ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΚΑΛΥΨΗ ΠΛΗΡΟΦΟΡΙΑΣ ΠΛΑΙΣΙΟΥ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΜΗΝΟΥΣ ΣΩΜΑΤΙΔΙΩΝ ΚΑΙ ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΗΣ ΠΑΥΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΚΑΛΥΨΗ ΠΛΗΡΟΦΟΡΙΑΣ ΠΛΑΙΣΙΟΥ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΜΗΝΟΥΣ ΣΩΜΑΤΙΔΙΩΝ ΚΑΙ ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΗΣ ΠΑΥΣΗΣ"

Transcript

1 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΝΑΚΑΛΥΨΗ ΠΛΗΡΟΦΟΡΙΑΣ ΠΛΑΙΣΙΟΥ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΜΗΝΟΥΣ ΣΩΜΑΤΙΔΙΩΝ ΚΑΙ ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΗΣ ΠΑΥΣΗΣ ΝΙΚΟΣ ΚΟΥΤΣΟΥΛΗΣ Α.Μ ΕΠΙΒΛΕΠΩΝ: ΕΥΣΤΑΘΙΟΣ ΧΑΤΖΗΕΥΘΥΜΙΑΔΗΣ ΠΑΤΡΑ ΜΑΙΟΣ 2012

2 Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 2 / 167

3 Διπλωματική Εργασία Ανακάλυψη Πληροφορίας Πλαισίου: Βελτιστοποίηση Σμήνους Σωματιδίων και Θεωρία Βέλτιστης Παύσης Κουτσούλης Νίκος Ημερομηνία 31/03/2012 Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 3 / 167

4 ΕΑΠ, έτος 2012 Κουτσούλης Νίκος Ανακάλυψη Πληροφορίας Πλαισίου: Η παρούσα διατριβή, η οποία εκπονήθηκε στα πλαίσια της ΘΕ «Διπλωματική Εργασία» του προγράμματος «Μεταπτυχιακή Εξειδίκευση στα Πληροφοριακά Συστήματα» (ΠΛΗΣ), και τα λοιπά αποτελέσματα της αντίστοιχης Διπλωματικής Εργασίας (ΔΕ) αποτελούν συνιδιοκτησία του ΕΑΠ και του φοιτητή, ο καθένας από τους οποίους έχει το δικαίωμα ανεξάρτητης χρήσης και αναπαραγωγής τους (στο σύνολο ή τμηματικά) για διδακτικούς και ερευνητικούς σκοπούς, σε κάθε περίπτωση αναφέροντας τον τίτλο και το συγγραφέα και το ΕΑΠ, όπου εκπονήθηκε η Διπλωματική Εργασία, καθώς και τον επιβλέποντα και την επιτροπή κρίσης. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 4 / 167

5 Ανακάλυψη Πληροφορίας Πλαισίου: Βελτιστοποίηση Σμήνους Σωματιδίων και Θεωρία Βέλτιστης Παύσης Κουτσούλης Νίκος Ονοματεπώνυμο Ονοματεπώνυμο Ονοματεπώνυμο Επιβλέποντα Μέλους 1 Μέλους 2 Χατζηευθυμιάδης Σκάρλας Καψάλης Ευστάθειος Λάμπρος Βασίλειος Περίληψη Ο βασικός στόχος της εργασίας αυτής είναι η αξιοποίηση της Βελτιστοποίησης Σμήνους Σωματιδίων (Partcle Swarm Optmzaton PSO) και της Θεωρίας Βέλτιστης Παύσης (Optmal Stoppng Theory OST) για την αντιμετώπιση του Προβλήματος Ανακάλυψης Πληροφορίας Πλαισίου (Context Dscovery Problem CDP). Ο όρος «Ανακάλυψη Πληροφορίας Πλαισίου» αναφέρεται στο μηχανισμό που υιοθετούν κινητοί κόμβοι σε μια καθορισμένη περιοχή ώστε να αναζητούν πηγές πληροφορίας. Ο αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων είναι ένας πληθυσμιακός αλγόριθμος αναζήτησης που βασίζεται στην προσομοίωση της κοινωνικής συμπεριφοράς των πουλιών μέσα σε ένα σμήνος. Η Θεωρία Βέλτιστης Παύσης μελετάει το πρόβλημα της επιλογής της χρονικής στιγμής εκτέλεσης μιας συγκεκριμένης ενέργειας, βασισμένη σε μια ακολουθία παρατηρούμενων τυχαίων μεταβλητών, προκειμένου να μεγιστοποιηθεί κάποια αναμενόμενη ανταμοιβή ή να ελαχιστοποιηθεί κάποιο αναμενόμενο κόστος. Στην εργασία αυτή μελετάται η Ανακάλυψη Πληροφορίας Πλαισίου σε ένα σύστημα κινητών (ρομποτικών) κόμβων αισθητήρων, οι οποίοι καθορίζουν δυναμικά την κίνησή τους στο χώρο με στόχο την απόκτηση καλύτερης ποιότητας πληροφορίας πλαισίου. Το σύστημα αυτό προσομοιώνεται από ένα σμήνος σωματιδίων και το Πρόβλημα Ανακάλυψης Πληροφορίας Πλαισίου μετασχηματίζεται σε ένα πρόβλημα Βελτιστοποίησης Σμήνους Σωματιδίων. Ο εντοπισμός της πληροφορίας πλαισίου επεκτείνεται με τον κατάλληλο χρονοπρογραμματισμό των μετακινήσεων των κόμβων. Ενδεχόμενη καθυστέρηση στην αλλαγή θέσης ενός κόμβου μπορεί να συντελέσει στη σύλληψη πληροφορίας πλαισίου υψηλότερης ποιότητας. Ο χρονοπρογραμματισμός αυτός βασίζεται στη Θεωρία Βέλτιστης Παύσης και ειδικότερα σε μια παραλλαγή του Κλασικού Προβλήματος της Γραμματέως. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 5 / 167

6 Στα πλαίσια αυτά, υλοποιήθηκαν δύο βασικοί αλγόριθμοι: ο αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων (PSO) και ο αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων με εφαρμογή της Θεωρίας Βέλτιστης Παύσης (OSPSO). Κατά την πειραματική μελέτη του συστήματος εξετάστηκαν σημαντικά χαρακτηριστικά του, όπως είναι η μέση ποιότητα πληροφορίας πλαισίου και το μέσο ενεργειακό κόστος των σωματιδίων του σμήνους, σε συνάρτηση με τις βασικές παραμέτρους του (π.χ. αριθμός αισθητήρων κόμβων, συχνότητα ανίχνευσης πληροφορίας, διάστημα παρατήρησης θεωρίας βέλτιστης παύσης, κ.ά.). Έγινε σύγκριση της απόδοσης των δύο αλγόριθμων και εξήχθησαν χρήσιμα συμπεράσματα για την αποτελεσματικότητά τους. Λέξεις-Κλειδιά: Ανακάλυψη Πληροφορίας Πλαισίου, Ασύρματα Δίκτυα Αισθητήρων, Αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων, Θεωρία Βέλτιστης Παύσης. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 6 / 167

