Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος."

Transcript

1 Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος. Παράδειγμα : Έστω ένα σώμα αφήνεται από τη θέση φυσικού μήκους να εκτελέσει Α.Α.Τ.Να υπολογιστεί η μηχανική ενέργεια στη θέση ισορροπίας εάν θεωρήσουμε ότι στη θέση αυτή η δυναμική ενέργεια λόγο βάρους είναι μηδέν. Φ.Μ U β =0 Θ.Ι Ε μηχ =Κ+U ελ +U βαρ = + + Ενώ η ενέργεια ταλάντωσης είναι Ε= Άρα η δυναμική ενέργεια ταλάντωσης είναι μικρότερη στο παράδειγμα από τη μηχανική ενέργεια του συστήματος. Εάν ένα σώμα ταλαντώνει σε οριζόντιο επίπεδο όπως στο σχήμα τότε :

2 Θ.Ι Η ενέργεια ταλάντωσης είναι := Η μηχανική ενέργεια είναι στην τυχαία θέση Χ : Ε=Κ+Uελ= + = Άρα στο οριζόντιο επίπεδο η ενέργεια ταλάντωσης ταυτίζεται με την ενέργεια ελατηρίου με την προϋπόθεση το φυσικό μήκος και η θέση ισορροπίας να ταυτίζονται. Στη διάρκεια μιας περιόδου ισχύουν :. Το σώμα διανύει διάστημα 4Α. Η μετατόπιση είναι μηδέν διότι η αρχική και η τελική θέση ταυτίζονται. 3. Το έργο της δύναμης επαναφοράς είναι μηδέν διότι η δύναμη επαναφοράς είναι συντηρητική δύναμη. 4. Η μεταβολή της ορμής είναι μηδέν διότι η αρχική και η τελική ταχύτητα είναι ισες. 5. Το σώμα περνά δυο φορές από τη θέση ισορροπίας,δυο φορές από την ακραία θέση.. 6. Σε χρόνο μιας περιόδου η κινητική ενέργεια γίνεται μέγιστη δυο φορές,η δυναμική ενέργεια γίνεται μέγιστη δυο φορές. 7. Η δυναμική γίνεται ιση με την κινητική ενέργεια τέσσαρις φορές σε χρόνο πάντα μιας περιόδου. Ποια μεγέθη έχουν ταυτόχρονα μέγιστη ή ελάχιστη απόλυτη τιμή ;. Η απομάκρυνση,η επιτάχυνση,η δύναμη και ο ρυθμός μεταβολής της ορμής γίνονται ταυτόχρονα μέγιστα κατά ΑΠΟΛΥΤΗ ΤΙΜΗ στις ακραίες θέσεις της ταλάντωσης και μηδενίζονται ταυτόχρονα στη Θ.Ι.. Η ταχύτητα και η ορμή γίνονται ταυτόχρονα μέγιστες στη θέση ισορροπίας και μηδενίζουν στις ακραίες θέσεις ταλάντωσης. 3. Ο ρυθμός μεταβολής της κινητικής ενέργεια και ο ρυθμός μεταβολής της δυναμικής ενέργειας ταλάντωσης είναι μηδέν τόσο στην θέση ισορροπίας όσο και στις ακραίες θέσεις. Βασικά βήματα στις ασκήσεις μηχανικών ταλαντώσεων :. Σχεδιάζουμε τη θέση φυσικού μήκους,θέση ισορροπίας

3 . Σχεδιάζουμε όλες τις δυνάμεις πάνω στα σώματα. 3. Υπολογίζουμε την απομάκρυνση του σώματος από τη θέση ισορροπίας. 4. Ελέγχουμε από ποια θέση ξεκίνησε το σώμα την ταλάντωση. Αν είναι θέση ισορροπίας ΣF=0 Aν είναι ακραία θέση υ=0 (Χ=+Α ή Χ=-Α) Αν είναι τυχαία θέση θα έχει και ταχύτητα και απομάκρυνση από τη θέση ισορροπίας 5. Ισος φανεί χρήσιμη η σχέση Α.Δ.Ε.Τ για τον υπολογισμό του πλάτους ή της ταχύτητας. 6. Βρίσκουμε αρχική φάση προσέχοντας τη φορά που μας έχει δώσει η εκφώνηση. 7. Εάν δυο ή περισσότερα σώματα αποτελούν ένα σύστημα και εκτελούν Α.Α.Τ τότε η σταθερά επαναφοράς του συστήματος είναι D=(M +M )ω.για κάθε σώμα ξεχωριστά ισχύει : D =M ω, : D =M ω Εάν ένα σύστημα αποτελείται από ελατήριο (Μ,Μ ) τότε D=K όμως : H δύναμη επαναφοράς είναι ΣF=-DX Για κάθε σώμα ξεχωριστά ΣF =-D X ΣF =-D X Το κάθε σώμα αλλά και το σύστημα έχουν ΙΔΙΑ Περίοδο,συχνότητα,γωνιακή συχνότητα. Πλάτος ταλάντωσης. Μέγιστη ταχύτητα. Μέγιστη επιτάχυνση. ΔΙΑΦΟΡΕΤΙΚΑ. Σταθερά ταλάντωσης. Κινητική ενέργεια. Ορμή. Διότι έχουν διαφορετικές μάζες Δύναμη επαναφοράς. Ενέργεια ταλάντωσης. Διότι έχουν διαφορετικό D Δυναμική ενέργεια. ΓΙΑ ΤΗΝ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΕΧΩ: Η αρχή διατήρησης της ενέργεια ισχύει για το σύστημα των σωμάτων Ισχύει και για κάθε σώμα ξεχωριστά αρκεί να βάζουμε στην δυναμική ενέργεια ταλάντωσης το κατάλληλο D 3

