΟΤΗΤΕΣ Ι Η «ύλη» του προπτυχιακού µαθήµατος Βασικές έννοιες Πείραµα τύχης ειγµατοχώρος Ενδεχόµενα Πιθανότητα εσµευµένη πιθανότητα Ανεξαρτησία Βασικά ϑεωρήµατα Θεώρηµα ολικής πιθανότητας Θεώρηµα Bayes

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΙΓΜΑΤΟΛΗΨΙΑ Τµ. Επιστήµης των Υλικών Βασικές Αρχές Αρχή της Απαρίθµησης Εστω ότι ϑέλουµε να εκτελέσουµε ένα έργο Τ και το έργο εκτελείται σε κάποιες ϐαθµίδες, οι οποίες ϐαθµίδες εκτελούνται σε υποέργα, T j, j = 1,

Διαβάστε περισσότερα

Σημειώσεις Στατιστική & Πιθανότητες

Σημειώσεις Στατιστική & Πιθανότητες Σημειώσεις Στατιστική & Πιθανότητες https://github.com/kongr45gpen/ece-notes 26, Εαρινό εξάμηνο Περιεχόμενα I Πιθανότητες 2 2. Πείραμα τύχης.......................................... 2.. Πράξεις..........................................

Διαβάστε περισσότερα

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή Γεώργιος Ζιούτας Άδειες

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 17 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής Κεφάλαιο 1. Εισαγωγή: Βασικά και Εκτιμητικής Ορισμός 1.1. Όλα τα δυνατά αποτελέσματα ενός πειράματος αποτελούν το δειγματοχώρο (sample space) που συμβολίζεται με. Κάθε δυνατό αποτέλεσμα του πειράματος,

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. Η τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας που δίνεται από τον πίνακα: x f(x) / / / / / Να βρεθεί η μέση τιμή και η διασπορά.. Η τυχαία μεταβλητή

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων . Σύντοµη επισκόπηση θεωρίας πιθανοτήτων Α. Τυχαίες µεταβητές Τυχαία µεταβητή καείται µια µεταβητή η τιµή της οποίας καθορίζεται από το αποτέεσµα κάποιου στοχαστικού πειράµατος. Αν Ω ο δειγµατικός χώρος

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές) 07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

P (M = n T = t)µe µt dt. λ+µ

P (M = n T = t)µe µt dt. λ+µ Ουρές Αναμονής Σειρά Ασκήσεων 1 ΑΣΚΗΣΗ 1. Εστω {N(t), t 0} διαδικασία αφίξεων Poisson με ρυθμό λ, και ένα χρονικό διάστημα η διάρκεια του οποίου είναι τυχαία μεταβλητή T, ανεξάρτητη της διαδικασίας αφίξεων,

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ Χαράλαµπος Α. Χαραλαµπίδης 16 εκεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ Ενδιαφέρον τόσο από ϑεωρητική άποψη, όσο και από άποψη εφαρµογών, παρουσιάζει και η από κοινού µελέτη

Διαβάστε περισσότερα

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης

Γ. Κορίλη, Μοντέλα Εξυπηρέτησης Γ. Κορίλη, Μοντέλα Εξυπηρέτησης 2-1 hp://www.seas.upenn.edu/~com501/lecures/lecure3.pdf Καθυστερήσεις στα ίκτυα Πακέτων Εισαγωγή στη Θεωρία Ουρών Ανασκόπηση Θεωρίας Πιθανοτήτων ιαδικασία Poisson Θεώρηµα

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Τυχαίες μεταβλητές, στοχαστικές ανελίξεις και χρονοσειρές Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Κεφάλαιο 1: Εισαγωγή. Κοκολάκης Γεώργιος

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Κεφάλαιο 1: Εισαγωγή. Κοκολάκης Γεώργιος Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο Στοχαστικές Ανελίξεις Κεφάλαιο 1: Εισαγωγή Κοκολάκης Γεώργιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές

Στατιστική Επιχειρήσεων Ι. Βασικές διακριτές κατανομές Στατιστική Επιχειρήσεων Ι Βασικές διακριτές κατανομές 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα Το ένα ονομάζεται