7 Context Dscovery: Partcle Swarm Optmzaton and Optmal Stoppng Theory Koutsouls Nkos Supervsor 1 st Member 2 nd Member Name Name Name Hadjefthymades Skarlas Capsals Stathes Labros Vaslos Abstract The basc purpose of ths research s the combned use of Partcle Swarm Optmzaton (PSO) and Optmal Stoppng Theory (OST) n order to confront the Context Dscovery Problem (CDP). Context Dscovery refers to the mechansm adopted by moble nodes movng n a specfed area n order to seek nformaton sources. The Partcle Swarm Optmzaton algorthm s a populaton-based search algorthm based on the smulaton of the socal behavor of brds wthn a flock. The Optmal Stoppng Theory s concerned wth the problem of choosng a tme to take a gven acton based on sequentally observed random varables n order to maxmze an expected payoff or to mnmze an expected cost. Ths research deals wth the Context Dscovery Problem n a system of moble (robotc) sensor nodes that dynamcally adjust ther moton n order to obtan context of better qualty. Ths system s smulated by a swarm of partcles and the CDP maps to a OST problem. Context trackng s facltated by sutable tme-schedulng of partcle movements. A potental delay to the movement tme of a partcle may result to the dscovery of better qualty context. Ths type of tme-schedulng s based on Optmal Stoppng Theory and specfcally on a varaton of the Classcal Secretary Problem. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 7 / 167

8 In ths framework, two man algorthms were developed: the Partcle Swarm Optmzaton (PSO) algorthm and the Partcle Swarm Optmzaton wth use of Optmal Stoppng Theory (OSPSO) algorthm. Expermental study of ths system was carred out and mportant aspects, such as mean context qualty and mean energy cost, were measured to basc system parameters (e.g. number of sensor nodes, sensng rate, OST observaton nterval etc.). The two algorthms were compared and useful conclusons were made. Key-Words: Context Dscovery, Moble Sensor Nodes, Partcle Swarm Optmzaton Algorthm, Optmal Stoppng Theory. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 8 / 167

9 στη μητέρα μου που έφυγε πρόσφατα Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 9 / 167

10 Ευχαριστίες Θα ήθελα να εκφράσω τις ευχαριστίες μου στον επιβλέποντα της εργασίας Επίκουρο Καθηγητή κ. Ευστάθιο Χατζηευθυμιάδη καθώς και στον Επίκουρο Καθηγητή κ. Χρήστο Αναγνωστόπουλο για τη σημαντική καθοδήγηση και την καθοριστική βοήθειά τους. Επίσης, θα ήθελα να ευχαριστήσω την Ευγενία για την υποστήριξη και την υπομονή της. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 10 / 167

11 Περιεχόμενα Κουτσούλης Νίκος Ανακάλυψη Πληροφορίας Πλαισίου: Κεφάλαιο 1: Βελτιστοποίηση Σμήνους Σωματιδίων (Partcle Swarm Optmzaton PSO) Νοημοσύνη Σμήνους Εισαγωγή στη Βελτιστοποίηση Σμήνους Σωματιδίων Βασικός Αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων (Basc PSO) Global Best PSO Local Best PSO Σύγκριση αλγόριθμων gbest PSO και lbest PSO Δομές Κοινωνικής Δικτύωσης Παραλλαγές του Αλγόριθμου Βελτιστοποίησης Σμήνους Σωματιδίων Αποκοπή ταχύτητας (velocty clampng) Βάρος Αδράνειας (Inerta Weght) Συντελεστής Περιορισμού (Constrcton Coeffcent) Μοντέλα ταχύτητας Στοιχεία του Αλγόριθμου Βελτιστοποίησης Σμήνους Σωματιδίων Μέγεθος παραμέτρων Αρχικοποίηση αλγόριθμου Τερματισμός αλγόριθμου Εφαρμογή του αλγόριθμου PSO σε δυναμικά περιβάλλοντα Προβλήματα εφαρμογής Επίδραση παραμέτρων Μέθοδοι αντιμετώπισης Κεφάλαιο 2: Θεωρία Βέλτιστης Παύσης (Optmal Stoppng Theory OST) Εισαγωγή Ορισμός του προβλήματος Προβλήματα πεπερασμένου ορίζοντα Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 11 / 167

12 Το Πρόβλημα της Γραμματέως (Secretary Problem) Παραλλαγές του Προβλήματος της Γραμματέως Μια νέα προσέγγιση του Προβλήματος της Γραμματέως Το Πρόβλημα του Παρκαρίσματος (Parkng Problem) Κεφάλαιο 3: Πληροφορία Πλαισίου Πληροφορία Πλαισίου Ορισμός και περιγραφή Κατηγορίες πλαισίου Επίγνωση Πληροφορίας Πλαισίου Θέματα Επίγνωσης Πληροφορίας Πλαισίου Αρχιτεκτονική Συστήματος Επίγνωσης Πληροφορίας Πλαισίου Μοντελοποίηση Πληροφορίας Πλαισίου Συνεργατική Επίγνωση Πληροφορίας Πλαισίου Ορισμός Κινητικότητα στη ΣΕΠΠ Ανακάλυψη Πληροφορίας Πλαισίου (Context Dscovery Problem CDP) Κεφάλαιο 4: Ανακάλυψη Πληροφορίας Πλαισίου σε Κινητά Περιβάλλοντα με χρήση Εισαγωγή Αναπαράσταση Πληροφορίας Πλαισίου Ποιότητα Πληροφορίας Πλαισίου Ανακάλυψη Πληροφορίας Πλαισίου με χρήση Βελτιστοποίησης Σμήνους Σωματιδίων Εφαρμογή της Θεωρίας Βέλτιστης Παύσης Κεφάλαιο 5: Αλγόριθμοι υλοποίησης Εισαγωγή Βασικός αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων (PSO) Παράμετροι Κίνηση σωματιδίων και πηγών Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 12 / 167

13 Βάρος αδράνειας Αποκοπή ταχύτητας και αποκοπή θέσης Μέθοδοι μεταβολής του βάρους αδράνειας Παραλλαγή του βασικού αλγόριθμου PSO Αλγόριθμοι υλοποίησης της Θεωρίας Βέλτιστης Παύσης Κεφάλαιο 6: Πειραματική Μελέτη Εισαγωγή Αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων (PSO) Μέθοδοι μεταβολής βάρους αδράνειας Επίδραση του αριθμού των πηγών Επίδραση της συχνότητας ανανέωσης πληροφορίας πλαισίου Συμπεράσματα Παρατηρήσεις Αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων με χρήση Θεωρίας Βέλτιστης Παύσης (OSPSO) Μέθοδοι μεταβολής βάρους αδράνειας διάστημα παρατήρησης OST Επίδραση του αριθμού των πηγών Συμπεράσματα Παρατηρήσεις Κεφάλαιο 7: Γενικά Συμπεράσματα Προοπτικές Συμπεράσματα Προοπτικές Αναφορές Παράρτημα Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 13 / 167

14 Κατάλογος Σχημάτων Σχήμα 1: Μεταβολές θέσης και ταχύτητας ενός σωματιδίου για την 2-D περίπτωση Σχήμα 2: Δομές κοινωνικής δικτύωσης Σχήμα 3: Εννοιολογικός χώρος Επίγνωσης Πλαισίου Σχήμα 4: Αρχιτεκτονική Συστήματος Επίγνωσης Πλαισίου Σχήμα 5: Δίκτυο κινητών κόμβων Σχήμα 6: PSO. Στιγμιότυπο της κίνησης σωματιδίων και πηγών στο χώρο Σχήμα 7: Μέθοδος μεταβολής βάρους αδράνειας non-lnear decreasng Σχήμα 8: Μέθοδος μεταβολής βάρους αδράνειας non-lnear decreasng Σχήμα 9: Μέθοδος μεταβολής βάρους αδράνειας chaotc Σχήμα 10: Μέθοδος μεταβολής βάρους αδράνειας chaotc random Σχήμα 11: Αλγόριθμος PSO. gt () f( t) Σχήμα 12: Αλγόριθμος PSO. d () t f ( t) Σχήμα 13: Αλγόριθμος PSO. dt () f( t) t = = = Σχήμα 14: PSO. Συγκλίνουσα μέση ποιότητα πληροφορίας πλαισίου gt, () N = Σχήμα 15: PSO. Συγκλίνουσα μέση διανυόμενη απόσταση d t, N = Σχήμα 16: PSO. Συγκλίνουσα μέση ποιότητα πληροφορίας πλαισίου gt () για N = Σχήμα 17: PSO. Συγκλίνουσα μέση διανυόμενη απόσταση d t για N = Σχήμα 18: PSO. Συγκλίνουσα μέση απόσταση d για N = Σχήμα 19: PSO. Συγκλίνουσα μέση ποιότητα πληροφορίας πλαισίου gt () σε συνάρτηση με τη συχνότητα ανανέωσης q Σχήμα 20: PSO. Συγκλίνουσα μέση διανυόμενη απόσταση d t σε συνάρτηση με τη συχνότητα q Σχήμα 21: OSPSO. Μεταβολή του g( t ) για τις διάφορες μεθόδους μεταβολής του w Σχήμα 22: OSPSO. Μέθοδος non-lnear. gt () f( n) Σχήμα 23: OSPSO. Μέθοδος non-lnear. d f ( n ) Σχήμα 24: OSPSO. Μέθοδος chaotc. gt () f( n) Σχήμα 25: OSPSO. Μέθοδος chaotc. d f ( n ) t t = για διάφορες τιμές του M = για διάφορες τιμές του M = για διάφορες τιμές του M = για διάφορες τιμές του M Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 14 / 167

15 Κατάλογος Πινάκων Πίνακας 1: Πρόβλημα Γραμματέως. Ενδεικτικές τιμές παραμέτρων Πίνακας 2: Νέα προσέγγιση Προβλήματος Γραμματέως. Ενδεικτικές τιμές παραμέτρων Πίνακας 3: Αντιστοιχία PSO - CDP Πίνακας 4: PSO, standard pbest calculaton, N r = Πίνακας 5: PSO, standard pbest calculaton, N r = Πίνακας 6: PSO, memoryless pbest calculaton, N r = Πίνακας 7: PSO, memoryless pbest calculaton, N r = Πίνακας 8: PSO, μοντέλο pbest κλασικό, μέθοδος non-lnear, q = 0,02 Hz Πίνακας 9: PSO, μοντέλο pbest κλασικό, μέθοδος non-lnear, N = 500, q = 0,02 Hz Πίνακας 10: Επίδραση της συχνότητας ανανέωσης q Πίνακας 11: OSPSO, n 0, q = 0,02 Hz Πίνακας 12: OSPSO, n, 0 θ threshold, q = 0,02 Hz Πίνακας 13: OSPSO. Μέθοδος non-lnear, Πίνακας 14: OSPSO. Μέθοδος chaotc, q = 0,02 Hz q = 0,02 Hz Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 15 / 167

16 Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 16 / 167

17 Κεφάλαιο 1: Κουτσούλης Νίκος Ανακάλυψη Πληροφορίας Πλαισίου: Βελτιστοποίηση Σμήνους Σωματιδίων (Partcle Swarm Optmzaton PSO) 1.1. Νοημοσύνη Σμήνους Η Νοημοσύνη Σμήνους (Swarm Intellgence), η οποία είναι ένας κλάδος Τεχνητής Ευφυΐας (Artfcal Intellgence), ασχολείται με τη σχεδίαση ευφυών συστημάτων πολλαπλών πρακτόρων (mult-agent systems), εμπνεόμενη τόσο από τη συλλογική συμπεριφορά κοινωνικών εντόμων, όπως είναι τα μυρμήγκια, οι τερμίτες, οι μέλισσες και οι σφήκες, όσο και από άλλες κοινωνίες του ζωικού βασιλείου, όπως είναι τα σμήνη πουλιών ή τα κοπάδια ψαριών. Οι αποικίες των κοινωνικών εντόμων αποτελούν αντικείμενο έρευνας εδώ και πολλά χρόνια και οι μηχανισμοί που διέπουν τη συμπεριφορά τους παρέμεναν για πολύ καιρό αδιευκρίνιστοι. Παρά το γεγονός ότι τα μέλη μιας τέτοιας αποικίας έχουν περιορισμένες δυνατότητες ως άτομα, μπορούν να επιτυγχάνουν σύνθετες εργασίες ως σύνολο. Η συντεταγμένη συμπεριφορά μιας αποικίας προκύπτει από τις σχετικά απλές ενέργειες ή αλληλεπιδράσεις μεταξύ των μελών της. Πολλές πλευρές από τις συλλογικές δραστηριότητες των κοινωνικών εντόμων είναι αυτο-οργανούμενες και χωρίς την ύπαρξη κάποιου κεντρικού ελέγχου [1], [2]. Ο όρος «Νοημοσύνη Σμήνους» χρησιμοποιήθηκε για πρώτη φορά στο πεδίο των κυτταρικών ρομποτικών συστημάτων (cellular robotc systems), όπου απλοί πράκτορες αυτοοργανώνονται μέσω της αλληλεπίδρασης πλησιέστερου γείτονα [3]. Ακόλουθα, ο όρος χρησιμοποιείται σε ένα πολύ ευρύτερο ερευνητικό πλαίσιο. Οι μέθοδοι νοημοσύνης σμήνους έχουν αποδειχτεί ιδιαίτερα επιτυχημένες στον τομέα της βελτιστοποίησης. Παραδείγματα τέτοιων εφαρμογών αποτελούν προβλήματα χρονοπρογραμματισμού, σχεδίασης τηλεπικοινωνιακών δικτύων, εύρεσης βέλτιστης διαδρομής, υπολογιστικής βιολογίας κ.λπ Εισαγωγή στη Βελτιστοποίηση Σμήνους Σωματιδίων Ο αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων (PSO) είναι ένας πληθυσμιακός αλγόριθμος αναζήτησης, που βασίζεται στην προσομοίωση της κοινωνικής συμπεριφοράς των πουλιών μέσα σε ένα σμήνος. Ο αρχικός στόχος της ιδέας του πλήθους σωματιδίων ήταν η γραφική προσομοίωση της χαριτωμένης και απρόβλεπτης χορογραφίας ενός σμήνους Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 17 / 167

18 πουλιών [4]. Η ιδέα αυτή εξελίχθηκε σε έναν απλό και αποτελεσματικό αλγόριθμο βελτιστοποίησης [2], [5]. Στον αλγόριθμο Βελτιστοποίησης Σμήνους Σωματιδίων, τα άτομα, τα οποία αναφέρονται ως σωματίδια, κινούνται μέσα σε ένα χώρο αναζήτησης πολλών διαστάσεων. Οι μεταβολές των θέσεων των σωματιδίων μέσα στο χώρο αναζήτησης βασίζονται στην κοινωνικο-ψυχολογική τάση των ατόμων να μιμούνται την επιτυχία των άλλων ατόμων. Έτσι, η κίνηση ενός σωματιδίου μέσα στο σμήνος επηρεάζεται από την εμπειρία ή τη γνώση των γειτονικών του σωματιδίων. Από την εισαγωγή του το 1995 [4], ο αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων έχει υποστεί πολλές βελτιώσεις και έχει βρει διάφορα πεδία εφαρμογής. Στη συνέχεια παραθέτουμε το βασικό αλγόριθμο PSO και μερικές από τις κυριότερες παραλλαγές του Βασικός Αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων (Basc PSO) Ένας αλγόριθμος PSO διατηρεί ένα σμήνος από σωματίδια καθένα από τα οποία αντιπροσωπεύει μια πιθανή λύση [2], [5]. Έστω x () t η θέση ενός σωματιδίου στο χώρο αναζήτησης τη διακριτή χρονική στιγμή t. Η θέση του σωματιδίου μεταβάλλεται με την πρόσθεση μιας ταχύτητας v () t στην τρέχουσα θέση: x ( t+ 1) = x ( t) + v ( t+ 1) (1.1) με (0) U (, ) x x x. mn max Το διάνυσμα της ταχύτητας οδηγεί τη διαδικασία βελτιστοποίησης και αντικατοπτρίζει τόσο την εμπειρική γνώση του σωματιδίου όσο και την κοινωνικά ανταλλασσόμενη πληροφορία από τη γειτονιά του σωματιδίου. Η εμπειρική γνώση του σωματιδίου αναφέρεται ως η γνωσιακή συνιστώσα (cogntve component), η οποία είναι ανάλογη ως προς την απόσταση του σωματιδίου από τη δική του βέλτιστη θέση (personal best poston). Η κοινωνικά ανταλλασσόμενη πληροφορία αναφέρεται ως η κοινωνική συνιστώσα (socal component) της εξίσωσης ταχύτητας. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 18 / 167

19 Αρχικά είχαν αναπτυχθεί δύο αλγόριθμοι PSO, οι οποίοι διαφέρουν ως προς το μέγεθος της γειτονιάς τους: ο global best PSO (gbest PSO) και ο local best PSO (lbest PSO) Global Best PSO Για τον αλγόριθμο Βελτιστοποίησης Σμήνους Σωματιδίων καθολικού βέλτιστου global best PSO, ή gbest PSO, η γειτονιά κάθε σωματιδίου είναι ολόκληρο το σμήνος. Το κοινωνικό δίκτυο που υλοποιείται από τον global best PSO απεικονίζεται από την τοπολογία αστέρα (βλέπε εδάφιο 1.4). Στην περίπτωση αυτή, η κοινωνική συνιστώσα της εξίσωσης μεταβολής της ταχύτητας του σωματιδίου αντικατοπτρίζει την πληροφορία από όλα τα σωματίδια του σμήνους. Η πληροφορία αυτή αντιστοιχεί στη βέλτιστη θέση του σμήνους y ˆ( t). Για τον αλγόριθμο gbest PSO, η ταχύτητα ενός σωματιδίου δίνεται από τη σχέση: v ( t 1) v () t cr () t y () t x () t c r () t y () t x () t (1.2) ˆ j + = j + 11j j j + 2 2j j j όπου vj () t είναι η ταχύτητα του σωματιδίου στη διάσταση j = 1,, nx τη χρονική στιγμή t, xj () t είναι η θέση του σωματιδίου στη διάσταση j τη χρονική στιγμή t, c 1 και c 2 θετικές σταθερές επιτάχυνσης, οι οποίες χρησιμοποιούνται για να ρυθμίσουν τις συνεισφορές της γνωσιακής και της κοινωνικής συνιστώσας αντίστοιχα, και r (), t r () t U( 0,1) 1j 2 j τυχαίες τιμές στο διάστημα [ 0,1 ], δειγματοληπτημένες από μια ομοιόμορφη κατανομή. Αυτές οι τυχαίες τιμές εισάγουν στοχαστικότητα στον αλγόριθμο. Οι μεταβολές θέσης και ταχύτητας της γνωσιακής και της κοινωνικής συνιστώσας ενός σωματιδίου του σμήνους για δύο διαδοχικές χρονικές στιγμές απεικονίζονται στο Σχήμα 1. Η ατομική βέλτιστη θέση (personal best poston pbest) ενός σωματιδίου y είναι η καλύτερη θέση που έχει επισκεφθεί το σωματίδιο από την πρώτη χρονική στιγμή. Αν θεωρήσουμε πρόβλημα ελαχιστοποίησης, η θέση pbest την επόμενη χρονική στιγμή t + 1 δίνεται από τη σχέση: y ( t 1) ( t), f ( ( t 1) ) f ( t) ( t+ 1, ) f ( t+ 1) < f t ( ) ( ) ( ( )) y x + y + = x x y (1.3) Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 19 / 167

20 nx όπου f : είναι η συνάρτηση βελτιστοποίησης (ftness functon). Η συνάρτηση βελτιστοποίησης μετρά πόσο κοντά στη βέλτιστη τιμή βρίσκεται μια λύση. Η καθολική βέλτιστη θέση (global best poston gbest) y ˆ( t) τη χρονική στιγμή t ορίζεται ως εξής: { } s { ( ˆ 1 n )} ( 1 ) ( n ) yˆ() t y (), t, y () t f y() t = argmn f y () t,, f y () t (1.4) s όπου n s ο συνολικός αριθμός σωματιδίων στο σμήνος. Η τιμή ŷ είναι η βέλτιστη θέση που έχει βρεθεί από οποιαδήποτε σωματίδιο μέχρι τώρα. Η καθολική βέλτιστη θέση μπορεί να υπολογιστεί και από τα σωματίδια του τρέχοντος σμήνους: { ( 1 ) ( n s )} yˆ( t) = argmn f x () t,, f x () t (1.5) Ο αλγόριθμος gbest PSO συνοψίζεται στον Αλγόριθμο 1. Σχήμα 1: Μεταβολές θέσης και ταχύτητας ενός σωματιδίου για την 2-D περίπτωση Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 20 / 167

21 Αλγόριθμος 1: gbest PSO Κουτσούλης Νίκος Ανακάλυψη Πληροφορίας Πλαισίου: Δημιουργία και αρχικοποίηση σμήνους σωματιδίων repeat for σωματίδιο = 1,, ns do // υπολογισμός ατομικής βέλτιστης θέσης f x < f y then f ( ) ( ) y = x // υπολογισμός καθολικής βέλτιστης θέσης f y < f y ˆ then f ( ) ( ) yˆ = y n x διαστάσεων // for for σωματίδιο = 1,, ns do ενημέρωση της ταχύτητας με χρήση της εξίσωσης (1.2) ενημέρωση της θέσης με χρήση της εξίσωσης (1.1) // for untl (συνθήκη τερματισμού αληθής) Local Best PSO O αλγόριθμος Βελτιστοποίησης Σμήνους Σωματιδίων τοπικού βέλτιστου local best PSO, ή lbest PSO, χρησιμοποιεί ένα κοινωνικό δίκτυο με τοπολογία δακτυλίου (βλέπε εδάφιο 1.4). Η κοινωνική συνιστώσα της εξίσωσης μεταβολής της ταχύτητας απεικονίζει την πληροφορία που ανταλλάσσεται μέσα στη γειτονιά του σωματιδίου, η οποία αντιστοιχεί σε τοπική γνώση του περιβάλλοντος. Για τον αλγόριθμο lbest PSO, η ταχύτητα ενός σωματιδίου δίνεται από τη σχέση: v ( t 1) v () t cr () t y () t x () t c r () t y () t x () t (1.6) ˆ j + = j + 11j j j + 2 2j j j όπου yˆ () t είναι η βέλτιστη θέση που βρίσκεται από τη γειτονιά ενός σωματιδίου για τη j διάσταση j. Η τοπική βέλτιστη θέση (local best poston lbest) y ˆ () t, δηλαδή η βέλτιστη θέση που βρίσκεται στη γειτονιά N τη χρονική στιγμή t, ορίζεται ως εξής: { ( ˆ )} ( ) { } yˆ () t N f y () t = argmn f x() t, x () t N (1.7) Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 21 / 167

22 όπου η γειτονιά ορίζεται ως Κουτσούλης Νίκος Ανακάλυψη Πληροφορίας Πλαισίου: { (), (),, (), (), (),, () N N N } N = y t y t y t y t y t y t (1.8) n n n για γειτονιά μεγέθους n N. Η επιλογή της γειτονιάς βασίζεται συνήθως στους δείκτες των σωματιδίων του σμήνους. Εναλλακτικά, έχουν αναπτυχθεί μέθοδοι που βασίζονται στη χωρική ομοιότητα μεταξύ των σωματιδίων, π.χ. με χρήση της Ευκλείδειας απόστασης μεταξύ αυτών [6]. Επίσης, οι γειτονιές μπορεί και να αλληλοεπικαλύπτονται. Ένα σωματίδιο μπορεί να ανήκει σε περισσότερες από μία γειτονιές. Αυτή η αλληλοσύνδεση χρησιμεύει στο μοίρασμα της πληροφορίας μεταξύ των γειτονιών και διασφαλίζει ότι το σμήνος θα συγκλίνει σε ένα μοναδικό σημείο, το καθολικά βέλτιστο σωματίδιο. Ο gbest PSO είναι μια ειδική περίπτωση του lbest PSO για n N = n. Ο αλγόριθμος lbest PSO συνοψίζεται στον Αλγόριθμο 2. s Αλγόριθμος 2: lbest PSO Δημιουργία και αρχικοποίηση σμήνους σωματιδίων repeat for σωματίδιο = 1,, ns do // υπολογισμός ατομικής βέλτιστης θέσης f f ( x) < f ( y ) then y = x // υπολογισμός τοπικής βέλτιστης θέσης f f ( y ) ( ˆ < f y ) then y = y ˆ n x διαστάσεων // for for σωματίδιο = 1,, ns do ενημέρωση της ταχύτητας με χρήση της εξίσωσης (1.6) ενημέρωση της θέσης με χρήση της εξίσωσης (1.1) // for untl (συνθήκη τερματισμού αληθής) Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 22 / 167

23 Σύγκριση αλγόριθμων gbest PSO και lbest PSO Οι δύο αλγόριθμοι είναι παρόμοιοι με την έννοια ότι η κοινωνική συνιστώσα της εξίσωσης μεταβολής ταχύτητας ωθεί και τους δύο να συγκλίνουν προς το καθολικά βέλτιστο σωματίδιο. Αυτό είναι δυνατό για τον lbest PSO εξαιτίας της αλληλοεπικάλυψης των γειτονιών των σωματιδίων. Οι βασικές διαφορές των δύο προσεγγίσεων οφείλονται στα χαρακτηριστικά σύγκλισής τους και είναι οι εξής: Ο αλγόριθμος gbest PSO συγκλίνει ταχύτερα από τον lbest PSO, εξαιτίας της μεγαλύτερης διασύνδεσης μεταξύ των σωματιδίων που επιτυγχάνει. Όμως, η ταχύτερη σύγκλιση έχει ως κόστος τη μικρότερη ποικιλομορφία. Ο αλγόριθμος lbest PSO είναι λιγότερο επιρρεπής στο να οδηγείται σε τοπικά ελάχιστα, εξαιτίας ακριβώς της μεγαλύτερης ποικιλομορφίας που επιδεικνύει, η οποία έχει ως αποτέλεσμα την κάλυψη μεγαλύτερου μέρους του χώρου αναζήτησης Δομές Κοινωνικής Δικτύωσης Το χαρακτηριστικό που οδηγεί τη Βελτιστοποίηση Σμήνους Σωματιδίων είναι η κοινωνική αλληλεπίδραση. Τα σωματίδια του σμήνους μαθαίνουν το ένα από το άλλο και με βάση τη γνώση αυτή κινούνται για να μοιάσουν στους «καλύτερους» γείτονές τους. Η κοινωνική δομή της Βελτιστοποίησης Σμήνους Σωματιδίων καθορίζεται από το σχηματισμό αλληλοεπικαλυπτόμενων γειτονιών, στις οποίες τα σωματίδια επηρεάζουν το ένα το άλλο. Η απόδοση του PSO εξαρτάται από τη δομή του κοινωνικού δικτύου. Η ροή της πληροφορίας διά μέσου του κοινωνικού δικτύου καθορίζεται από τους εξής παράγοντες: α) το βαθμό συνδεσιμότητας μεταξύ των κόμβων (μελών) του δικτύου, β) το βαθμό συσσώρευσης (clusterng) των κόμβων και γ) τη μέση μικρότερη απόσταση μεταξύ των κόμβων. Σε ένα κοινωνικό δίκτυο υψηλής συνδεσιμότητας, τα περισσότερα μέλη του δικτύου επικοινωνούν μεταξύ τους, με αποτέλεσμα τη γρήγορη διάχυση της πληροφορίας. Αυτή οδηγεί σε ταχύτερη σύγκλιση σε μια λύση σε σχέση με ένα δίκτυο μικρότερης συνδεσιμότητας. Η ταχύτερη σύγκλιση έχει ως αντίτιμο την αυξημένη πιθανότητα εγκλωβισμού σε τοπικά ελάχιστα του χώρου αναζήτησης. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 23 / 167

24 Σε ένα κοινωνικό δίκτυο χαμηλής συνδεσιμότητας, με υψηλό βαθμό συσσώρευσης των σωματιδίων στις γειτονιές, ο χώρος αναζήτησης δεν καλύπτεται επαρκώς, με αποτέλεσμα την αδυναμία εύρεσης των βέλτιστων λύσεων. Οι σημαντικότερες δομές κοινωνικής δικτύωσης είναι οι εξής [5], [2]: Η κοινωνική δομή αστέρα (star), στην οποία τα σωματίδια συνδέονται όπως απεικονίζεται στο Σχήμα 2(a). Στην περίπτωση αυτή, κάθε σωματίδιο επικοινωνεί με όλα τα άλλα σωματίδια και έλκεται προς τη βέλτιστη λύση που υπολογίζεται από το σύνολο του σμήνους. Η κοινωνική δομή δακτυλίου (rng), όπου κάθε σωματίδιο επικοινωνεί με τους n N άμεσους γείτονές του. Η περίπτωση n N = 2, όπου κάθε σωματίδιο επικοινωνεί με τους πλησιέστερους γείτονές του, απεικονίζεται στο Σχήμα 2(b). Κάθε σωματίδιο επιχειρεί να μοιάσει στο βέλτιστο γείτονά του, κινούμενο προς τη βέλτιστη λύση που υπολογίζεται στη γειτονιά του. Στην περίπτωση της δομής δακτυλίου, οι γειτονιές αλληλοεπικαλύπτονται, το οποίο επιτρέπει την ανταλλαγή πληροφορίας μεταξύ τους και τελικά τη σύγκλιση σε μια μοναδική λύση. Επειδή η ροή της πληροφορίας γίνεται με μικρότερο ρυθμό, η σύγκλιση είναι πιο αργή, αλλά καλύπτονται μεγαλύτερα τμήματα του χώρου αναζήτησης σε σύγκριση με τη δομή αστέρα. Η κοινωνική δομή τροχού (wheel), στην οποία τα σωματίδια μιας γειτονιάς είναι απομονωμένα το ένα από το άλλο. Ένα σωματίδιο λειτουργεί ως κεντρικό σημείο και η πληροφορία μεταδίδεται διά μέσου του σωματιδίου αυτού (βλέπε Σχήμα 2(c)). Το κεντρικό σωματίδιο συγκρίνει την απόδοση όλων των σωματιδίων της γειτονιάς και ρυθμίζει τη θέση του προς το βέλτιστο γείτονα. Αν η νέα θέση του κεντρικού σωματιδίου βελτιώνει την απόδοση, τότε η μεταβολή μεταδίδεται σε όλα τα σωματίδια της γειτονιάς. Η κοινωνική δομή τροχού επιβραδύνει τη διάδοση των καλών λύσεων μέσα στο σμήνος. Η κοινωνική δομή πυραμίδας (pyramd), η οποία σχηματίζει ένα τρισδιάστατο πλαίσιο, όπως απεικονίζεται στο Σχήμα 2(d). H κοινωνική δομή τεσσάρων συσσωρεύσεων (four clusters), η οποία απεικονίζεται στο Σχήμα 2(e). Σε αυτήν, σχηματίζονται τέσσερις συσσωρεύσεις, με δύο συνδέσεις μεταξύ τους. Τα σωματίδια κάθε συσσώρευσης έχουν πέντε γείτονες. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 24 / 167

25 Η κοινωνική δομή Von Neumann, στην οποία τα σωματίδια συνδέονται σε μια δομή πλέγματος, όπως απεικονίζεται στο Σχήμα 2(f). Σχήμα 2: Δομές κοινωνικής δικτύωσης Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 25 / 167

26 Οι γειτονιές συνήθως καθορίζονται με βάση τους δείκτες των σωματιδίων. Για παράδειγμα, για τον αλγόριθμο lbest PSO με n N = 2, η γειτονιά ενός σωματιδίου αποτελείται από τα σωματίδια με δείκτες 1, και + 1. Επίσης, μπορεί να καθοριστεί με βάση την Ευκλείδεια απόσταση μεταξύ των σωματιδίων Παραλλαγές του Αλγόριθμου Βελτιστοποίησης Σμήνους Σωματιδίων Ένας αριθμός από τροποποιήσεις στο βασικό αλγόριθμο Βελτιστοποίησης Σμήνους Σωματιδίων έχουν αναπτυχθεί με στόχο τη βελτίωση τόσο της ταχύτητας σύγκλισής του όσο και της ποιότητας των αποτελεσμάτων που παράγει. Οι κυριότερες από τις τροποποιήσεις αυτές παρουσιάζονται στη συνέχεια Αποκοπή ταχύτητας (velocty clampng) Οι εξισώσεις μεταβολής της ταχύτητας (1.2) και (1.6) αποτελούνται από τρεις όρους οι οποίοι συμβάλλουν στο μέγεθος βήματος των σωματιδίων. Από τις πρώτες εφαρμογές του βασικού αλγόριθμου PSO έχει παρατηρηθεί ότι η ταχύτητα γρήγορα λαμβάνει μεγάλες τιμές, ιδιαίτερα για σωματίδια που βρίσκονται μακριά από τη βέλτιστη θέση γειτονιάς τους (lbest poston) και τη βέλτιστη ατομική τους θέση (pbest poston). Αυτό έχει ως συνέπεια τα σωματίδια να αποκτούν μεγάλες μεταβολές θέσης και να αποκλίνουν από το χώρο αναζήτησης. Για να αποφευχθεί αυτό, οι ταχύτητες αποκόπτονται για να παραμένουν μέσα σε συγκεκριμένα χωρικά όρια [7]. Έτσι, αν η ταχύτητα ενός σωματιδίου υπερβεί μια καθορισμένη μέγιστη ταχύτητα, ως ταχύτητα του σωματιδίου τίθεται η μέγιστη ταχύτητα. Έστω V max, j η μέγιστη επιτρεπτή ταχύτητα στη διάσταση j. Τότε, η ταχύτητα του σωματιδίου καθορίζεται ως εξής: v j ( t 1) ( 1, ) ( 1), ( 1) v t+ v t+ < V + = V v t+ V j j max, j max, j j max, j (1.9) όπου η ταχύτητα v j υπολογίζεται με βάση την εξίσωση (1.2) ή (1.6). Η τιμή V max, j είναι πολύ σημαντική γιατί καθορίζει την αναλυτικότητα του χώρου αναζήτησης. Μεγάλες τιμές της V max, j ευνοούν την καθολική εξερεύνηση (global Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 26 / 167

27 exploraton), ενώ μικρές τιμές της ενθαρρύνουν την τοπική εκμετάλλευση (local explotaton) του χώρου αναζήτησης. Οι τιμές V max, j συνήθως επιλέγονται να είναι ένα κλάσμα του πεδίου τιμών της κάθε διάστασης του χώρου αναζήτησης. Δηλαδή, ( ) V = δ x x (1.10) max, j max, j mn, j όπου x max, j, x mn, j είναι αντίστοιχα η μέγιστη και η ελάχιστη τιμή του πεδίου ορισμού του x στη διάσταση j και δ ( 0,1]. Η επιλογή του δ εξαρτάται από το πρόβλημα Βάρος Αδράνειας (Inerta Weght) Το βάρος αδράνειας έχει εισαχθεί ως ένας μηχανισμός ελέγχου των δυνατοτήτων εξερεύνησης και εκμετάλλευσης ενός σμήνους σωματιδίων, καθώς και για την εξάλειψη της ανάγκης χρησιμοποίησης της μεθόδου αποκοπής ταχύτητας [8], [9]. Το βάρος αδράνειας w ελέγχει την ορμή ενός σωματιδίου με την προσθήκη ενός συντελεστή βαρύτητας στη συνεισφορά της προηγούμενης ταχύτητάς του. Για τον αλγόριθμο gbest PSO, η εξίσωση μεταβολής της ταχύτητας (1.2) τροποποιείται ως εξής: v ( t 1) wv () t cr () t y () t x () t c r () t y () t x () t (1.11) ˆ j + = j + 11j j j + 2 2j j j Παρόμοια τροποποίηση γίνεται και στην εξίσωση μεταβολής της ταχύτητας του αλγόριθμου lbest PSO. Η τιμή του w είναι εξαιρετικά σημαντική τόσο για τη διασφάλιση της σύγκλισης του αλγόριθμου, όσο και για τη βέλτιστη ισορροπία μεταξύ των δυνατοτήτων του για εξερεύνηση και εκμετάλλευση. Για τιμές w 1, οι ταχύτητες αυξάνονται με το χρόνο και ο αλγόριθμος αποκλίνει. Για τιμές w < 1, τα σωματίδια επιβραδύνονται μέχρι οι ταχύτητές τους να φτάσουν την τιμή μηδέν. Στην περίπτωση αυτή, μεγάλες τιμές του w διευκολύνουν την εξερεύνηση, ενώ μικρές τιμές προωθούν την τοπική εκμετάλλευση. Όσο μικρότερη είναι η τιμή του w, τόσο περισσότερο η γνωσιακή και η κοινωνική συνιστώσα ελέγχουν τις μεταβολές θέσης ενός σωματιδίου. Ελληνικό Ανοικτό Πανεπιστήμιο: ΠΛΗΣ Διπλωματική Εργασία 27 / 167

ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΚΑΛΥΨΗ ΠΛΗΡΟΦΟΡΙΑΣ ΠΛΑΙΣΙΟΥ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΜΗΝΟΥΣ ΣΩΜΑΤΙΔΙΩΝ ΚΑΙ ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΗΣ ΠΑΥΣΗΣ

ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΚΑΛΥΨΗ ΠΛΗΡΟΦΟΡΙΑΣ ΠΛΑΙΣΙΟΥ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΜΗΝΟΥΣ ΣΩΜΑΤΙΔΙΩΝ ΚΑΙ ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΗΣ ΠΑΥΣΗΣ ΕΞΕΙΔΙΚΕΥΣΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΑΚΑΛΥΨΗ ΠΛΗΡΟΦΟΡΙΑΣ ΠΛΑΙΣΙΟΥ: ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΜΗΝΟΥΣ ΣΩΜΑΤΙΔΙΩΝ ΚΑΙ ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΗΣ ΠΑΥΣΗΣ ΓΚΑΡΤΖΟΝΙΚΑΣ ΑΝΔΡΕΑΣ & ΘΕΟΧΑΡΑΤΟΣ ΔΗΜΗΤΡΗΣ ΕΠΙΒΛΕΠΩΝ:

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ»

ΣΗΜΕΙΩΣΕΙΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ» ΣΗΜΕΙΩΣΕΙΣ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ» Κωνσταντίνος Π. Φερεντίνος Διδάσκων ΠΔ 407/80 Οι σημειώσεις αυτές αναπτύχθηκαν στα πλαίσια του προγράμματος «ΕΠΕΑΕΚ 2 Πρόγραμμα Αναβάθμισης

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Συμπίεση Πληροφορίας Πλαισίου: χρήση του Αυτοπαλίνδρομου Υποδείγματος για επίτευξη Αποδοτικών Ασύρματων Επικοινωνιών

Συμπίεση Πληροφορίας Πλαισίου: χρήση του Αυτοπαλίνδρομου Υποδείγματος για επίτευξη Αποδοτικών Ασύρματων Επικοινωνιών ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Συμπίεση Πληροφορίας Πλαισίου: χρήση του Αυτοπαλίνδρομου Υποδείγματος για επίτευξη Αποδοτικών

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Συμπεράσματα Κεφάλαιο 7.

Συμπεράσματα Κεφάλαιο 7. 7. ΣΥΜΠΕΡΑΣΜΑΤΑ Ο κύριος στόχος της παρούσας διατριβής ήταν η προσομοίωση της σεισμικής κίνησης με τη χρήση τρισδιάστατων προσομοιωμάτων για τους εδαφικούς σχηματισμούς της ευρύτερης περιοχής της Θεσσαλονίκης.

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες

Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες Πτυχιακή εργασία Φοιτήτρια: Ριζούλη Βικτώρια

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

Συσχετιστικές Μνήμες Δίκτυο Hopfield. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Συσχετιστικές Μνήμες Δίκτυο Hopfield. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Συσχετιστικές Μνήμες Δίκτυο Hopfield Συσχετιστική Μνήμη Η ανάκληση ενός γεγονότος σε μία χρονική στιγμή προκαλείται από τη συσχέτιση αυτού του γεγονότος με κάποιο ερέθισμα. Πολλές φορές επίσης καλούμαστε

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ ΔΠΜΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ Ακαδημαϊκό Έτος: 2015-2016 / Εαρινό Εξάμηνο 1/30 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ Καθηγήτρια Φούντη Μαρία Γενικευμένη Εξίσωση Μεταφοράς

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων 5269: Υπολογιστικές Μέθοδοι για Μηχανικούς Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων http://ecourseschemengntuagr/courses/computational_methods_for_engineers/ Συστήματα Γραμμικών Αλγεβρικών Εξισώσεων Γενικά:

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS

ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΑΠΟΙΚΙΑΣ ΜΥΡΜΗΓΚΙΩΝ ANT COLONY OPTIMIZATION METHODS Χρήστος Δ. Ταραντίλης Αν. Καθηγητής ΟΠΑ ACO ΑΛΓΟΡΙΘΜΟΙ Η ΛΟΓΙΚΗ ΑΝΑΖΗΤΗΣΗΣ ΛΥΣΕΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΙΑΤΑΞΗΣ (1/3) Ε..Ε. ΙΙ Oι ACO

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάπτυξη μιας προσαρμοστικής πολιτικής αντικατάστασης αρχείων, με χρήση

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας 215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας Το Τμήμα ασχολείται με τη διδασκαλία και την έρευνα στην επιστήμη και τεχνολογία των υπολογιστών και τη μελέτη των εφαρμογών τους. Το Τμήμα ιδρύθηκε το 1980 (ως

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Αλγόριθµοι Εκτίµησης Καθυστέρησης και

Αλγόριθµοι Εκτίµησης Καθυστέρησης και Αλγόριθµοι Εκτίµησης Καθυστέρησης και Βελτιστοποίησης Εισαγωγή Το κύριο πρόβληµα στην σχεδίαση κυκλωµάτων είναι η επίτευξη της µέγιστης απόδοσης για την δεδοµένη τεχνολογία. Μεγιστοποίηση απόδοσης: (α)

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Υλοποίηση τεχνικών για την αποφυγή συμφόρησης σε τοπικά ασύρματα δίκτυα αισθητήρων

Υλοποίηση τεχνικών για την αποφυγή συμφόρησης σε τοπικά ασύρματα δίκτυα αισθητήρων Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Ηλεκτρονικής και Υπολογιστών Εργαστήριο Ηλεκτρονικών Εφαρμογών Υλοποίηση τεχνικών για την αποφυγή συμφόρησης σε τοπικά

Διαβάστε περισσότερα

Επαναληπτικές μέθοδοι

Επαναληπτικές μέθοδοι Επαναληπτικές μέθοδοι Η μέθοδος της διχοτόμησης και η μέθοδος Regula Fals που αναφέραμε αξιοποιούσαν το κριτήριο του Bolzano, πραγματοποιώντας διαδοχικές υποδιαιρέσεις του διαστήματος [α, b] στο οποίο,

Διαβάστε περισσότερα

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη Σάββας Νικολαΐδης 1 ο

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές

Διαβάστε περισσότερα

Κινητά Δίκτυα Υπολογιστών

Κινητά Δίκτυα Υπολογιστών Κινητά Δίκτυα Υπολογιστών Καθ. Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εξοικείωση του φοιτητή με την έννοια της προσαρμοστικής ισοστάθμισης καναλιού 2 Περιεχόμενα

Διαβάστε περισσότερα

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 7: Εισαγωγή στη Θεωρία Αποφάσεων Δέντρα Αποφάσεων Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο

On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή

Διαβάστε περισσότερα

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Το ελικόπτερο Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι

Διαβάστε περισσότερα

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. Μέθοδοι που απαιτούν

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

Τεράστιες ανάγκες σε αποθηκευτικό χώρο

Τεράστιες ανάγκες σε αποθηκευτικό χώρο ΣΥΜΠΙΕΣΗ Τεράστιες ανάγκες σε αποθηκευτικό χώρο Παράδειγμα: CD-ROM έχει χωρητικότητα 650MB, χωρά 75 λεπτά ασυμπίεστου στερεοφωνικού ήχου, αλλά 30 sec ασυμπίεστου βίντεο. Μαγνητικοί δίσκοι χωρητικότητας

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης

Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης Η οικολογία μάθησης για τους υπολογιστές ΙII: Η δική σας οικολογία μάθησης Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Ιανουάριος 2011 Ψυχομετρία Η κατασκευή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΜΕΙΟΝΕΚΤΗΜΑ

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

3. Προσομοίωση ενός Συστήματος Αναμονής.

3. Προσομοίωση ενός Συστήματος Αναμονής. 3. Προσομοίωση ενός Συστήματος Αναμονής. 3.1. Διατύπωση του Προβλήματος. Τα συστήματα αναμονής (queueing systems), βρίσκονται πίσω από τα περισσότερα μοντέλα μελέτης της απόδοσης υπολογιστικών συστημάτων,

Διαβάστε περισσότερα

Ονοματεπώνυμο: Α.Μ. Μέθοδοι Διδασκαλίας Φυσικής

Ονοματεπώνυμο: Α.Μ. Μέθοδοι Διδασκαλίας Φυσικής Ονοματεπώνυμο: Α.Μ. Αθήνα, 28 IAN 2016 Υποθέστε ότι πρόκειται να διδάξετε σε μαθητές Λυκείου τα φαινόμενα: της θέρμανσης και της φωτοβολίας μεταλλικού αγωγού που διαρρέεται από ηλεκτρικό ρεύμα. Περιγράψτε

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή

Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Ταυτότητα Σεναρίου Τίτλος: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Γνωστικό Αντικείμενο: Πληροφορική Διδακτική Ενότητα: Ελέγχω-Προγραμματίζω τον Υπολογιστή

Διαβάστε περισσότερα

Δειγματοληψία στην Ερευνα. Ετος

Δειγματοληψία στην Ερευνα. Ετος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Αγροτικής Οικονομίας & Ανάπτυξης Μέθοδοι Γεωργοοικονομικής και Κοινωνιολογικής Ερευνας Δειγματοληψία στην Έρευνα (Μέθοδοι Δειγματοληψίας - Τρόποι Επιλογής Τυχαίου Δείγματος)

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΩΝ Ενότητα 3: Συστήματα Αυτόματου Ελέγχου Διδάσκων: Γεώργιος Στεφανίδης Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Σκοποί ενότητας Στην ενότητα αυτή θα ασχοληθούμε με τα Συστήματα

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ

ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡOΦΟΡΙΚΗΣ ΤΕ ΜΕΛΕΤΗ ΓΝΩΣΤΙΚΩΝΝ ΡΑΔΙΟΣΥΣΤΗΜΑΤΩΝ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΟΥ ΖΗΣΚΑ ΠΑΝΑΓΙΩΤΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ ΕΥΣΤΑΘΙΟΥ ΔΗΜΗΤΡΙΟΣ ΕΠΙΣΚΟΠΗΣΗ ΠΑΡΟΥΣΙΑΣΗΣ Σκοπός Πτυχιακής Εργασίας

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης

Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης Παράλληλη Επεξεργασία Κεφάλαιο 7 ο Αρχιτεκτονική Συστημάτων Κατανεμημένης Μνήμης Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου

J-GANNO. Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β, Φεβ.1998) Χάρης Γεωργίου J-GANNO ΓΕΝΙΚΕΥΜΕΝΟ ΠΑΚΕΤΟ ΥΛΟΠΟΙΗΣΗΣ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΙΚΤΥΩΝ ΣΤΗ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ JAVA Σύντοµη αναφορά στους κύριους στόχους σχεδίασης και τα βασικά χαρακτηριστικά του πακέτου (προέκδοση 0.9Β,

Διαβάστε περισσότερα

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Τσάπελη Φανή ΑΜ: 2004030113. Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά Τσάπελη Φανή ΑΜ: 243113 Ενισχυτική Μάθηση για το παιχνίδι dots Τελική Αναφορά Περιγραφή του παιχνιδιού Το παιχνίδι dots παίζεται με δύο παίχτες. Έχουμε έναν πίνακα 4x4 με τελείες, και σκοπός του κάθε παίχτη

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν

Διαβάστε περισσότερα

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ΕΠΑΝΑΛΗΠΤΙΚΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ o ΕΠΑΝΑΛΗΠΤΙΚΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Θέμα ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ) Σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 10: Συναγωγή και διάχυση (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Ολοκληρώσαμε

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ

ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ ΒΕΛΤΙΣΤΕΣ ΙΑ ΡΟΜΕΣ ΣΕ ΙΚΤΥΑ ΜΕΤΑΒΛΗΤΟΥ ΚΟΣΤΟΥΣ Μωυσιάδης Πολυχρόνης, Ανδρεάδης Ιωάννης Τμήμα Μαθηματικών Α.Π.Θ. ΠΕΡΙΛΗΨΗ Στην εργασία αυτή παρουσιάζεται μία μελέτη για την ελάχιστη διαδρομή σε δίκτυα μεταβλητού

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Κλασικοί Ευρετικοί Classical Heuristics Κατασκευαστικοί Ευρετικοί Αλγόριθµοι

Διαβάστε περισσότερα