4 Παράδειγμα Ένα σώμα μάζας M βρίσκεται πάνω σε ελατήριο σταθεράς K Πάνω στο σώμα Μ βρίσκεται και άλλο σώμα μάζας m.το σύστημα εκτελεί Γ.Α.Τ.Να υπολογίσετε τη σταθερά επαναφοράς του συστήματος και τη σταθερά επαναφοράς κάθε σώματος ξεχωριστά ΛΥΣΗ : X X + Θ.Ι Τ.Θ Όταν το σύστημα βρίσκεται σε ισορροπία έχουμε : ΣF=0 μήκος ) B +B =KX () (Όπου Χ είναι η συσπείρωση το ελατηρίου από το φυσικό το Όταν το σύστημα τεθεί σε ταλάντωση και για τυχαία θέση ταλάντωσης Χ από τη θέση ισορροπίας ή Χ από το φυσικό μήκος έχουμε : 4

5 Σ F = B + B F Σ F = B + B K ( X + X ) Σ F = Β + Β ΚΧ ΚΧ ( ) Σ F = KX Άρα το σύστημα εκτελεί Γ.Α.Τ και η σταθερά επαναφοράς το συστήματος είναι D ολ =Κ. Η μάζα m εκτελεί και αυτή Γ.Α.Τ. και η περίοδος της είναι : T ' = π m D (Α) m + m Η περίοδος το συστήματος είναι : T = π (Β) D ολ Από τις σχέσεις (Α) και (Β) έχουμε : π m + m D ολ = π m D D = Dm m + m Με ανάλογο τρόπο υπολογίζουμε και την σταθερά επαναφοράς το m. Εδώ θα πρέπει να θυμηθούμε ότι ισχύει :D ολ =D +D ΚΙΝΗΣΗ ΣΕ ΚΑΤΑΚΟΡΥΦΟ ΕΠΙΠΕΔΟ ΒΗΜΑ :Σχεδιάζουμε το σώμα πάνω σε μια τυχαία θέση και σημειώνουμε τις δυνάμεις που ασκούνται πάνω του.επιλέγουμε πάντα θετική φορά. 5

6 Ν Θέση ισορροπίας Β + Ν Τυχαία θέση Β ΒΗΜΑ.Πάνω στο σώμα Σ ασκούνται δυο δυνάμεις : Η αντίδραση Ν από το δίσκο και το βάρος του Β όπως φαίνεται και στο παραπάνω σχήμα.επειδή θεωρούμε εδώ τα y θετικά προς τα κάτω η επιτάχυνση α που κατευθύνεται πάντα προς τη θέση ισορροπίας εδώ είναι αρνητική και ιση προς : Έτσι από το δεύτερο νόμο του Νεύτωνα : = = ΣF=mα Προκύπτει ότι : Μg-N=mα ή mg-n=-mω Αημωt από την οποία έπεται Ν=mg+mω Αημωt Γραφική παράσταση του Ν σε συνάρτηση με το χρόνο.θεωρήσαμε ότι η αρχική φάση είναι μηδέν. Τη χρονική στιγμή t=0 το σώμα Σ βρίσκεται στη θέση ισορροπίας και από τη σχέση () έχουμε : Ν=mg+mω Αημ 0=mg Τη χρονική στιγμή Τ/4 Ν=mg+mω Αημ =mg+mω Α Τη χρονική στιγμή Τ/ Ν=mg+mω Αημ =mg Τη χρονική στιγμή 3Τ/4 Ν=mg+mω Αημ =mg-mω Α Τη χρονική στιγμή Τ Ν=mg+mω Αημ =mg ΠΑΡΑΤΗΤΗΣΕΙΣ :. Η αντίδραση Ν είναι περιοδική και όχι ημιτονοειδής συνάρτηση του χρόνου και κυμαίνεται γύρω από την τιμή mg 6

7 . Η αντίδραση Ν του δίσκου μεταβάλλεται ανάμεσα σε μια μέγιστη τιμή και σε μια ελάχιστη 3. Η μέγιστη τιμή της αντίδρασης Ν αντιστοιχεί στο χαμηλότερο σημείο της τροχιάς και η ελάχιστη τιμή του Ν στο υψηλότερο σημείο της τροχιάς. 4. Στο χρονικό διάστημα που ο δίσκος είναι κάτω από τη Θ.Ι η αντίδραση του Ν είναι κατά μέτρο μεγαλύτερη από το βάρος του σώματος. 5. Όταν το σώμα χάσει την επαφή του με το δίσκο η αντίδραση Ν μηδενίζεται.η αντίδραση Ν δεν παίρνει ποτέ αρνητικές τιμές. 6. Υπάρχει ένα οριακό ή μέγιστο πλάτος ταλάντωσης Α max για το οποίο ισχύει : Ν=mg-mω Α max Σε αυτό το πλάτος ταλάντωσης το σώμα βρίσκεται συνεχώς σε επαφή με το δίσκο,ακλουθώντας την ταλάντωση του,αλλά συνεχώς χάνεται η επαφή του με το δίσκο.αυτό θα συμβεί στο ψηλότερο σημείο της τροχιάς του αν η ταλάντωση άρχισε με πλάτος Α max.από τα παραπάνω βγαίνει ότι = 7. Αν η ταλάντωση αρχίσει με πλάτος Α>Α max η επαφή μεταξύ σώματος και δίσκου θα χαθεί (θα μηδενιστεί η αντίδραση Ν ) σε κάποια θέση y πάνω από τη Θ.Ι και το σώμα θα αποσπαστεί εκτελώντας στη συνέχεια ελεύθερη κίνηση.,ενώ ο δίσκος θα προσαρμοστεί σε νέα ταλάντωση.με κυκλική συχνότητα ω. =! Στη θέση στην οποία θα αποσπαστεί το σώμα έχουμε : Ν=mg-mω y. Για Ν=0 έχουμε : mg-mω y = 8. Η επιτάχυνση που έχει το σώμα Σ είναι : = #$ = = =.Αρα η επιτάχυνση της ταλάντωσης του Σ δεν μπορεί να είναι ποτέ μεγαλύτερη του g 9. Το σώμα Σ μπορεί να αποσπαστεί από το δίσκο αν αυξήσουμε τη συχνότητα και διατηρήσουμε το πλάτος σταθερό. = = () ( ΠΑΡΑΔΕΙΓΜΑ Ένα σώμα έχει μάζα Μ=Κg και είναι δεμένο στο άνω άκρο κατακόρυφου ελατηρίου σταθεράς Κ=00Ν/m Το κάτω άκρο του ελατηρίου δένεται στο έδαφος.το σύστημα βρίσκεται σε κατάσταση ισορροπίας.τη χρονική στιγμή t=0 τοποθετούμε πάνω στο σώμα Σ ένα άλλο σώμα Σ μάζας m=3kg και το σύστημα αρχίζει να εκτελεί Α.Α.Τ..(θεωρούμε θετική φορά προς τα κάτω ) Α.Να υπολογίσετε τη σταθερά επαναφοράς του σώματος Σ και του σώματος Σ Β.Σε ποια θέση το σώμα Σ δέχεται τη μεγαλύτερη δύναμη εξαιτίας της επαφής του με το σώμα Σ ; Γ.Να αποδείξετε ότι το σώμα Σ δεν θα χάσει την επαφή του με το σώμα Σ. 7

8 Δ.Να γίνει η γραφική παράσταση της δύναμης που δέχεται το σώμα Σ από το σώμα Σ ΛΥΣΗ Τα δεδομένα και τα ζητούμενα καταχωρούνται σε πίνακα Σύστημα S.I Δεδομένα Μ=Κg K=00N/m M=3Kg ζητούμενα D,D Αντίδραση Ν σε συνάρτηση με το Χ και το t Ξαναδιάβασε το πρόβλημα προσεκτικά και φτιάξε απλό και καθαρό σχήμα N + B Θ.Ι Τ.Θ Κατασκευάσαμε το σύστημα στη θέση ισορροπίας και σε μια τυχαία θέση.(συνήθως επιλέγουμε η τυχαία θέση να είναι στη θετική φορά που επιλέξαμε )..τώρα σκέψου Α.Όλο το σύστημα ταλαντώνει με την ίδια γωνιακή συχνότητα ω. ω = D ( M + m) = 5rad / s Η σταθερά επαναφοράς δίνεται από τη σχέση : D = mω. Άρα το κάθε σώμα έχει τη δική του σταθερά επαναφοράς εφόσον ταλαντώνει με το ίδιο ω αλλά έχει διαφορετική μάζα. Η σταθερά επαναφοράς του σώματος Μ είναι : D = Mω = * 5 5N / m = Η σταθερά επαναφοράς του σώματος μάζας m είναι : D = mω = 3* 5 75N / m = 8

9 Β Το σώμα Σ ταλαντώνει με γωνιακή συχνότητα ω.οι δυνάμεις που ασκούνται στο σώμα Σ είναι το βάρος του και η αντίδραση Ν από την επαφή του με το σώμα Σ. Εφόσον ταλαντώνει και δεχόμενοι ότι η τυχαία θέση είναι στον θετικό ημιαξονα έχουμε : B N =ΣF N = B N = m g ( D y) N = m g+ D y ΣF To σώμα θα αποκτήσει τη μέγιστη αντίδραση Ν όταν βρεθεί στην κατώτερη θέση ταλάντωσης του και η σχέση γράφεται : N = m g+ D A Τρόπος υπολογισμού του Α Τη χρονική στιγμή t=0 το σύστημα των δυο σωμάτων βρίσκεται στη θέση ισορροπίας () (Είναι η στιγμή που αφήνουμε το σώμα Σ πάνω στο Σ ) Η θέση αυτή απέχει από το φυσικό απόσταση L = Mg K Το σύστημα ισορροπεί ποιο κάτω και άρα απέχει από το φυσικό μήκος απόσταση ( M + m) L = g K Οι δυο θέσεις ισορροπίας απέχουν μεταξύ τους : m 3*0 L = L L = g = = 0. 3m K 00 Εδώ θα πρέπει να προσέξουμε ότι τη στιγμή που αφήνουμε το σώμα Σ πάνω στο σώμα Σ η ταχύτητα του συστήματος είναι οριακά μηδέν,άρα και η κινητική ενέργεια ταλάντωσης είναι μηδέν. Έτσι η θέση ισορροπίας () είναι η ακραία θέση της νέας ταλάντωσης.δηλαδή το σύστημα ταλαντώνει γύρω από τη νέα θέση ισορροπίας με πλάτος Α=0,3m Γ.Το σώμα Σ μπορεί να χάσει την επαφή του με το σώμα Σ όταν η αντίδραση Ν=0 Από τη σχέση : N = m g+ D y 0 mg y = D g = ω = m g+ D y 9

10 Άρα η θέση που μπορεί να χαθεί η επαφή του σώματος Σ από το Σ είναι g 0 y = = = 0, 4m D 00 ( M + m) (+ 3) Το πλάτος της ταλάντωσης είναι Α=0,3m Άρα Af y και το σώμα Σ δεν μπορεί να χάσει την επαφή του με το σώμα Σ. Η αντίδραση Ν δίνεται από τη σχέση : N = m g+ D y (θετική φορά ταλάντωσης προς τα κάτω ) y=0 N=m g=30n y=+a y=-a N=m g+d A=5,5N N=m g-d A=-7,5N Και η γραφική παράσταση της αντίδρασης σε συνάρτηση με την απομάκρυνση από τη θέση ισορροπίας () είναι 5.5 Ν 7.5 y -0,3 0,3 0

11 ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τίθεται σε οριζόντια αρμονική ταλάντωση με συχνότητα f.αν ο συντελεστής μέγιστης στατικής τριβής μεταξύ σώματος και δίσκου είναι μs ποια η μέγιστη τιμή ταλάντωσης του δίσκου ώστε το σώμα να μη γλιστρά πάνω στη δίσκο ; Στο σώμα Σ ασκούνται δυο δυνάμεις : (α) το βάρος του mg και (β) η αντίδραση R του δίσκου R Κίνηση δεξιά B T Ν Κίνηση δεξιά B.Η αντίδραση R πρέπει να περιέχει την κατακόρυφη συνιστώσα Ν,ιση με το βάρος του σώματος και την οριζόντια τριβή Τα,η οποία πρέπει να παίζει το ρόλο της δύναμης

12 επαναφοράς.στη διάρκεια της ταλάντωσης η στατική τριβή αλλάζει περιοδικά μέτρο και κατεύθυνση,ώστε να ισχύει η συνθήκη ΣF=-DX. Θ.Ι Ν Τ Τ B Καθώς το σώμα Σ ταλαντώνει γύρω από τη θέση ισορροπίας η στατική τριβή που παίζει το ρόλο της δύναμης επαναφοράς έχει πάντα φορά προς τη Θ.Ι Επειδή το σώμα δεν γλιστρά πάνω στο δίσκο η τριβή Τα είναι στατική τριβή.στη διάρκεια μιας ταλάντωσης πλάτους Α η στατική τριβή μεταβάλλεται περιοδικά από την τιμή μηδέν έως την τιμή Τ max =DA.Αυξάνοντας το πλάτος θα αυξάνει και η τιμή Τ.Ομως η στατική τριβή δεν μπορεί να πάρει τιμή μεγαλύτερη από Τ α =μ s Ν = μ s mg που αντιστοιχεί σε ένα μέγιστο πλάτος ταλάντωσης Α max.δηλαδή : Τ max =F επαναφορας,max Ή μ s mg=-d m A max και επειδή D m =mω η τελευταία σχέση γίνεται : μ s mg=- mω A max ) = ( * * = ) ( Παράδειγμα : Στο σχήμα που ακολουθει δίνεται η σταθερά Κ=00Ν/m οι μάζες Μ=Kg και m=kg ο συντελεστής στατικής τριβής μ s =0, και η επιτάχυνση g =0m/s.