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ 3 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Σύμφωνα με στοιχεία από το Πανεπιστήμιο της Οξφόρδης η πιθανότητα ένας φοιτητής να αποφοιτήσει μέσα σε 5 χρόνια από την ημέρα εγγραφής του στο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

p B p I = = = 5

p B p I = = = 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 17/3/2011

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά Εισαγωγή Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά μοντέλα, είτε σε στοχαστικά ή αλλοιώς πιθανοτικά μοντέλα. προσδιοριστικά μοντέλα : επιτρέπουν προσδιορισμό

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεµατική Ενότητα: ΕΟ-3 Ποσοτικές Μέθοδοι Ακαδηµαϊκό Έτος: 003- ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΘΜΗΤΙΚΗ ΠΕΡΙΓΡΑΦΗ Ε ΟΜΕΝΩΝ ΑΤΑΞΙΝΟΜΗΤΑ

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα

Εργαστήριο Μαθηµατικών & Στατιστικής. 1 η Πρόοδος στο Μάθηµα Στατιστική 5/12/08 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ. 3 ο Θέµα Εργαστήριο Μαθηµατικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθηµα Στατιστική 5//8 ο Θέµα To % των ζώων µιας µεγάλης κτηνοτροφικής µονάδας έχει προσβληθεί από µια ασθένεια. Για τη διάγνωση της συγκεκριµένης

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ Περιεχόμενα Προειδοποίηση 2 2 Συνδυαστική 3 3 Αξιωματική Πιθανότητα 5 4 Δεσμευμένη Πιθανότητα 7 5 Τυχαίες

Διαβάστε περισσότερα

x P (x) c P (x) = c P (x), x S : x c

x P (x) c P (x) = c P (x), x S : x c Κεφάλαιο 9 Ανισότητες, από κοινού κατανομή, Νόμος των Μεγάλων Αριθμών 9.1 Ανισότητες Markov και Chebychev Ξεκινάμε αυτό το κεφάλαιο με δύο σημαντικά αποτελέσματα τα οποία, πέραν της μεγάλης χρησιμότητάς

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ ΜΕΡΟΣ Ο ΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Στο εργαστήριο αυτό θα ασχοληθούµε µε την προσοµοίωση της ρίψεως ενός δίκαιου νοµίσµατος. Το µοντέλο το οποίο θα πρέπει να πραγµατοποιήσουµε θα πρέπει να

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 9 Νοεµβρίου 2009 ΣΥΝΑΡΤΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ Ορισµός Μία τυχαία µεταβλητή X καλείται διακριτή ή απαριθµητή αν παίρνει

Διαβάστε περισσότερα

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ... 25

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ... 25 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 19 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ 1.1 ΕΙΣΑΓΩΓΗ... 25 1.2 Η ΕΝΝΟΙΑ ΚΑΙ ΤΟ ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ... 25 1.3 Ο ΡΟΛΟΣ ΤΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014

Διαβάστε περισσότερα

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov

Markov. Γ. Κορίλη, Αλυσίδες. Αλυσίδες Markov Γ. Κορίλη, Αλυσίδες Markov 3- http://www.seas.upe.edu/~tcom5/lectures/lecture3.pdf Αλυσίδες Markov Αλυσίδες Markov ιακριτού Χρόνου Υπολογισµός Στάσιµης Κατανοµής Εξισώσεις Ολικού Ισοζυγίου Εξισώσεις Λεπτοµερούς

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας. Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΤΑΞΙΝΟΜΗΜΕΝΑ Ε ΟΜΕΝΑ Αριθµητικός Μέσος: όπου : αριθµός παρατηρήσεων ιάµεσος: εάν άρτιος εάν περιττός M + + M + Παράδειγµα: ηλ.: Εάν :,,, M + + 5 + +, 5 Εάν :,, M + Επικρατούσα Τιµή:

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις. Διακριτές Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διακριτές Κατανομές τεχνικές 4 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1. Περιεχόμενα της Ενότητας Στατιστική ΙI Ενότητα 1: Δειγματοληψία και Κατανομές Δειγματοληψίας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 1. ειγµατοληψία Πιθανοτικές

Διαβάστε περισσότερα

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή: Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον

Διαβάστε περισσότερα

Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες

Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες Γιάννης Γαροϕαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψ.Διδάκτωρ Σημειώσεις : Πιθανότητες και Στοχαστικές Διαδικασίες Συνοπτική Παρουσίαση Χρήσιμων Εννοιών 18 Οκτωβρίου 2011 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα