Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος."

Transcript

1 Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος. Παράδειγμα : Έστω ένα σώμα αφήνεται από τη θέση φυσικού μήκους να εκτελέσει Α.Α.Τ.Να υπολογιστεί η μηχανική ενέργεια στη θέση ισορροπίας εάν θεωρήσουμε ότι στη θέση αυτή η δυναμική ενέργεια λόγο βάρους είναι μηδέν. Φ.Μ U β =0 Θ.Ι Ε μηχ =Κ+U ελ +U βαρ = + + Ενώ η ενέργεια ταλάντωσης είναι Ε= Άρα η δυναμική ενέργεια ταλάντωσης είναι μικρότερη στο παράδειγμα από τη μηχανική ενέργεια του συστήματος. Εάν ένα σώμα ταλαντώνει σε οριζόντιο επίπεδο όπως στο σχήμα τότε :

2 Θ.Ι Η ενέργεια ταλάντωσης είναι := Η μηχανική ενέργεια είναι στην τυχαία θέση Χ : Ε=Κ+Uελ= + = Άρα στο οριζόντιο επίπεδο η ενέργεια ταλάντωσης ταυτίζεται με την ενέργεια ελατηρίου με την προϋπόθεση το φυσικό μήκος και η θέση ισορροπίας να ταυτίζονται. Στη διάρκεια μιας περιόδου ισχύουν :. Το σώμα διανύει διάστημα 4Α. Η μετατόπιση είναι μηδέν διότι η αρχική και η τελική θέση ταυτίζονται. 3. Το έργο της δύναμης επαναφοράς είναι μηδέν διότι η δύναμη επαναφοράς είναι συντηρητική δύναμη. 4. Η μεταβολή της ορμής είναι μηδέν διότι η αρχική και η τελική ταχύτητα είναι ισες. 5. Το σώμα περνά δυο φορές από τη θέση ισορροπίας,δυο φορές από την ακραία θέση.. 6. Σε χρόνο μιας περιόδου η κινητική ενέργεια γίνεται μέγιστη δυο φορές,η δυναμική ενέργεια γίνεται μέγιστη δυο φορές. 7. Η δυναμική γίνεται ιση με την κινητική ενέργεια τέσσαρις φορές σε χρόνο πάντα μιας περιόδου. Ποια μεγέθη έχουν ταυτόχρονα μέγιστη ή ελάχιστη απόλυτη τιμή ;. Η απομάκρυνση,η επιτάχυνση,η δύναμη και ο ρυθμός μεταβολής της ορμής γίνονται ταυτόχρονα μέγιστα κατά ΑΠΟΛΥΤΗ ΤΙΜΗ στις ακραίες θέσεις της ταλάντωσης και μηδενίζονται ταυτόχρονα στη Θ.Ι.. Η ταχύτητα και η ορμή γίνονται ταυτόχρονα μέγιστες στη θέση ισορροπίας και μηδενίζουν στις ακραίες θέσεις ταλάντωσης. 3. Ο ρυθμός μεταβολής της κινητικής ενέργεια και ο ρυθμός μεταβολής της δυναμικής ενέργειας ταλάντωσης είναι μηδέν τόσο στην θέση ισορροπίας όσο και στις ακραίες θέσεις. Βασικά βήματα στις ασκήσεις μηχανικών ταλαντώσεων :. Σχεδιάζουμε τη θέση φυσικού μήκους,θέση ισορροπίας

3 . Σχεδιάζουμε όλες τις δυνάμεις πάνω στα σώματα. 3. Υπολογίζουμε την απομάκρυνση του σώματος από τη θέση ισορροπίας. 4. Ελέγχουμε από ποια θέση ξεκίνησε το σώμα την ταλάντωση. Αν είναι θέση ισορροπίας ΣF=0 Aν είναι ακραία θέση υ=0 (Χ=+Α ή Χ=-Α) Αν είναι τυχαία θέση θα έχει και ταχύτητα και απομάκρυνση από τη θέση ισορροπίας 5. Ισος φανεί χρήσιμη η σχέση Α.Δ.Ε.Τ για τον υπολογισμό του πλάτους ή της ταχύτητας. 6. Βρίσκουμε αρχική φάση προσέχοντας τη φορά που μας έχει δώσει η εκφώνηση. 7. Εάν δυο ή περισσότερα σώματα αποτελούν ένα σύστημα και εκτελούν Α.Α.Τ τότε η σταθερά επαναφοράς του συστήματος είναι D=(M +M )ω.για κάθε σώμα ξεχωριστά ισχύει : D =M ω, : D =M ω Εάν ένα σύστημα αποτελείται από ελατήριο (Μ,Μ ) τότε D=K όμως : H δύναμη επαναφοράς είναι ΣF=-DX Για κάθε σώμα ξεχωριστά ΣF =-D X ΣF =-D X Το κάθε σώμα αλλά και το σύστημα έχουν ΙΔΙΑ Περίοδο,συχνότητα,γωνιακή συχνότητα. Πλάτος ταλάντωσης. Μέγιστη ταχύτητα. Μέγιστη επιτάχυνση. ΔΙΑΦΟΡΕΤΙΚΑ. Σταθερά ταλάντωσης. Κινητική ενέργεια. Ορμή. Διότι έχουν διαφορετικές μάζες Δύναμη επαναφοράς. Ενέργεια ταλάντωσης. Διότι έχουν διαφορετικό D Δυναμική ενέργεια. ΓΙΑ ΤΗΝ ΑΡΧΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΕΧΩ: Η αρχή διατήρησης της ενέργεια ισχύει για το σύστημα των σωμάτων Ισχύει και για κάθε σώμα ξεχωριστά αρκεί να βάζουμε στην δυναμική ενέργεια ταλάντωσης το κατάλληλο D 3

4 Παράδειγμα Ένα σώμα μάζας M βρίσκεται πάνω σε ελατήριο σταθεράς K Πάνω στο σώμα Μ βρίσκεται και άλλο σώμα μάζας m.το σύστημα εκτελεί Γ.Α.Τ.Να υπολογίσετε τη σταθερά επαναφοράς του συστήματος και τη σταθερά επαναφοράς κάθε σώματος ξεχωριστά ΛΥΣΗ : X X + Θ.Ι Τ.Θ Όταν το σύστημα βρίσκεται σε ισορροπία έχουμε : ΣF=0 μήκος ) B +B =KX () (Όπου Χ είναι η συσπείρωση το ελατηρίου από το φυσικό το Όταν το σύστημα τεθεί σε ταλάντωση και για τυχαία θέση ταλάντωσης Χ από τη θέση ισορροπίας ή Χ από το φυσικό μήκος έχουμε : 4

5 Σ F = B + B F Σ F = B + B K ( X + X ) Σ F = Β + Β ΚΧ ΚΧ ( ) Σ F = KX Άρα το σύστημα εκτελεί Γ.Α.Τ και η σταθερά επαναφοράς το συστήματος είναι D ολ =Κ. Η μάζα m εκτελεί και αυτή Γ.Α.Τ. και η περίοδος της είναι : T ' = π m D (Α) m + m Η περίοδος το συστήματος είναι : T = π (Β) D ολ Από τις σχέσεις (Α) και (Β) έχουμε : π m + m D ολ = π m D D = Dm m + m Με ανάλογο τρόπο υπολογίζουμε και την σταθερά επαναφοράς το m. Εδώ θα πρέπει να θυμηθούμε ότι ισχύει :D ολ =D +D ΚΙΝΗΣΗ ΣΕ ΚΑΤΑΚΟΡΥΦΟ ΕΠΙΠΕΔΟ ΒΗΜΑ :Σχεδιάζουμε το σώμα πάνω σε μια τυχαία θέση και σημειώνουμε τις δυνάμεις που ασκούνται πάνω του.επιλέγουμε πάντα θετική φορά. 5

6 Ν Θέση ισορροπίας Β + Ν Τυχαία θέση Β ΒΗΜΑ.Πάνω στο σώμα Σ ασκούνται δυο δυνάμεις : Η αντίδραση Ν από το δίσκο και το βάρος του Β όπως φαίνεται και στο παραπάνω σχήμα.επειδή θεωρούμε εδώ τα y θετικά προς τα κάτω η επιτάχυνση α που κατευθύνεται πάντα προς τη θέση ισορροπίας εδώ είναι αρνητική και ιση προς : Έτσι από το δεύτερο νόμο του Νεύτωνα : = = ΣF=mα Προκύπτει ότι : Μg-N=mα ή mg-n=-mω Αημωt από την οποία έπεται Ν=mg+mω Αημωt Γραφική παράσταση του Ν σε συνάρτηση με το χρόνο.θεωρήσαμε ότι η αρχική φάση είναι μηδέν. Τη χρονική στιγμή t=0 το σώμα Σ βρίσκεται στη θέση ισορροπίας και από τη σχέση () έχουμε : Ν=mg+mω Αημ 0=mg Τη χρονική στιγμή Τ/4 Ν=mg+mω Αημ =mg+mω Α Τη χρονική στιγμή Τ/ Ν=mg+mω Αημ =mg Τη χρονική στιγμή 3Τ/4 Ν=mg+mω Αημ =mg-mω Α Τη χρονική στιγμή Τ Ν=mg+mω Αημ =mg ΠΑΡΑΤΗΤΗΣΕΙΣ :. Η αντίδραση Ν είναι περιοδική και όχι ημιτονοειδής συνάρτηση του χρόνου και κυμαίνεται γύρω από την τιμή mg 6