13 Να βρεθεί το μέγιστο πλάτος της ταλάντωσης ώστε το σώμα m να μην ολισθαίνει πάνω στο Μ. Επειδή το σώμα δεν γλιστρά πάνω στο δίσκο η τριβή Τα είναι στατική τριβή.στη διάρκεια μιας ταλάντωσης πλάτους Α η στατική τριβή μεταβάλλεται περιοδικά από την τιμή μηδέν έως την τιμή Τ max =DA.Αυξάνοντας το πλάτος θα αυξάνει και η τιμή Τ.Ομως η στατική τριβή δεν μπορεί να πάρει τιμή μεγαλύτερη από Τ α =μ s Ν = μ s mg που αντιστοιχεί σε ένα μέγιστο πλάτος ταλάντωσης Α max.δηλαδή : Τ max =F επαναφορας,max Ή μ s mg=-d m A max και επειδή D m =mω η τελευταία σχέση γίνεται : μ s mg=- mω A max ) = ( * * = ) ( Όπου f= (!+) Aρα * = ) (.. 3

14 ΤΩΡΑ ΛΥΣΕ ΤΑ ΠΑΡΑΚΑΤΩ ΘΕΜΑΤΑ ΘΕΜΑ Σώμα εκτελεί Α.Α.Τ πάνω σε οριζόντια επιφάνεια χωρίς τριβές με πλάτος Α=0, m Σε ένα σημείο Χ =0,06m μακριά από τη θέση ισορροπίας η ταχύτητα του είναι υ =3m/s a. Ποια η περίοδος της ταλάντωσης. b. Ποια η απομάκρυνση του σώματος από τη θέση ισορροπίας όταν η ταχύτητα του είναι 0,4m/s.. c. Ένα μικρό αντικείμενο με μάζα πολύ μικρότερη από τη μάζα του σώματος τοποθετείται πάνω στο σώμα και ταλαντώνει.αν το μικρό σώμα είναι έτοιμο να ολισθήσει στο άκρο της διαδρομής να βρείτε την τιμή του συντελεστή της στατικής τριβής μεταξύ του αντικειμένου και του σώματος. ΛΥΣΗ : 4

15 5

16 ΘΕΜΑ Το ελατήριο του σχήματος έχει σταθερά Κ =00Ν/m και στο ανώτερο άκρο του είναι προσηρτημένος δίσκος μάζας Μ=6Κg.Πάνω στο δίσκο τοποθετούμε σώμα μάζας m και το σύστημα ισορροπεί.προσφέρουμε πόσο ενέργειας Ε=6J και διαπιστώνουμε ότι το σύστημα ταλαντώνει με το μέγιστο δυνατό πλάτος του ώστε να μη χάνεται η επαφή του m πάνω στο Μ. a. Να βρεθεί η μάζα m. b. Nα βρεθεί η ταχύτητα με την οποία το σώμα m θα εγκαταλείψει το δίσκο αν προσφέρουμε ενεργεια αντί της αρχικής.των 6j Ε =4J. c. Ποιο το μέγιστο ύψος που φτάνει τότε η μάζα m ΛΥΣΗ : 6

17 7

18 8

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας. ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ 1.Ένα σώμα μάζας m=4kg είναι δεμένο στο άκρο οριζόντιου ελατηρίου σταθεράςk=400n/m, το άλλο άκρο του οποίου είναι είναι ακλόνητα στερεωμένη. To

Διαβάστε περισσότερα

Στα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε)

Στα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε) Ζήτημα ο Στα ερωτήματα,., του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε. Ένα σώμα κάνει απλή αρμονική ταλάντωση στην οποία η απομάκρυνση είναι της μορφής χ=aημωt κάποια στιγμή t η φάση του

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

12ο ΓΕΛ ΠΕΙΡΑΙΑ 12/10/2010 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗΝ ΑΑΤ

12ο ΓΕΛ ΠΕΙΡΑΙΑ 12/10/2010 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗΝ ΑΑΤ 1ο ΓΕΛ ΠΕΙΡΑΙΑ 1/10/010 Ονοµατεπώνυµο: Τµήµα: Γθετ ΟΜΑΔΑ Α Διάρκεια: 45 min ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗΝ ΑΑΤ Ένα ιδανικό κατακόρυφο ελατήριο, έχει σταθερά k=400ν/m και στηρίζεται µε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε. 1.1. Μηχανικές. Ομάδα Ε. 1.1.81. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας 1kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k 1 =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο

Διαβάστε περισσότερα

1.1 Κινηματική προσέγγιση

1.1 Κινηματική προσέγγιση 1.1 Κινηματική προσέγγιση ΣΑ 1.8: Η απομάκρυνση από τη θέση ισορροπίας ενός σώματος που κάνει αατ δίνεται σε συνάρτηση με το χρόνο από τη σχέση x=10 ημ(π/4t) (x σε cm και t σε s). Να βρείτε: Α) το πλάτος

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m /s, ενώ στη θέση με απομάκρυνση

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2

β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2 1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.. Σώμα μάζας = 0,5 g έχει το ένα άκρο στερεωμένο σε οριζόντιο ιδανικό ελατήριο σταθεράς = 50 / και το άλλο άκρο του βρίσκεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο.

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο. ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ. Ένα ιδανικό ελατήριο σταθεράς = 00 N/ που έχει τον άξονα του κατακόρυφο έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε

Διαβάστε περισσότερα

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m; ΘΕΜΑ Γ 1. Ένα σώμα εκτελεί αρμονική ταλάντωση με εξίσωση 0,6 ημ 8 S.I.. α. Να βρείτε την περίοδο και τον αριθμό των ταλαντώσεων που εκτελεί το σώμα σε ένα λεπτό της ώρας. β. Να γράψετε τις εξισώσεις της

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 4/07/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: /10/1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1 . 1. Η απλή αρµονική ταλάντωση είναι κίνηση: α. ευθύγραµµη οµαλή β. ευθύγραµµη οµαλά µεταβαλλόµενη γ. οµαλή κυκλική δ. ευθύγραµµη περιοδική. Η φάση της αποµάκρυνσης στην απλή αρµονική ταλάντωση: α. αυξάνεται

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /0/07 ΕΩΣ //07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 7 Οκτωβρίου 07 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

2) Σώμα εκτελεί Α.Α.Τ με εξίσωση απομάκρυνσης Χ = Α.ημ(ωt+ 2

2) Σώμα εκτελεί Α.Α.Τ με εξίσωση απομάκρυνσης Χ = Α.ημ(ωt+ 2 Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Διαγώνισμα στις Μηχανικές Ταλαντώσεις. Ζήτημα 1 ο Α) Να επιλεγεί η σωστή πρόταση 1) Υλικό σημείο εκτελεί Α.Α.Τ και κινείται από την ακραία αρνητική θέση της

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ 1. Ελατήριο σταθεράς K τοποθετείται κατακόρυφα με το πάνω άκρο του στερεωμένο σε ακλόνητο σημείο. Ένα σώμα μάζας M=1 kg δένεται στο κάτω άκρο του ελατηρίου και η επιμήκυνση που προκαλεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου. Ονοματεπώνυμο εξεταζόμενου:.

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου. Ονοματεπώνυμο εξεταζόμενου:. Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου Ονοματεπώνυμο εξεταζόμενου:. Καμιά άλλη σημείωση δεν επιτρέπεται στα θέματα τα οποία θα παραδώσετε μαζί με το γραπτό σας. Οι απαντήσεις λοιπόν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις -4 να βρείτε τη σωστή απάντηση. Α. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ. . Ερωτήσεις αντιστοίχισης. Σχήμα 2 από τη θέση ισορροπίας του δίνεται από την εξίσωση x = Aημωt.

ΤΑΛΑΝΤΩΣΕΙΣ. . Ερωτήσεις αντιστοίχισης. Σχήμα 2 από τη θέση ισορροπίας του δίνεται από την εξίσωση x = Aημωt. ΤΑΛΑΝΤΩΣΕΙΣ. Ερωτήσεις αντιστοίχισης Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και τα κατάλληλα ζεύγη γραμμάτων - αριθμών.. Σημειακό

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η

Διαβάστε περισσότερα

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια; 1. Στην κάτω άκρη ενός ιδανικού ελατήριου είναι δεμένο ένα σώμα που έχει μάζα m 1 = m και ισορροπεί. Στην κάτω άκρη ενός άλλου ομοίου ελατήριου είναι δεμένο ένα άλλο σώμα που έχει μάζα m 2 = 4m και ισορροπεί.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α. ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α 1 Α 6 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. Α.1. Ένα σύστηµα ελατηρίου-µάζας

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση x 5 3 cm. Να βρείτε την αρχική φάση φ 0

ΟΡΟΣΗΜΟ Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση x 5 3 cm. Να βρείτε την αρχική φάση φ 0 Απλή Αρμονική Ταλάντωση ΚΕΦΑΛΑΙΟ 1 Σώμα που εκτελεί απλή αρμονική ταλάντωση και χρησιμοποιούμε τις εξισώσεις. 1.56 Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Δύο εγκάρσια κύματα

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 017-018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 4/09/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

Α1 γ, Α2 γ, Α3 β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ. άρα. p. Έχοντας ίσες μάζες

Α1 γ, Α2 γ, Α3 β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ. άρα. p. Έχοντας ίσες μάζες Λύσεις διαγωνίσματος 5 Θέμα Α Α γ, Α γ, Α β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ Θέμα Β Β. Σωστή απάντηση είναι η (γ). Στην η περίπτωση αφού το συσσωμάτωμα μετά την κρούση παραμένει ακίνητο τα σώματα πριν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ.