7 . Η αντίδραση Ν του δίσκου μεταβάλλεται ανάμεσα σε μια μέγιστη τιμή και σε μια ελάχιστη 3. Η μέγιστη τιμή της αντίδρασης Ν αντιστοιχεί στο χαμηλότερο σημείο της τροχιάς και η ελάχιστη τιμή του Ν στο υψηλότερο σημείο της τροχιάς. 4. Στο χρονικό διάστημα που ο δίσκος είναι κάτω από τη Θ.Ι η αντίδραση του Ν είναι κατά μέτρο μεγαλύτερη από το βάρος του σώματος. 5. Όταν το σώμα χάσει την επαφή του με το δίσκο η αντίδραση Ν μηδενίζεται.η αντίδραση Ν δεν παίρνει ποτέ αρνητικές τιμές. 6. Υπάρχει ένα οριακό ή μέγιστο πλάτος ταλάντωσης Α max για το οποίο ισχύει : Ν=mg-mω Α max Σε αυτό το πλάτος ταλάντωσης το σώμα βρίσκεται συνεχώς σε επαφή με το δίσκο,ακλουθώντας την ταλάντωση του,αλλά συνεχώς χάνεται η επαφή του με το δίσκο.αυτό θα συμβεί στο ψηλότερο σημείο της τροχιάς του αν η ταλάντωση άρχισε με πλάτος Α max.από τα παραπάνω βγαίνει ότι = 7. Αν η ταλάντωση αρχίσει με πλάτος Α>Α max η επαφή μεταξύ σώματος και δίσκου θα χαθεί (θα μηδενιστεί η αντίδραση Ν ) σε κάποια θέση y πάνω από τη Θ.Ι και το σώμα θα αποσπαστεί εκτελώντας στη συνέχεια ελεύθερη κίνηση.,ενώ ο δίσκος θα προσαρμοστεί σε νέα ταλάντωση.με κυκλική συχνότητα ω. =! Στη θέση στην οποία θα αποσπαστεί το σώμα έχουμε : Ν=mg-mω y. Για Ν=0 έχουμε : mg-mω y = 8. Η επιτάχυνση που έχει το σώμα Σ είναι : = #$ = = =.Αρα η επιτάχυνση της ταλάντωσης του Σ δεν μπορεί να είναι ποτέ μεγαλύτερη του g 9. Το σώμα Σ μπορεί να αποσπαστεί από το δίσκο αν αυξήσουμε τη συχνότητα και διατηρήσουμε το πλάτος σταθερό. = = () ( ΠΑΡΑΔΕΙΓΜΑ Ένα σώμα έχει μάζα Μ=Κg και είναι δεμένο στο άνω άκρο κατακόρυφου ελατηρίου σταθεράς Κ=00Ν/m Το κάτω άκρο του ελατηρίου δένεται στο έδαφος.το σύστημα βρίσκεται σε κατάσταση ισορροπίας.τη χρονική στιγμή t=0 τοποθετούμε πάνω στο σώμα Σ ένα άλλο σώμα Σ μάζας m=3kg και το σύστημα αρχίζει να εκτελεί Α.Α.Τ..(θεωρούμε θετική φορά προς τα κάτω ) Α.Να υπολογίσετε τη σταθερά επαναφοράς του σώματος Σ και του σώματος Σ Β.Σε ποια θέση το σώμα Σ δέχεται τη μεγαλύτερη δύναμη εξαιτίας της επαφής του με το σώμα Σ ; Γ.Να αποδείξετε ότι το σώμα Σ δεν θα χάσει την επαφή του με το σώμα Σ. 7

8 Δ.Να γίνει η γραφική παράσταση της δύναμης που δέχεται το σώμα Σ από το σώμα Σ ΛΥΣΗ Τα δεδομένα και τα ζητούμενα καταχωρούνται σε πίνακα Σύστημα S.I Δεδομένα Μ=Κg K=00N/m M=3Kg ζητούμενα D,D Αντίδραση Ν σε συνάρτηση με το Χ και το t Ξαναδιάβασε το πρόβλημα προσεκτικά και φτιάξε απλό και καθαρό σχήμα N + B Θ.Ι Τ.Θ Κατασκευάσαμε το σύστημα στη θέση ισορροπίας και σε μια τυχαία θέση.(συνήθως επιλέγουμε η τυχαία θέση να είναι στη θετική φορά που επιλέξαμε )..τώρα σκέψου Α.Όλο το σύστημα ταλαντώνει με την ίδια γωνιακή συχνότητα ω. ω = D ( M + m) = 5rad / s Η σταθερά επαναφοράς δίνεται από τη σχέση : D = mω. Άρα το κάθε σώμα έχει τη δική του σταθερά επαναφοράς εφόσον ταλαντώνει με το ίδιο ω αλλά έχει διαφορετική μάζα. Η σταθερά επαναφοράς του σώματος Μ είναι : D = Mω = * 5 5N / m = Η σταθερά επαναφοράς του σώματος μάζας m είναι : D = mω = 3* 5 75N / m = 8

9 Β Το σώμα Σ ταλαντώνει με γωνιακή συχνότητα ω.οι δυνάμεις που ασκούνται στο σώμα Σ είναι το βάρος του και η αντίδραση Ν από την επαφή του με το σώμα Σ. Εφόσον ταλαντώνει και δεχόμενοι ότι η τυχαία θέση είναι στον θετικό ημιαξονα έχουμε : B N =ΣF N = B N = m g ( D y) N = m g+ D y ΣF To σώμα θα αποκτήσει τη μέγιστη αντίδραση Ν όταν βρεθεί στην κατώτερη θέση ταλάντωσης του και η σχέση γράφεται : N = m g+ D A Τρόπος υπολογισμού του Α Τη χρονική στιγμή t=0 το σύστημα των δυο σωμάτων βρίσκεται στη θέση ισορροπίας () (Είναι η στιγμή που αφήνουμε το σώμα Σ πάνω στο Σ ) Η θέση αυτή απέχει από το φυσικό απόσταση L = Mg K Το σύστημα ισορροπεί ποιο κάτω και άρα απέχει από το φυσικό μήκος απόσταση ( M + m) L = g K Οι δυο θέσεις ισορροπίας απέχουν μεταξύ τους : m 3*0 L = L L = g = = 0. 3m K 00 Εδώ θα πρέπει να προσέξουμε ότι τη στιγμή που αφήνουμε το σώμα Σ πάνω στο σώμα Σ η ταχύτητα του συστήματος είναι οριακά μηδέν,άρα και η κινητική ενέργεια ταλάντωσης είναι μηδέν. Έτσι η θέση ισορροπίας () είναι η ακραία θέση της νέας ταλάντωσης.δηλαδή το σύστημα ταλαντώνει γύρω από τη νέα θέση ισορροπίας με πλάτος Α=0,3m Γ.Το σώμα Σ μπορεί να χάσει την επαφή του με το σώμα Σ όταν η αντίδραση Ν=0 Από τη σχέση : N = m g+ D y 0 mg y = D g = ω = m g+ D y 9

10 Άρα η θέση που μπορεί να χαθεί η επαφή του σώματος Σ από το Σ είναι g 0 y = = = 0, 4m D 00 ( M + m) (+ 3) Το πλάτος της ταλάντωσης είναι Α=0,3m Άρα Af y και το σώμα Σ δεν μπορεί να χάσει την επαφή του με το σώμα Σ. Η αντίδραση Ν δίνεται από τη σχέση : N = m g+ D y (θετική φορά ταλάντωσης προς τα κάτω ) y=0 N=m g=30n y=+a y=-a N=m g+d A=5,5N N=m g-d A=-7,5N Και η γραφική παράσταση της αντίδρασης σε συνάρτηση με την απομάκρυνση από τη θέση ισορροπίας () είναι 5.5 Ν 7.5 y -0,3 0,3 0

11 ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τίθεται σε οριζόντια αρμονική ταλάντωση με συχνότητα f.αν ο συντελεστής μέγιστης στατικής τριβής μεταξύ σώματος και δίσκου είναι μs ποια η μέγιστη τιμή ταλάντωσης του δίσκου ώστε το σώμα να μη γλιστρά πάνω στη δίσκο ; Στο σώμα Σ ασκούνται δυο δυνάμεις : (α) το βάρος του mg και (β) η αντίδραση R του δίσκου R Κίνηση δεξιά B T Ν Κίνηση δεξιά B.Η αντίδραση R πρέπει να περιέχει την κατακόρυφη συνιστώσα Ν,ιση με το βάρος του σώματος και την οριζόντια τριβή Τα,η οποία πρέπει να παίζει το ρόλο της δύναμης

12 επαναφοράς.στη διάρκεια της ταλάντωσης η στατική τριβή αλλάζει περιοδικά μέτρο και κατεύθυνση,ώστε να ισχύει η συνθήκη ΣF=-DX. Θ.Ι Ν Τ Τ B Καθώς το σώμα Σ ταλαντώνει γύρω από τη θέση ισορροπίας η στατική τριβή που παίζει το ρόλο της δύναμης επαναφοράς έχει πάντα φορά προς τη Θ.Ι Επειδή το σώμα δεν γλιστρά πάνω στο δίσκο η τριβή Τα είναι στατική τριβή.στη διάρκεια μιας ταλάντωσης πλάτους Α η στατική τριβή μεταβάλλεται περιοδικά από την τιμή μηδέν έως την τιμή Τ max =DA.Αυξάνοντας το πλάτος θα αυξάνει και η τιμή Τ.Ομως η στατική τριβή δεν μπορεί να πάρει τιμή μεγαλύτερη από Τ α =μ s Ν = μ s mg που αντιστοιχεί σε ένα μέγιστο πλάτος ταλάντωσης Α max.δηλαδή : Τ max =F επαναφορας,max Ή μ s mg=-d m A max και επειδή D m =mω η τελευταία σχέση γίνεται : μ s mg=- mω A max ) = ( * * = ) ( Παράδειγμα : Στο σχήμα που ακολουθει δίνεται η σταθερά Κ=00Ν/m οι μάζες Μ=Kg και m=kg ο συντελεστής στατικής τριβής μ s =0, και η επιτάχυνση g =0m/s.

13 Να βρεθεί το μέγιστο πλάτος της ταλάντωσης ώστε το σώμα m να μην ολισθαίνει πάνω στο Μ. Επειδή το σώμα δεν γλιστρά πάνω στο δίσκο η τριβή Τα είναι στατική τριβή.στη διάρκεια μιας ταλάντωσης πλάτους Α η στατική τριβή μεταβάλλεται περιοδικά από την τιμή μηδέν έως την τιμή Τ max =DA.Αυξάνοντας το πλάτος θα αυξάνει και η τιμή Τ.Ομως η στατική τριβή δεν μπορεί να πάρει τιμή μεγαλύτερη από Τ α =μ s Ν = μ s mg που αντιστοιχεί σε ένα μέγιστο πλάτος ταλάντωσης Α max.δηλαδή : Τ max =F επαναφορας,max Ή μ s mg=-d m A max και επειδή D m =mω η τελευταία σχέση γίνεται : μ s mg=- mω A max ) = ( * * = ) ( Όπου f= (!+) Aρα * = ) (.. 3

14 ΤΩΡΑ ΛΥΣΕ ΤΑ ΠΑΡΑΚΑΤΩ ΘΕΜΑΤΑ ΘΕΜΑ Σώμα εκτελεί Α.Α.Τ πάνω σε οριζόντια επιφάνεια χωρίς τριβές με πλάτος Α=0, m Σε ένα σημείο Χ =0,06m μακριά από τη θέση ισορροπίας η ταχύτητα του είναι υ =3m/s a. Ποια η περίοδος της ταλάντωσης. b. Ποια η απομάκρυνση του σώματος από τη θέση ισορροπίας όταν η ταχύτητα του είναι 0,4m/s.. c. Ένα μικρό αντικείμενο με μάζα πολύ μικρότερη από τη μάζα του σώματος τοποθετείται πάνω στο σώμα και ταλαντώνει.αν το μικρό σώμα είναι έτοιμο να ολισθήσει στο άκρο της διαδρομής να βρείτε την τιμή του συντελεστή της στατικής τριβής μεταξύ του αντικειμένου και του σώματος. ΛΥΣΗ : 4

15 5

16 ΘΕΜΑ Το ελατήριο του σχήματος έχει σταθερά Κ =00Ν/m και στο ανώτερο άκρο του είναι προσηρτημένος δίσκος μάζας Μ=6Κg.Πάνω στο δίσκο τοποθετούμε σώμα μάζας m και το σύστημα ισορροπεί.προσφέρουμε πόσο ενέργειας Ε=6J και διαπιστώνουμε ότι το σύστημα ταλαντώνει με το μέγιστο δυνατό πλάτος του ώστε να μη χάνεται η επαφή του m πάνω στο Μ. a. Να βρεθεί η μάζα m. b. Nα βρεθεί η ταχύτητα με την οποία το σώμα m θα εγκαταλείψει το δίσκο αν προσφέρουμε ενεργεια αντί της αρχικής.των 6j Ε =4J. c. Ποιο το μέγιστο ύψος που φτάνει τότε η μάζα m ΛΥΣΗ : 6

17 7

18 8

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.. Σώμα μάζας = 0,5 g έχει το ένα άκρο στερεωμένο σε οριζόντιο ιδανικό ελατήριο σταθεράς = 50 / και το άλλο άκρο του βρίσκεται

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ.

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. 1 η κατηγορια ερωτησεων 1. Η γραφική παράσταση της απομάκρυνσης σε συνάρτηση με το χρόνο για ένα σημειακό αντικείμενο που εκτελεί Α.Α.Τ.φαινεται στο σχήμα : Με ποια

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ. 1.1. Μηχανικές. Ομάδα Δ. 1.1.51. Συνάντηση σωμάτων που ταλαντώνονται. Τα σώματα Α και Β του σχήματος έχουν ίσες μάζες m 1 =m 2 =m=1kg. Τα δύο σώματα ισορροπούν πάνω στο λείο οριζόντιο δάπεδο, με τα ελατήρια

Διαβάστε περισσότερα

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή μεταξύ τους. Η επαφή αυτή μπορεί να υπάρχει στη διάρκεια της ταλάντωσης είτε να

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Α.1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚ. ΘΕΤ/ΤΕΧΝ ΣΤΟ ΚΕΦ. 1 ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως και Α.4 να γράψετε τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή πρόταση. Α1) Ένα σώμα κάνει α.α.τ.

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

1. Εγκάρσιο αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο προς τη θετική κατεύθυνση του άξονα

1. Εγκάρσιο αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο προς τη θετική κατεύθυνση του άξονα Γραφικές παραστάσεις της εξίσωσης του κύματος. Εγκάρσιο αρμονικό κύμα διαδίδεται σε γραμμικό ελαστικό μέσο προς τη θετική κατεύθυνση του άξονα O με ταχύτητα 0,8 m/s. To υλικό σημείο που βρίσκεται στην

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Στις ερωτήσεις 4 να σημειώσετε την σωστή. ) Σώμα εκτελεί απλή αρμονική ταλάντωση. Η συνολική δύναμη που δέχεται: (α) είναι σταθερή.

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις,

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις, 1. Κάθε ελατήριο του σχήματος έχει το ένα άκρο του στερεωμένο σε ακίνητο σημείο και το άλλο του άκρο προσδεμένο στο σώμα Σ. Οι σταθερές των δύο ελατηρίων είναι Κ 1 =120Ν/m και Κ 2 =80N/m. To σώμα Σ, έχει

Διαβάστε περισσότερα

Ελατήριο σταθεράς k = 200 N/m διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο

Ελατήριο σταθεράς k = 200 N/m διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΤΟ ΣΩΜΑ ΑΡΧΙΚΑ ΝΑ ΒΡΙΣΚΕΤΑΙ ΕΚΤΟΣ ΕΛΑΤΗΡΙΟΥ.. Σώμα που αφήνεται από κάποιο ύψος. Ελατήριο σταθεράς k = N/ διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο του. Σώμα μάζας = kg αφήνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 6/0/0 ΘΕΜΑ 0 Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής - 5, να γράψετε στο

Διαβάστε περισσότερα

1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ

1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ 1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Αβαρές και μη εκτατό νήμα είναι δεμένο στο ένα άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 100 N/m, το άλλο άκρο του οποίου είναι στερεωμένο στο έδαφος. Το ελεύθερο άκρο

Διαβάστε περισσότερα

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ.

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ. 1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ. 1.4.1. Σύνθετη ταλάντωση και περιστρεφόμενα διανύσματα. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση, της οποίας η απομάκρυνση από τη θέση ισορροπίας είναι x=0, + (..) και

Διαβάστε περισσότερα

Θεωρία Μεθοδολογία Ασκήσεων Ερωτήσεις -Προβλήματα. Φυσική Κατεύθυνσης Γ Λυκείου - Ταλαντώσεις

Θεωρία Μεθοδολογία Ασκήσεων Ερωτήσεις -Προβλήματα. Φυσική Κατεύθυνσης Γ Λυκείου - Ταλαντώσεις Θεωρία Μεθοδολογία Ασκήσεων Ερωτήσεις -Προβλήματα Φυσική Κατεύθυνσης Γ Λυκείου - Ταλαντώσεις ΝΙΚΟΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΘΕΣΣΑΛΟΝΙΚΗ 01-013 - Στοιχεία επικοινωνίας Email nikkyriazo@sch.gr ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

1.1.a. Μηχανικές Ταλαντώσεις.

1.1.a. Μηχανικές Ταλαντώσεις. ... ΑΑΤ και συνάντηση κινητών Σηµειακό σώµα Σ µάζας..a. Μηχανικές. m = kg ισορροπεί δεµένο στο ελεύθερο άκρο ιδανικού ελατήριου σταθεράς K = 00 N / m το άλλο άκρο του οποίο είναι ακλόνητα στερεωµένο σε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 6-0- ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 1, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σπύρος Ρήγας - Φυσική Λυκείου - Ιούλιος 04 ΛΥΣΕΙΣ ου ΚΡΙΤΗΡΙΟΥ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ (ΑΜΕΙΩΤΕΣ) ΤΑΛΑΝΤΩΣΕΙΣ ΚΕΦΑΛΑΙΟ, ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο (δ) (γ) 3 (α) 4 (γ) 5 α (Σ), β (Λ), γ (Σ),

Διαβάστε περισσότερα

Θέμα 1 Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Θέμα 1 Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Θέμα 1 Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1. Αν σε ένα ελεύθερο σώμα που είναι αρχικά ακίνητο ασκηθεί δύναμη

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 9 5 015 ΘΕΜΑ Α: Α1. α Α. β Α. α Α4. δ Α5. α) Λ β) Σ γ) Σ δ) Λ ε) Σ ΘΕΜΑ Β: B1. Σωστό το iii. Αιτιολόγηση: Οι εξωτερικές δυνάμεις

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως αποδεικνύουμε ότι ένα σώμα εκτεί απλή αρμονική ταλάντωση Μεθοδολογία i) Βρίσκουμε την θέση ισορροπίας του σώματος και σχεδιάζουμε το σώμα σε αυτή την θέση. ii) Σχεδιάζουμε τις δυνάμεις που ενεργούν

Διαβάστε περισσότερα

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1 ο Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης,

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β 1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β 1.4.1. Σύνθεση ταλαντώσεων ίδιας συχνότητας Ένα σώμα εκτελεί ταυτόχρονα δύο ταλαντώσεις της ίδιας διεύθυνσης, γύρω από την ίδια θέση ισορροπίας με εξισώσεις: y 1 =0,2

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 5.4 Η ταχύτητα υ διάδοσης του κύματος, η περίοδός του Τ και το μήκος κύματος λ, συνδέονται με τη σχέση: Αρμονικό κύμα ΚΕΦΑΛΑΙΟ 2 51 Κατά τη διάδοση ενός κύματος σε ένα ελαστικό μέσο: α μεταφέρεται ύλη, β μεταφέρεται ενέργεια και ύλη, γ όλα τα σημεία του ελαστικού μέσου έχουν την ίδια φάση την ίδια χρονική

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Δύο χορδές μιας κιθάρας Χ1, Χ2

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

2.2. Συμβολή και στάσιμα κύματα.

2.2. Συμβολή και στάσιμα κύματα. 2.2. Συμβολή και στάσιμα κύματα. 2.2.1. Συμβολή και μέγιστο πλάτος Σε δύο σημεία μιας ευθείας ε βρίσκονται δύο σύγχρονες πηγές κυμάτων Ο 1 και Ο 2 οι οποίες παράγουν κύματα με πλάτος Α=2cm και μήκος κύματος

Διαβάστε περισσότερα

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ 1 ΤΥΠΟΛΟΓΙΟ ΚΥΜΑΤΩΝ ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ Μήκος κύματος Ταχύτητα διάδοσης Συχνότητα Εξίσωση αρμονικού κύματος Φάση αρμονικού κύματος Ταχύτητα ταλάντωσης, Επιτάχυνση Κινητική Δυναμική ενέργεια ταλάντωσης

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗς Γ ΛΥΚΕΙΟΥ(τελειόφοιτοι) 4/1/2008

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗς Γ ΛΥΚΕΙΟΥ(τελειόφοιτοι) 4/1/2008 ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 7077 594 ΠΑΣΑΛΙΔΗ 77 & ΚΟΜΝΗΝΩΝ - ΚΑΛΑΜΑΡΙΑ THΛ: 45563 430335 ΑΡΤΑΚΗΣ - Κ. ΤΟΥΜΠΑ THΛ: 993 9494 ΠΕΡΑΝ 33 ΑΜΠΕΛΟΚΗΠΟΙ ΕΠΤΑΛΟΦΟΣ ΤΗΛ :73395 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗς Γ ΛΥΚΕΙΟΥ(τελειόφοιτοι)

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα

Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα 1 ΦΕΠ 01 Φυσική και Εφαρμογές Διάλεξη 8 η Ένα σώμα κινείται πάνω σε μια λεία επιφάνεια, υπό την επίδραση πλάγιας δύναμης όπως το σχήμα Νόμοι του Νεύτωνα: Fx = Fσυνθ = m α Χ (1) Fy + N = mg (δεν υπάρχει

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΜΙΧΑΗΛ Π. ΜΙΧΑΗΛ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΧΑΗΛ Π. ΜΙΧΑΗΛ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θεσσαλονίκη 2011 Copyright

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Κεφάλαιο 4 ο : Ταλαντώσεις

Κεφάλαιο 4 ο : Ταλαντώσεις Κεφάλαιο 4 ο : Ταλαντώσεις Φυσική Γ Γυμνασίου Περιοδικές Κινήσεις Όλες οι κινήσεις επαναλαμβάνονται σε ίσα χρονικά διαστήματα. Περιοδικές κινήσεις: Οι κινήσεις που επαναλαμβάνονται σε ίσα χρονικά διαστήματα.

Διαβάστε περισσότερα

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ.

2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2. Συμβολή και στάσιμα κύματα. Ομάδα Γ. 2.2.21. σε γραμμικό ελαστικό μέσο. Δύο σύγχρονες πηγές Ο 1 και Ο 2 παράγουν αρμονικά κύματα που διαδίδονται με ταχύτητα υ=2m/s κατά μήκος ενός γραμμικού ελαστικού

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 2ο ΓΕΛ ΠΕΙΡΑΙΑ Α Οµάδα ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 2/2/200 Διάρκεια 90 min Ζήτηµα ο Στις ερωτήσεις -4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 05 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε

Διαβάστε περισσότερα

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες εξελίσσονται γύρω από την ίδια δέση ισορροπίας Έστω ότι ένα σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση:

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) Θέμα 1 ο 1100 11 -- 001111 1. α. γ 3. β 4. γ 5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ 1. Α. ΣΣωωσσττόό ττοο αα.. Θέμα ο Η ιδιοσυχνότητα του συστήματος

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ ΜΑΪΟΥ 03 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Δυναμική στο επίπεδο. Ομάδα Γ.

Δυναμική στο επίπεδο. Ομάδα Γ. 1.3.21. Η τριβή και η κίνηση. στο επίπεδο. Ομάδα Γ. Ένα σώμα μάζας 2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μ s =0,2. Σε μια στιγμή t 0 =0 στο σώμα ασκείται μεταβλητή

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες

Διαβάστε περισσότερα

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5 ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 29 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) Για τις ημιτελείς

Διαβάστε περισσότερα

2.1 Τρέχοντα Κύµατα. Οµάδα.

2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1 Τρέχοντα Κύµατα. Οµάδα. 2.1.41. Κάποια ερωτήµατα πάνω σε µια κυµατοµορφή. Ένα εγκάρσιο αρµονικό κύµα, πλάτους 0,2m, διαδίδεται κατά µήκος ενός ελαστικού γραµµικού µέσου, από αριστερά προς τα δεξιά

Διαβάστε περισσότερα