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. 1 η κατηγορια ερωτησεων 1. Η γραφική παράσταση της απομάκρυνσης σε συνάρτηση με το χρόνο για ένα σημειακό αντικείμενο που εκτελεί Α.Α.Τ.φαινεται στο σχήμα : Με ποια

Διαβάστε περισσότερα

α. να υπολογίσετε το πλάτος της ταλάντωσης K=25N/m

α. να υπολογίσετε το πλάτος της ταλάντωσης K=25N/m 1 Θέμα 1 ο Tο σώμα με μάζα m 1=0,75Kg ισορροπεί. Πάνω από το σώμα και σε απόσταση από αυτό 40cm εκτοξεύουμε κατακόρυφα μια μπίλια με μάζαm 2 =0,25Kg προς τα πάνω με ταχύτητα 2m/s και κατά την επιστροφή

Διαβάστε περισσότερα

d(cm) 70 χρόνος αισθητήρας Θεωρείστε θετική τη φορά κίνησης προς τα κάτω

d(cm) 70 χρόνος αισθητήρας Θεωρείστε θετική τη φορά κίνησης προς τα κάτω Ζήτημα 1ο (σε κάθε ερώτημα μία πρόταση είναι σωστή να την κυκλώσετε) 1.Ένα σώμα είναι δεμένο στην άκρη ελατηρίου και το σύστημα κάνει απλή αρμονική ταλάντωση. Ένας αισθητήρας βρίσκεται κάτω από το σώμα

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή μεταξύ τους. Η επαφή αυτή μπορεί να υπάρχει στη διάρκεια της ταλάντωσης είτε να

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ. 1.1. Μηχανικές. Ομάδα Δ. 1.1.51. Συνάντηση σωμάτων που ταλαντώνονται. Τα σώματα Α και Β του σχήματος έχουν ίσες μάζες m 1 =m 2 =m=1kg. Τα δύο σώματα ισορροπούν πάνω στο λείο οριζόντιο δάπεδο, με τα ελατήρια

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 2

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ 2 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ) Ένα ιδανικό ελατήριο σταθεράς 00 N/m που έχει τον άξονα του κατακόρυφο έχει το φυσικό του µήκος και η πάνω άκρη του είναι δεµένη σε σταθερό

Διαβάστε περισσότερα

µεγιστη θετικη αποµακρυνση του τοτε εχει αρχικη φαση ιση µε µηδεν.

µεγιστη θετικη αποµακρυνση του τοτε εχει αρχικη φαση ιση µε µηδεν. Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ. ΚΑΤΕΥΘΥΝΣΗΣ Ερωτησεις AAT 1) Ένα σωµα εκτελει ΑΑΤ και κάθε 2 δευτερολεπτα διερχεται από τη θεση ισορροπιας της ταλαντωσης του 10 φορες. Α) Η συχνοτητα της ταλαντωσης

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1 1. Σώµα 10g εκτελεί α.α.τ. γύρω από σηµείο Ο και η αποµάκρυνση δίνεται από τη σχέση: x=10ηµπt (cm), ζητούνται: i) Πόσο χρόνο χρειάζεται για να πάει από το Ο σε σηµείο Μ όπου x=5cm ii) Ποια η ταχύτητά του

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

[ Απ. α) , β) µατος. Εκτρέπουµε το σύστηµα προς τα κάτω κατά x=0,5 m και το αφήνουµε ελεύθερο.

[ Απ. α) , β) µατος. Εκτρέπουµε το σύστηµα προς τα κάτω κατά x=0,5 m και το αφήνουµε ελεύθερο. 47. Σώµα (Σ 1 ) είναι τοποθετηµένο πάνω σε σώµα (Σ ) και το σύστηµα εκτελεί Α.Α.Τ. κατακόρυφα µε περίοδο Τ. α) Να εκφράσετε τη δύναµη αντίδρασης F του σώµατος (Σ ) στο σώµα (Σ 1 ), σε συνάρτηση µε την

Διαβάστε περισσότερα

1. Ένα σώμα κάνει απλή αρμονική ταλάντωση. Η εξίσωση από την οποία

1. Ένα σώμα κάνει απλή αρμονική ταλάντωση. Η εξίσωση από την οποία Ζήτημα 0. Ένα σώμα κάνει απλή αρμονική ταλάντωση. Η εξίσωση από την οποία υπολογίζουμε την κινητική του ενέργεια είναι η: K 0,0 ( ) SI Ακόμα τη στιγμή 0 το σώμα έχει θετική ταχύτητα. Το μεγαλύτερο μέτρο

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4 ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 29 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σηµειακό αντικείµενο εκτελεί απλή αρµονική ταλάντωση. Η αποµάκρυνση χ από τη θέση ισορροπίας του είναι: α. ανάλογη του χρόνου. β. αρµονική συνάρτηση

Διαβάστε περισσότερα

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β.

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β. 2.1.. 2.1.. Ομάδα Β. 2.1.Σχέσεις μεταξύ γραμμικών και γωνιακών μεγεθών στην ΟΚΚ. Κινητό κινείται σε περιφέρεια κύκλου ακτίνας 40m με ταχύτητα μέτρου 4m/s. i) Ποια είναι η περίοδος και ποια η συχνότητά

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΟΥ ΜΕΤΑΤΡΕΠΕΤΑΙ ΣΕ ΦΘΙΝΟΥΣΑ Ένα σώμα Σ μάζας m=2kg είναι δεμένο στο ένα άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=50n/m, το άλλο άκρο του οποίου είναι Θ.Φ.Μ στερεωμένο σε ακλόνητο

Διαβάστε περισσότερα

Ταλάντωση, γραφικές παραστάσεις και ρυθµοί µεταβολής

Ταλάντωση, γραφικές παραστάσεις και ρυθµοί µεταβολής Ταλάντωση, γραφικές παραστάσεις και ρυθµοί µεταβολής Σώµα µάζας m=kg ισορροπεί δεµένο στο πάνω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k=00 N/m, το άλλο άκρο του οποίου είναι στερεωµένο ακλόνητα στο

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ F ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΘΕΜΑ Α Α1.Ένα σώμα μάζας m είναι δεμένο και ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k 1 του

Διαβάστε περισσότερα

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο τετράδιο σας τον αριθµό της

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ Προτεινόµενα Θέµατα Γ Λυκείου Ιούλιος 1 Φυσική ΘΕΜΑ Α Στις ερωτήσεις από 1-4 να βρείτε την σωστή απάντηση. 1. Η περίοδος της απλής αρμονικής ταλάντωσης ενός σώματος: Α. είναι ανεξάρτητη της μάζας του ταλαντούμενου

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

1 η χρονική στιγμή της

1 η χρονική στιγμή της ΩΘΗΣΗ ΚΑΙ.ΑΠΟ ΤΟ ΖΕΝΙΘ ΣΤΟ ΝΑΔΙΡ Ένα σώμα μάζας είναι στερεωμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου φυσικού μήκους και σταθεράς σκληρότητας, το πάνω άκρο του οποίου είναι στερεωμένο σε οροφή.

Διαβάστε περισσότερα

Ποιο είναι το πλάτος της ταλάντωσης ;

Ποιο είναι το πλάτος της ταλάντωσης ; Ποιο είναι το πλάτος της ταλάντωσης ; 1. Ένα σώμα είναι δεμένο στο δεξιό άκρο οριζόντιου ιδανικού ελατηρίου και στο αριστερό άκρο οριζόντιου νήματος και ηρεμεί σε ισορροπία όπως δείχνει το σχήμα. Το ελατήριο

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ονοματεπώνυμο Μαθητή: Ημερομηνία: 13-11-2017 Επιδιωκόμενος Στόχος: Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6/0/06 ΕΩΣ 30/0/06 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 6 Οκτωβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι:

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι: 1. Σώμα εκτελεί Α.Α.Τ. με περίοδο 2 s και πλάτος ταλάντωσης 0,1 m. Τη χρονική στιγμή 0 το σώμα διέρχεται από τη θέση ισορροπίας του με θετική ταχύτητα. Να υ πολογιστούν: α) η συχνότητα και η γωνιακή συχνότητα

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1- Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τις συμπληρώνει

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ.

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΩΤΗΣΗ 1 Στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 400 N/m είναι κρεμασμένο σώμα μάζας m = 1 kg. Το σύστημα ελατήριο-σώμα εξαναγκάζεται

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 9 ο ΛΥΚΕΙΟ ΠΕΙΡΑΙΑ ΙΟΝ. ΜΑΡΓΑΡΗΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1) Η γραφική παράσταση της ταχύτητας σε συνάρτηση µε το χρόνο για ένα σηµειακό αντικείµενο που εκτελεί α.α.τ. φαίνεται στο σχήµα. Ποιες από τις παρακάτω

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΘΕΜΑ Α Α1. Δ Α2. Γ Α3. Α Α4. Δ Α5. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β Β1. α) Σωστή η ii. β) Στη θέση ισορροπίας (Θ.Ι.) του σώματος ισχύει η συνθήκη ισορροπίας: ΣF=0

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 33 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α.

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α. Γ Τάξης Γενικού Λυκείου Σάββατο 1 Νοεμβρίου 016 Απλή Αρμονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες Ονοματεπώνυμο: Θέμα Α. Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α Στις ερωτήσεις να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση χωρίς να αιτιολογήσετε την επιλογή σας. '' Περί Γνώσεως'' Φροντιστήριο Μ.Ε. Φυσική Προσανατολισμού Γ' Λ. ΜΑΘΗΜΑ /Ομάδα Προσανατολισμού Θ.Σπουδών / ΤΑΞΗ : ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΦΥΣΙΚΗ / Προσανατολισμού / Γ ΛΥΚΕΙΟΥ 2 o ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Διαβάστε περισσότερα

Ταλαντώσεις. =+ και έχει θετική ταχύτητα. Να γραφεί η εξίσωση κίνησης του.

Ταλαντώσεις. =+ και έχει θετική ταχύτητα. Να γραφεί η εξίσωση κίνησης του. Ταλαντώσεις Άσκηση 1 η Ένα σώμα εκτελεί απλή αρμονική ταλάντωση και την χρονική στιγμή t=0s βρίσκεται στην θέση =+ και έχει θετική ταχύτητα. Να γραφεί η εξίσωση κίνησης του. Για t=0s, =+, υ>0 =+ 2 = =

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

α. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων.

α. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων. ιαγώνισμα στη φυσική θετικού προσανατολισμού Ύλη: μηχανικές ταλαντώσεις ιάρκεια 3 ώρες ΘΕΜΑ Α Στις προτάσεις Α1 έως Α8 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα