ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ"

Transcript

1 ΚΕΦΑΛΑΙΟ 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 1.1 Μονάδες και σύμβολα φυσικών μεγεθών Πριν προχωρήσουμε στη μελέτη των βασικών νόμων του ηλεκτροστατικού πεδίου κρίνουμε σκόπιμο να κάνουμε μια σύντομη αναφορά στους συμβολισμούς και τα συστήματα μονάδων που θα χρησιμοποιηθούν σ όλη, σχεδόν, την έκταση του παρόντος βιβλίου. Ως γνωστόν, για τον ποσοτικό προσδιορισμό των διαφόρων φυσικών μεγεθών απαιτείται να οριστούν οι μονάδες των αντίστοιχων μεγεθών. Η αναγραφή του συμβόλου ενός φυσικού μεγέθους εκφράζει, εξ ορισμού, το γινόμενο της αριθμητικής του τιμής, δηλαδή του μέτρου του, και της αντίστοιχης μονάδας. Αν και οι μονάδες μέτρησης όλων των φυσικών μεγεθών μπορούν να εκλεγούν ελεύθερα, εντούτοις, για την απλούστερη διατύπωση των μαθηματικών σχέσεων που περιγράφουν τους διάφορους φυσικούς νόμους, είναι σκόπιμο να χρησιμοποιούνται συγκεκριμένες μονάδες στις οποίες θα εκφράζονται τόσο τα γνωστά όσο και τα ζητούμενα μεγέθη. Έτσι, και επειδή τα διάφορα φυσικά μεγέθη συνδέονται μεταξύ τους με μαθηματικές σχέσεις που περιγράφουν φυσικούς νόμους ή φαινόμενα, κρίνεται απαραίτητη η υιοθέτηση ενός ενιαίου συστήματος μονάδων που θα χρησιμοποιεί τον ελάχιστο δυνατό αριθμό βασικών μεγεθών αναφοράς. Οι μονάδες αυτές των μεγεθών αναφοράς ονομάζονται βασικές ή θεμελιώδεις, ενώ οι μονάδες των υπόλοιπων φυσικών μεγεθών, που προκύπτουν από τις βασικές μονάδες, ονομάζονται παράγωγες ή δευτερεύουσες. Στη μηχανική, ως γνωστόν, το απλούστερο αλλά και συγχρόνως το πλέον εύχρηστο σύστημα αναφοράς είναι το τριαδικό σύστημα που χρησιμοποιεί ως βασικά μεγέθη ή διαστάσεις το μήκος (L), τη μάζα (M) και το χρόνο (T ). Όλα τα άλλα μεγέθη της μηχανικής προκύπτουν από τα πιο πάνω τρία. Έτσι, για παράδειγμα, η επιφάνεια S εκφράζεται ως [S] = (μήκος) 2 (ή [S] = L 2 ) και η δύναμη F ως [F ] = (μήκος) (μάζα) (χρόνος) 2 (ή [F ] = LMT 2 ).

2 8 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ Κρίνουμε σκόπιμο στο σημείο αυτό να υπενθυμίσουμε τη βασική αρχή της διαστασιακής ανάλυσης, σύμφωνα με την οποία σε οποιαδήποτε μαθηματική εξίσωση, που περιγράφει κάποιο φυσικό νόμο ή φαινόμενο, πρέπει να υπάρχει ταυτότητα διαστάσεων στα δύο μέλη. Το πιο πάνω σύστημα αναφοράς, όμως, δεν επαρκεί για την ακριβή περιγραφή και των μεγεθών του ηλεκτρομαγνητισμού. Για τη δημιουργία ενός πλήρους συστήματος, που να μπορεί να συμπεριλάβει και όλα τα ηλεκτρικά και μαγνητικά μεγέθη, απαιτείται η επέκταση του πιο πάνω τριαδικού συστήματος σ ένα τετραδικό σύστημα, που θα έχει ως τέταρτο βασικό μέγεθος (ή τέταρτη διάσταση) ένα καθαρά ηλεκτρικό (ή μαγνητικό) μέγεθος όπως π.χ. το ηλεκτρικό ρεύμα ή το ηλεκτρικό φορτίο. Στην περίπτωση όπου ως τέταρτο βασικό (θεμελιώδες) μέγεθος επιλέγεται το ηλεκτρικό ρεύμα (ή το ηλεκτρικό φορτίο), χρησιμοποιείται αντίστοιχα προς τα διαστασιακά σύμβολα L, M, T το σύμβολο I (ή Q). Έτσι, όλα τα μεγέθη του ηλεκτρομαγνητισμού μπορούν να προκύψουν από τα πιο πάνω τέσσερα θεμελιώδη μεγέθη και να αναλυθούν στις τέσσερις βασικές διαστάσεις L, M, T, I. Μέχρι σήμερα έχουν, κατά καιρούς, προταθεί διάφορα συστήματα μονάδων. Οι απαιτήσεις, όμως, και οι ανάγκες της σύγχρονης επιστήμης και τεχνολογίας επέβαλαν την αποκλειστική σχεδόν χρησιμοποίηση δύο μόνο συστημάτων: του συστήματος μονάδων CGS (ή συστήματος μονάδων Gauss) και του κανονικοποιημένου συστήματος μονάδων MKSA (ή Διεθνούς Συστήματος Μονάδων (SI)). Το σύστημα CGS, που το όνομά του προέρχεται από τα αρχικά των βασικών μονάδων Centimeter (εκατοστόμετρο μήκους), Gram (γραμμάριο μάζας) και Second (δευτερόλεπτο χρόνου), είναι το αρχαιότερο, και έστω περιορισμένα χρησιμοποιείται ακόμη και σήμερα, στην κλασική κυρίως φυσική. Το σύστημα MKSA που έλαβε το όνομά του από τα αρχικά των βασικών μονάδων Meter (μέτρο μήκους), Kilogram (χιλιόγραμμο μάζας), Second (δευτερόλεπτο χρόνου) και Ampère (Αμπέρ ηλεκτρικού ρεύματος), έχει προταθεί από το 1948 και χρησιμοποιείται ευρύτατα στην εφαρμοσμένη φυσική και, σχεδόν κατ αποκλειστικότητα, στον εφαρμοσμένο ηλεκτρομαγνητισμό. Επειδή το σύστημα αυτό υιοθετείται και στο παρόν βιβλίο, κρίνουμε σκόπιμο να προτάξουμε στην παράγραφο αυτή τις μονάδες των κυριότερων μεγεθών που χρησιμοποιούνται στον ηλεκτρομαγνητισμό. Η προέλευση των μονάδων των μεγεθών αυτών και η φυσική τους σημασία αναλύεται με λεπτομέρεια στα οικεία κεφάλαια. Αρχικά δίνουμε τις μονάδες, στο σύστημα MKSA, των παρακάτω τριών βασικών μεγεθών της μηχανικής που χρησιμοποιούνται ευρύτατα και στα προβλήματα του ηλεκτρομαγνητισμού: Δύναμη F. Η μονάδα Newton (N) της δύναμης ορίζεται ως η δύναμη

3 1.1 ΜΟΝΑΔΕΣ ΚΑΙ ΣΥΜΒΟΛΑ ΦΥΣΙΚΩΝ ΜΕΓΕΘΩΝ 9 που απαιτείται για να προσδώσει επιτάχυνση 1 m/s 2 σε μια μάζα 1 Kg 1 N = 1 Kg m s 2 (1.1) Έργο-Ενέργεια W. Μονάδα έργου (ή ενέργειας) είναι το Joule (J), που ορίζεται ως το έργο μιας δύναμης 1 N κατά την παράλληλη μετατόπιση του σημείου εφαρμογής της σε απόσταση 1 m 1 J = 1 Nm = 1 Kg m2 s 2 (1.2) Ισχύς P. Η μονάδα Watt (W) της ισχύος ορίζεται ως η ισχύς που αντιστοιχίζεται στην παραγωγή έργου 1 J σε χρονικό διάστημα 1 s, δηλαδή 1 W = 1 J s = 1 Nm s = 1 Kg m2 s 3 (1.3) Στη συνέχεια, δίνουμε τις μονάδες μερικών χαρακτηριστικών μεγεθών του ηλεκτρομαγνητικού πεδίου και τις αντίστοιχες σχέσεις ορισμού από τις οποίες προκύπτουν: Ένταση ηλεκτρικού ρεύματος I. Η βασική (θεμελιώδης) μονάδα της έντασης του ηλεκτρικού ρεύματος, το Ampère (A), ορίζεται ως η ένταση ενός συνεχούς ηλεκτρικού ρεύματος που, όταν διαρρέει δύο ευθύγραμμους, παράλληλους, άπειρου μήκους αγωγούς που βρίσκονται σε απόσταση 1 m μέσα στον κενό χώρο, προκαλεί την ανάπτυξη μιας δύναμης μεταξύ των αγωγών ίσης προς N ανά μέτρο μήκους των αγωγών. Ηλεκτρικό φορτίο Q. Μονάδα του ηλεκτρικού φορτίου είναι το Coulomb (C) και ορίζεται ως η ποσότητα του ηλεκτρισμού (φορτίου) που διέρχεται σε 1 s από οποιαδήποτε διατομή αγωγού όταν διαρρέεται από συνεχές ηλεκτρικό ρεύμα έντασης 1 A. Έχουμε, δηλαδή 1 C = 1 As (1.4) Ηλεκτρική τάση U. Η μονάδα Volt (V) της ηλεκτρικής τάσης ορίζεται ως η τάση που υπάρχει ανάμεσα σε δύο σημεία, όταν κατά τη ροή ενός συνεχούς ηλεκτρικού ρεύματος έντασης 1 A, από το ένα σημείο στο άλλο, καταναλίσκεται ισχύς ίση προς 1 W. Επίσης, το Volt μπορεί να οριστεί και ως η τάση μεταξύ δύο σημείων, όταν για τη μεταφορά φορτίου 1 C από το ένα σημείο στο άλλο, απαιτείται καταβολή έργου ίσου προς 1 J. Έχουμε, συνεπώς, 1 V = 1 W A = 1 J C = 1 Kg m2 As 3 (1.5)

4 10 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ Όπως θα δούμε αργότερα, την ίδια μονάδα χρησιμοποιούμε και για τη μέτρηση του βαθμωτού ηλεκτρικού δυναμικού ϕ. Ηλεκτρική πεδιακή ένταση E. Η μονάδα της ηλεκτρικής πεδιακής έντασης ορίζεται ως η ένταση ενός ομογενούς ηλεκτρικού πεδίου που εκτείνεται στο κενό και που εμφανίζει πτώση τάσης 1 V σε απόσταση 1 m κατά μήκος οποιασδήποτε δυναμικής γραμμής. Επίσης, η μονάδα της ηλεκτρικής πεδιακής έντασης μπορεί να οριστεί και ως η ένταση του ηλεκτρικού πεδίου που ασκεί δύναμη 1 N σε σημειακό φορτίο 1 C. Ισχύει, δηλαδή, σύμφωνα με τα παραπάνω, η 1 μονάδα E = 1 V m = 1 N C = 1 Kg m As 3 (1.6) Διηλεκτρική μετατόπιση D. Η μονάδα της διηλεκτρικής μετατόπισης ορίζεται ως η διηλεκτρική μετατόπιση που δημιουργείται στον χώρο μεταξύ των πλακών ενός επίπεδου πυκνωτή, όταν οι πλάκες του εκτείνονται μέχρι το άπειρο και είναι ομοιόμορφα φορτισμένες με φορτίο 1 C ανά m 2 επιφάνειας: 1 μονάδα D = 1 C m 2 = 1 As m 2 (1.7) Χωρητικότητα C. Μονάδα της χωρητικότητας είναι το Farad (F) και ορίζεται ως η χωρητικότητα ενός πυκνωτή στους οπλισμούς του οποίου εμφανίζεται φορτίο 1 C όταν επιβληθεί σ αυτούς διαφορά δυναμικού 1 V: 1 F = 1 C V = 1 A2 s 4 Kg m 2 (1.8) Ηλεκτρική αντίσταση R. Η μονάδα Ohm (Ω) της αντίστασης ορίζεται ως η αντίσταση ενός αγωγού που διαρρέεται από συνεχές ρεύμα έντασης 1 A όταν στα άκρα του εφαρμόζεται συνεχής τάση 1 V: 1 Ω = 1 V A = 1 W Kg m2 = 1 A2 A 2 s 3 (1.9) Ηλεκτρική αγωγιμότητα G. Μονάδα της αγωγιμότητας G που ορίζεται από τη σχέση G = 1/R, είναι το Siemens (ή mho ή ): 1 S 1 1 mho 1 Ω = 1 A V = 1 A2 W = 1 A2 s 3 Kg m 2 (1.10) Ειδική αντίσταση ρ. Η μονάδα της ειδικής αντίστασης ρ προκύπτει από τη σχέση R = ρl/s που δίνει την ωμική αντίσταση ενός αγωγού μήκους l και διατομής S, δηλαδή 1 μονάδα ρ = 1 Ω m = 1 Vm A = 1 Wm A 2 = 1 Kg m3 A 2 s 3 (1.11)

5 1.1 ΜΟΝΑΔΕΣ ΚΑΙ ΣΥΜΒΟΛΑ ΦΥΣΙΚΩΝ ΜΕΓΕΘΩΝ 11 Ειδική αγωγιμότητα σ. Η ειδική αγωγιμότητα σ είναι το αντίστροφο μέγεθος της ειδικής αντίστασης ρ, συνεπώς, ΣΗΜΕΙΩΣΗ 1 μονάδα σ = 1 Ωm = 1 A Vm = 1 A2 Wm = 1 A2 s 3 Kg m 3 (1.12) Όπως φαίνεται από τις πιο πάνω σχέσεις και ειδικότερα από τις (1.3) και (1.5), οι μονάδες W της ισχύος και J του έργου (ή της ενέργειας) εκφράζονται, συναρτήσει ηλεκτρικών μεγεθών, και από τις σχέσεις και 1 W = 1 VA (1.13) 1 J = 1 Ws = 1 VAs, (1.14) που, εκτός από τον χρόνο, περιέχουν μονάδες μόνον ηλεκτρικών μεγεθών. Διηλεκτρική σταθερά ϵ. Σ ένα ομογενές, γραμμικό και ισότροπο μέσο η διηλεκτρική μετατόπιση D και η ηλεκτρική πεδιακή ένταση E συνδέονται με τη σχέση D = ϵe, όπου η σταθερά ϵ εκφράζει τη διηλεκτρική σταθερά του μέσου. Έτσι, με βάση τις (1.6), (1.7) και (1.8) έχουμε 1 μονάδα ϵ = 1 As Vm = 1 F m = 1 A2 s 4 Kg m 3 (1.15) Η τιμή της διηλεκτρικής σταθεράς στο κενό είναι ϵ 0 = 8, F m 1 36π 10 9 F m (1.16) Μαγνητική ροή Φ. Όπως θα δούμε αργότερα, η τάση U που αναπτύσσεται εξ επαγωγής στους ακροδέκτες ενός συρμάτινου βρόχου δίνεται, σύμφωνα με τον νόμο του Faraday, από την U = dφ dt, (1.17) όπου στη διαφορική χρονική μεταβολή dt αντιστοιχεί η διαφορική μεταβολή dφ της μαγνητικής ροής Φ που διέρχεται από οποιαδήποτε επιφάνεια που περατώνεται στον βρόχο. Η μονάδα της μαγνητικής ροής ορίζεται από την (1.17) και ονομάζεται Weber (Wb). Με βάση, λοιπόν, τις (1.17) και (1.5) έχουμε 1 Wb = 1 Vs = 1 Kg m2 As 2 (1.18)

6 12 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ Μαγνητική επαγωγή B. Μονάδα της μαγνητικής επαγωγής είναι το Tesla (T), που ορίζεται ως η μαγνητική επαγωγή ενός ομογενούς μαγνητικού πεδίου που εμφανίζει ροή 1 Wb σε 1 m 2 επιφάνειας, τοποθετημένης κάθετα προς τη διεύθυνση των μαγνητικών γραμμών του πεδίου, δηλαδή 1 T = 1 Wb m 2 = 1 Vs m 2 = 1 Kg As 2 (1.19) Μαγνητική πεδιακή ένταση H. Η μονάδα της μαγνητικής πεδιακής έντασης μπορεί να οριστεί από την I = H dl (1.20) c που περιγράφει τον νόμο του Ampère, σύμφωνα με τον οποίο η κυκλοφορία της μαγνητικής πεδιακής έντασης κατά μήκος τυχόντος κλειστού δρόμου c είναι ίση με την ένταση του ρεύματος που εμπλέκει τον δρόμο αυτό. Έχουμε, συνεπώς, 1 μονάδα H = 1 A m (1.21) H μονάδα της μαγνητικής πεδιακής έντασης μπορεί, επίσης, να οριστεί και ως η ένταση του μαγνητικού πεδίου στον μεταξύ δύο απέραντων παράλληλων επίπεδων ταινιών χώρο, όταν οι ταινίες διαρρέονται από δύο παράλληλα, ίσα και αντίθετα επιφανειακά ρεύματα πυκνότητας 1 A/m. Αυτεπαγωγή L. Μονάδα της αυτεπαγωγής είναι το Henry (H), και ορίζεται ως η αυτεπαγωγή ενός βρόχου που όταν διαρρέεται από ρεύμα έντασης 1 A δημιουργεί σ αυτό μαγνητική ροή 1 Wb. 1 H = 1 Wb A = 1 Vs A = 1 Kg m2 A 2 s 2 (1.22) Μαγνητική διαπερατότητα µ. Σ ένα ομογενές γραμμικό και ισότροπο μέσο η μαγνητική επαγωγή και η μαγνητική πεδιακή ένταση συνδέονται με τη σχέση B = µh, όπου µ είναι η μαγνητική διαπερατότητα του μέσου. Η μονάδα της μαγνητικής διαπερατότητας, όπως φαίνεται από τις (1.19), (1.21) και (1.22) είναι, συνεπώς, η 1 μονάδα µ = 1 Wb Am = 1 Vs Am = 1 H m = 1 Kg m A 2 s 2 (1.23) Η τιμή της μαγνητικής διαπερατότητας στο κενό είναι µ 0 = 4π 10 7 H m (1.24)

7 1.2 ΠΡΟΘΕΜΑΤΑ ΦΥΣΙΚΩΝ ΜΕΓΕΘΩΝ 13 Όπως, εύκολα, μπορούμε να δούμε από τις (1.16) και (1.24), η διηλεκτρική σταθερά ϵ 0 και η μαγνητική διαπερατότητα µ 0 του κενού χώρου σχετίζονται με την ταχύτητα c = m/s του φωτός στο κενό με τη σχέση c = 1 µ0 ϵ 0 (1.25) Η (1.25), πέραν από το ότι σχετίζει δύο θεμελιακά μεγέθη του ηλεκτρισμού και μαγνητισμού, αποτελεί, συγχρόνως, μια πρώτη ένδειξη για τον ηλεκτρομαγνητικό χαρακτήρα της φωτεινής ακτινοβολίας. 1.2 Προθέματα φυσικών μεγεθών Για λόγους συντομίας, στη γραφή των αριθμητικών τιμών των διαφόρων μεγεθών χρησιμοποιούμε δεκαδικά πολλαπλάσια και υποπολλαπλάσια των αντίστοιχων μονάδων. Τα πολλαπλάσια ή υποπολλαπλάσια αυτά δηλώνονται με τη γραφή κατάλληλων προθεμάτων πριν από το σύμβολο της μονάδας. Έτσι, όταν κάποιο πρόθεμα γραφτεί μπροστά από το σύμβολο κάποιας μονάδας, τότε το σύμπλεγμα προθέματος και μονάδας θεωρείται ως νέο σύμβολο. Στον Πίνακα 1.1 αναγράφονται τα χρησιμοποιούμενα δεκαδικά πολλαπλάσια και υποπολλαπλάσια με τα ονόματα και τον συμβολισμό των αντίστοιχων προθεμάτων, ενώ τα σπανιότερα χρησιμοποιούμενα προθέματα δίνονται σε παρενθέσεις. Κατά τη χρησιμοποίηση προθεμάτων συνιστάται η αποφυγή διπλών προθεμάτων, όταν είναι δυνατή η χρησιμοποίηση ενός μόνον προθέματος. 1.3 Αγωγοί, μονωτικά υλικά, ηλεκτρικές δράσεις Όπως ήδη αναφέραμε, μια σημαντική διαφορά ανάμεσα στις δράσεις μεταξύ μαζών της μηχανικής και τις δράσεις μεταξύ ηλεκτρικών φορτίων είναι ότι, ενώ οι πρώτες είναι πάντοτε ελκτικές, οι δεύτερες εμφανίζονται άλλοτε ελκτικές και άλλοτε απωστικές. Έτσι, για παράδειγμα, ενώ μια γυάλινη ράβδος μετά από τριβή σε μάλλινο ύφασμα έλκει τεμάχιο θείου που έχει προηγουμένως ηλεκτριστεί με τριβή σε δέρμα ζώου, η ίδια ράβδος απωθεί τεμάχιο μίκας που έχει προηγουμένως ηλεκτριστεί με τριβή σε μεταξωτό ύφασμα. Γενικά, κάθε ηλεκτρισμένο σώμα ανήκει σε μια από τις ακόλουθες δύο κατηγορίες: στην πρώτη κατηγορία ανήκουν τα ηλεκτρισμένα σώματα που συμπεριφέρονται όπως η γυάλινη ράβδος, δηλαδή έλκουν το ηλεκτρισμένο θείο και απωθούν την ηλεκτρισμένη μίκα, ενώ στη δεύτερη κατηγορία ανήκουν τα ηλεκτρισμένα σώματα που εμφανίζουν αντίθετη συμπεριφορά, δηλαδή έλκουν την ηλεκτρισμένη μίκα και απωθούν το ηλεκτρισμένο θείο. Ας σημειωθεί ότι

8 14 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ ΠΙΝΑΚΑΣ 1.1: Προθέματα μονάδων Παράγοντας πολλαπλασιασμού μονάδας Πρόθεμα Συμβολισμός (10 18 ) (exa) (E) (10 15 ) (peta) (P) tera T 10 9 giga G 10 6 mega M 10 3 kilo K (10 2 ) (hecto) (h) (10) (deka) (da) (10 1 ) (deci) (d) 10 2 centi c 10 3 milli m 10 6 micro μ 10 9 nano n pico p femto f (10 18 ) (atto) (a) τρίτη κατηγορία δεν υπάρχει, δεν υπάρχουν, δηλαδή ηλεκτρισμένα σώματα που να έλκουν και το θείο και τη μίκα ή να απωθούν και τα δύο. Οι συστηματικές παρατηρήσεις και η λεπτομερής πειραματική έρευνα των πιο πάνω φαινομένων κατέληξαν στα εξής: α) Όλα τα ηλεκτρισμένα σώματα της μιας κατηγορίας έλκουν τα ηλεκτρισμένα σώματα της άλλης κατηγορίας, μεταξύ, όμως, των ηλεκτρισμένων σωμάτων της αυτής κατηγορίας ασκούνται μόνον απωστικές δράσεις. Τα ηλεκτρισμένα σώματα της πρώτης κατηγορίας θεωρούνται αυθαίρετα και συμβατικά θετικά ηλεκτρισμένα, ενώ τα ηλεκτρισμένα σώματα της δεύτερης κατηγορίας ονομάζονται αρνητικά ηλεκτρισμένα. Εκτός από την τριβή, ηλέκτριση ενός σώματος μπορεί να παρατηρηθεί και όταν τα μόρια του σώματος πλησιάσουν πάρα πολύ τα μόρια ενός άλλου σώματος. Τότε, ηλεκτρόνια αποσπούνται από τις εξωτερικές στιβάδες των ατόμων του ενός σώματος και προσαρτώνται στα γειτονικά άτομα του άλλου σώματος, όπου παραμένουν και μετά την απομάκρυνση των δύο σωμάτων. Τα σώματα στα οποία παρατηρείται έλλειψη ηλεκτρονίων αντιστοιχίζονται στα σώματα

9 1.3 ΑΓΩΓΟΙ, ΜΟΝΩΤΙΚΑ ΥΛΙΚΑ, ΗΛΕΚΤΡΙΚΕΣ ΔΡΑΣΕΙΣ 15 της πρώτης κατηγορίας (θετικά ηλεκτρισμένα) ενώ τα σώματα στα οποία παρατηρείται περίσσεια ηλεκτρονίων αντιστοιχίζονται στα σώματα της δεύτερης κατηγορίας (αρνητικά ηλεκτρισμένα). Σύμφωνα με τα παραπάνω, ηλέκτριση μπορεί να παρατηρηθεί και όταν δύο διαφορετικά σώματα πιεστούν ισχυρά μεταξύ τους, ή όταν το ένα από αυτά είναι υγρό και περιβάλλει το δεύτερο. Το πείραμα απέδειξε, επίσης, ότι το μηχανικό έργο που καταβάλλεται για την τριβή ή την πίεση, μετατρέπεται σε θερμότητα ή σε έργο παραμόρφωσης και, επομένως, δεν σχετίζεται άμεσα με το ηλεκτρικό φαινόμενο. Είναι φανερό ότι, κατά την ηλέκτριση δύο διαφορετικών σωμάτων με τριβή ή πίεση του ενός πάνω στο άλλο, τα δύο σώματα ηλεκτρίζονται ετερώνυμα, δηλαδή το ένα σώμα εμφανίζεται θετικά και το άλλο αρνητικά ηλεκτρισμένο. Έτσι, για παράδειγμα, κατά την τριβή μιας γυάλινης ράβδου με ένα μάλλινο ύφασμα, η ράβδος ηλεκτρίζεται θετικά και το ύφασμα αρνητικά. Το είδος της ηλέκτρισης κατά την τριβή (ή την ισχυρή πίεση) διαφόρων σωμάτων μπορεί να προσδιοριστεί με τη βοήθεια της ακόλουθης τριβοηλεκτρικής σειράς του Smith: 1. Δέρμα κουνελιού (+) 2. Γυαλί 3. Μίκα 4. Μαλλί 5. Δέρμα γάτας 6. Ca - Mg - Pb 7. Μέταξα 8. Al - Mn - Zn 9. Βαμβάκι 10. Ήλεκτρο 11. Ρητίνη 12. Μέταλλα (Cu, Ni, Co, Ag, κλπ.) 13. Καουτσούκ 14. Θείο 15. Μέταλλα (Pt, Au) 16. Κυτταρίνη ( ) Με βάση την παραπάνω τριβοηλεκτρική σειρά, προκύπτει ότι κατά την τριβή δύο σωμάτων ηλεκτρίζεται θετικά εκείνο που έχει τον μικρότερο αύξοντα αριθμό. Θα πρέπει, όμως, να αναφερθεί ότι η πιο πάνω κατάταξη ισχύει μόνον κατά προσέγγιση, γιατί το είδος της ηλέκτρισης εξαρτάται και από άλλους παράγοντες, όπως για παράδειγμα από τη θερμοκρασία, την υγρασία, την προηγούμενη ηλεκτρική κατάσταση των σωμάτων κλπ.

10 16 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ β) Υπάρχουν σώματα, όπως π.χ. τα μέταλλα, στα οποία η ηλέκτριση δεν εντοπίζεται αποκλειστικά στην περιοχή επαφής, όπου αρχικά εκδηλώνεται, αλλά επεκτείνεται, σχεδόν ακαριαία, σ ολόκληρη την επιφάνειά τους. Επίσης, τα σώματα αυτά είναι δυνατόν να απο-ηλεκτριστούν ακόμα και με απλή επαφή με άλλα μεταλλικά αντικείμενα. Αντίθετα, υπάρχουν σώματα, όπως π.χ. το γυαλί, στα οποία η ηλέκτριση παραμένει εντοπισμένη στην περιοχή όπου αρχικά εκδηλώνεται. Τα σώματα αυτά δεν απο-ηλεκτρίζονται όταν έλθουν σε απλή επαφή με άλλα αντικείμενα. Τα σώματα της πρώτης κατηγορίας ονομάζονται αγώγιμα σώματα ή καλοί αγωγοί ή απλώς αγωγοί, ενώ τα σώματα της δεύτερης κατηγορίας ονομάζονται κακοί αγωγοί ή μονωτικά σώματα ή απλώς μονωτήρες. Βέβαια, στη φύση δεν υπάρχουν, ούτε ιδανικοί αγωγοί, ούτε ιδανικά μονωτικά σώματα, ούτε μπορεί να υπάρξει σαφής διάκριση ανάμεσα στις δύο αυτές κατηγορίες. γ) Ένα ηλεκτρισμένο σώμα είναι είτε θετικά (έλλειψη ηλεκτρονίων), είτε αρνητικά (περίσσεια ηλεκτρονίων) ηλεκτρισμένο. Άλλο είδος ηλέκτρισης, πέραν από τη θετική και την αρνητική, δεν υπάρχει. δ) Μεταξύ δύο ηλεκτρισμένων σωμάτων ασκούνται δυνάμεις. Οι δυνάμεις αυτές είναι ελκτικές όταν τα δύο σώματα είναι ετερώνυμα ηλεκτρισμένα, ή απωστικές όταν τα δύο σώματα είναι ομώνυμα ηλεκτρισμένα. ε) Δυνάμεις δεν ασκούνται μόνο μεταξύ ηλεκτρισμένων σωμάτων αλλά και μεταξύ ενός ηλεκτρισμένου και ενός μη ηλεκτρισμένου σώματος. Οι δυνάμεις που αναπτύσσονται ανάμεσα σε ένα ηλεκτρισμένο και σε ένα αρχικά ουδέτερο σώμα είναι πάντοτε ελκτικές και οφείλονται στην εξ επαγωγής ηλέκτριση του αρχικά μη ηλεκτρισμένου σώματος. Πράγματι, τα ηλεκτρόνια του μη ηλεκτρισμένου σώματος μετακινούνται προς το μέρος του ηλεκτρισμένου σώματος αν αυτό είναι θετικά ηλεκτρισμένο ή προς το αντίθετο μέρος αν αυτό είναι αρνητικά ηλεκτρισμένο. Οι μετακινήσεις αυτές είναι πεπερασμένες αν το αρχικά ουδέτερο σώμα είναι καλός αγωγός ή μικροσκοπικές αν αυτό είναι μονωτικό. Και στις δύο, όμως, περιπτώσεις το αρχικά ουδέτερο σώμα παύει να συμπεριφέρεται ως ηλεκτρικά ουδέτερο. Έτσι, επειδή η ελκτική δύναμη που ασκεί το ηλεκτρισμένο σώμα στο πλησιέστερα προς αυτό βρισκόμενο και ετερώνυμα ηλεκτρισμένο τμήμα του άλλου σώματος είναι, σύμφωνα με τον νόμο του Coulomb που εξετάζεται στην επόμενη παράγραφο, μεγαλύτερη από την απωστική δύναμη που ασκεί το ηλεκτρισμένο σώμα στο μακρύτερα προς αυτό ευρισκόμενο και ομώνυμα ηλεκτρισμένο τμήμα του άλλου σώματος, η τελική συνισταμένη των δύο αυτών δυνάμεων είναι πάντοτε ελκτική. στ) Αν το ηλεκτρισμένο σώμα A ασκεί πάνω στο ηλεκτρισμένο σώμα B τη δύναμη F AB, τότε, σύμφωνα με την αρχή της δράσης και αντίδρασης, και το σώμα B ασκεί πάνω στο σώμα A μια δύναμη F BA (ίση και) αντίθετη προς την F AB.

11 1.4 ΝΟΜΟΣ ΤΟΥ COULOMB Νόμος του Coulomb Σύμφωνα με τα προηγούμενα, τα ηλεκτρισμένα σώματα ασκούν (και υφίστανται) δυνάμεις. Ο ακριβής, όμως, προσδιορισμός των δυνάμεων αυτών, κατά μέτρο και διεύθυνση, δεν είναι πάντοτε εύκολος. Παρά ταύτα, σε αρκετές περιπτώσεις, και υπό ορισμένες προϋποθέσεις, είναι δυνατός ο προσδιορισμός των δυνάμεων αυτών με τη βοήθεια μιας απλής μαθηματικής σχέσης, που είναι γνωστή ως νόμος του Coulomb. Στην αρχική του διατύπωση, ο νόμος του Coulomb αναφέρεται στη δύναμη που ασκείται μεταξύ δύο ηλεκτρισμένων σωμάτων που βρίσκονται στο κενό ή κατά πολύ καλή προσέγγιση στον αέρα. Αργότερα, ο νόμος αυτός γενικεύθηκε, ώστε να συμπεριλάβει και τις δυνάμεις μεταξύ ηλεκτρισμένων σωμάτων που βρίσκονται σε άλλα μονωτικά μέσα. Οι συνθήκες που πρέπει να πληρούνται για να ισχύει ο νόμος του Coulomb είναι οι εξής: α) Πρέπει να υπάρχουν δύο μόνο σώματα, ηλεκτρισμένα και τα δύο. β) Τα δύο ηλεκτρισμένα σώματα πρέπει να έχουν γεωμετρικές διαστάσεις πολύ μικρές σε σχέση προς τη μεταξύ τους απόσταση. Στην περίπτωση αυτή τα δύο ηλεκτρισμένα σώματα εκλαμβάνονται και ως ηλεκτρισμένα σημεία. γ) Ο χώρος μεταξύ των δύο σωμάτων και γύρω από αυτά πρέπει να είναι μονωτικός και ομογενής, και να εκτείνεται, θεωρητικά μεν, μέχρι το άπειρο, πρακτικά δε, σε ακτίνα πολύ μεγαλύτερη από τη μεταξύ των δύο σωμάτων απόσταση. δ) Τα δύο ηλεκτρισμένα σώματα πρέπει να είναι ακίνητα ως προς τον παρατηρητή του πειράματος, ή ακόμα και αν κινούνται, πρέπει οι ταχύτητες τους να είναι πολύ μικρές σε σχέση προς την ταχύτητα του φωτός. Οι πιο πάνω ειδικές συνθήκες συνοψίζονται στην παρακάτω ενιαία διατύπωση: τα εξαγόμενα των πειραμάτων του Coulomb ισχύουν για δύο ακίνητα ηλεκτρισμένα σημεία που βρίσκονται μόνα στον άπειρο κενό χώρο. Υπό τις συνθήκες αυτές, ο Coulomb διεπίστωσε τα εξής: α) Η δύναμη που ασκείται στα δύο ηλεκτρισμένα σημεία έχει τη διεύθυνση της ευθείας που ενώνει τα δύο αυτά σημεία και είναι απωστική μεν αν τα σημεία είναι ομώνυμα ηλεκτρισμένα, ελκτική δε αν είναι ετερώνυμα ηλεκτρισμένα. β) Το μέτρο της δύναμης μεταβάλλεται αντίστροφα ανάλογα προς το τετράγωνο της απόστασης μεταξύ των δύο ηλεκτρισμένων σημείων. γ) Έστω ότι αρχικά υφίστανται τα ηλεκτρισμένα σημεία A και B του Σχήματος 1.1. Αν, στη συνέχεια, αντί του B τοποθετηθεί, στην ίδια ακριβώς θέση, ένα άλλο ηλεκτρισμένο σημείο Γ, τότε το μέτρο της δύναμης που ασκείται στα ηλεκτρισμένα σημεία A και Γ είναι διαφορετικό εν γένει από το μέτρο της δύναμης που ασκούνταν στα ηλεκτρισμένα σημεία A και B. Επειδή, όμως, εκτός από την αντικατάσταση του B από το Γ, δεν έχει μεταβληθεί καμιά από

12 18 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ τις υπόλοιπες συνθήκες του πειράματος, είναι λογικό να συμπεράνει κανείς ότι το σημείο Γ έχει την ιδιότητα του ηλεκτρισμένου σε διαφορετική ένταση από εκείνη που είχε το σημείο B. Αν, λοιπόν, F AB = F BA και F AΓ = F ΓA είναι τα μέτρα των δυνάμεων στις δύο περιπτώσεις και παρατηρηθεί ότι το μέτρο της δύναμης στη δεύτερη περίπτωση είναι π.χ. n-πλάσιο του μέτρου της δύναμης στην πρώτη περίπτωση, είναι εύλογο να υποθέσει κανείς ότι το σημείο Γ έχει την ιδιότητα του ηλεκτρισμένου σε n-πλάσια ένταση από το B. B F AB A R AB F BA ΣXHMA 1.1: Δυνάμεις Coulomb. Αν συνεχιστεί το πείραμα και τοποθετηθεί, αντί του A, στην ίδια ακριβώς με αυτό θέση, ένα τέταρτο ηλεκτρισμένο σημείο, θα παρατηρηθεί ότι και το μέτρο F Γ = F Γ της δύναμης μεταξύ των ηλεκτρισμένων σημείων Γ και είναι, εν γένει, διαφορετικό από το μέτρο F AΓ = F ΓA της δύναμης μεταξύ των σημείων A και Γ. Συμπεραίνεται, συνεπώς, και πάλι ότι τα ηλεκτρισμένα σημεία A και έχουν την ιδιότητα του ηλεκτρισμένου σε διαφορετική ένταση. Όταν κατά την αντικατάσταση του σημείου B από το Γ (ή του A από το ) δεν παρατηρείται απλώς μεταβολή στο μέτρο της δύναμης αλλά και αλλαγή της φοράς της, τότε τα ηλεκτρισμένα σημεία B και Γ (ή A και ) δεν έχουν μόνον την ιδιότητα του ηλεκτρισμένου σε διαφορετική ένταση, αλλά και ανήκουν σε διαφορετικές κατηγορίες ηλεκτρισμένων σωμάτων, δηλαδή είναι ετερώνυμα ηλεκτρισμένα. Από τα παραπάνω γίνεται φανερό ότι η δύναμη που ασκείται μεταξύ δύο ηλεκτρισμένων σημείων δεν εξαρτάται μόνον από τη μεταξύ τους απόσταση, αλλά και από δύο άλλους, ομοειδείς προφανώς παράγοντες, ένα για κάθε σημείο, που εκφράζουν την ένταση στην οποία έχει την ιδιότητα του ηλεκτρισμένου το κάθε σημείο. Ο παράγοντας αυτός περιγράφεται με τον όρο ηλεκτρικό φορτίο (ή ποσότητα ηλεκτρισμού). Τα ηλεκτρικά φορτία, τα οποία, συνήθως, παριστούμε με τα σύμβολα Q ή q, όταν αναφέρονται σε ηλεκτρισμένα σημεία ονομάζονται σημειακά (ή κεντρικά) ηλεκτρικά φορτία.

13 1.4 ΝΟΜΟΣ ΤΟΥ COULOMB 19 Αν ως μονάδα των ηλεκτρικών φορτίων εκλεγεί το φορτίο ενός ηλεκτρισμένου σημείου, π.χ. του ηλεκτρισμένου σημείου A, τότε για τον καθορισμό του ηλεκτρικού φορτίου ενός τυχόντος ηλεκτρισμένου σημείου, π.χ. του B, μπορούμε να κάνουμε τις εξής δύο μετρήσεις: Μετρούμε αρχικά το μέτρο F AΓ της δύναμης που ασκείται μεταξύ του ηλεκτρισμένου σημείου A και ενός τυχόντος ηλεκτρισμένου σημείου Γ. Τα σημεία A και Γ βρίσκονται σε δύο τυχούσες θέσεις του άπειρου κενού χώρου. Στη συνέχεια, και χωρίς καμιά άλλη αλλαγή στις συνθήκες του πειράματος, αντικαθιστούμε το σημείο A με το ηλεκτρισμένο σημείο B και μετρούμε τη δύναμη F BΓ μεταξύ των σημείων B και Γ. Αν το μέτρο F BΓ βρεθεί q-πλάσιο του μέτρου F AΓ, είναι προφανές ότι το ηλεκτρικό φορτίο του σημείου B είναι ίσο προς το q-πλάσιο του φορτίου του σημείου A που εκλέχτηκε ίσο προς τη μονάδα, δηλαδή είναι ίσο προς q μονάδες. Όταν οι δυνάμεις F AΓ και F BΓ είναι ομόρροπες, η αλγεβρική τιμή του φορτίου του σημείου B είναι +q, ενώ στην περίπτωση που οι δυνάμεις F AΓ και F BΓ είναι αντίρροπες, η αλγεβρική του τιμή είναι q. Αν ως μονάδα μέτρησης των ηλεκτρικών φορτίων ληφθεί το φορτίο ενός θετικά ηλεκτρισμένου σημείου, τότε τα φορτία όλων των θετικά ηλεκτρισμένων σημείων εκφράζονται με θετικούς αριθμούς (θετικά φορτία) ενώ όλα τα φορτία των αρνητικά ηλεκτρισμένων εκφράζονται με αρνητικούς αριθμούς (αρνητικά φορτία). Προφανώς, και με βάση όσα αναφέρθηκαν σε προηγούμενες παραγράφους, το ηλεκτρικό φορτίο ενός σώματος ισούται με το γινόμενο του κβαντισμένου φορτίου ±e επί την έλλειψη (αν είναι θετικό) ή την περίσσεια (αν είναι αρνητικό) των ηλεκτρονίων του σώματος. Αν το ηλεκτρισμένο σημείο Γ, στις πιο πάνω δύο μετρήσεις, αντικατασταθεί από ένα οποιοδήποτε άλλο ηλεκτρισμένο σημείο με διαφορετικό φορτίο, θα μετρηθεί και πάλι η ίδια τιμή q του φορτίου του ηλεκτρισμένου σημείου B. Αυτό εκφράζει ότι η τιμή του φορτίου κάθε ηλεκτρισμένου σημείου είναι ανεξάρτητη της τιμής του ηλεκτρικού φορτίου άλλων ηλεκτρισμένων σημείων με τα οποία αλληλεπενεργεί. Τελικά, το πείραμα δείχνει ότι η δύναμη με την οποία αλληλεπενεργούν δύο ηλεκτρισμένα σημεία είναι ανάλογη προς το γινόμενο των ηλεκτρικών φορτίων των δύο σημείων. Οι πιο πάνω πειραματικές διαπιστώσεις μπορούν να συνοψιστούν στη σχέση F AB = F BA = k q q A B R 2, (1.26) AB όπου F AB = F BA είναι το μέτρο της δύναμης που ασκείται στα δύο ηλεκτρισμένα σημεία B και A, R AB είναι η μεταξύ των σημείων A και B απόσταση και q A, q B είναι τα ηλεκτρικά φορτία των σημείων A και B, αντίστοιχα. Ο συντελεστής k δεν εμφανίζεται μόνον ως σταθερά που εξαρτάται από το χρησιμοποιούμενο

14 20 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ σύστημα μονάδων, αλλά και ως χαρακτηριστική σταθερά του μέσου μέσα στο οποίο βρίσκονται τα δύο φορτία. Η (1.26) είναι γνωστή ως νόμος του Coulomb. Η μαθηματική έκφραση του νόμου του Coulomb μπορεί να χρησιμοποιηθεί και για τον ορισμό της μονάδας του ηλεκτρικού φορτίου. Αν η δύναμη και η απόσταση μετρηθούν με τις αντίστοιχες μονάδες του συστήματος CGS (δηλαδή σε dyn και cm, αντίστοιχα), και αν ο συντελεστής k θεωρηθεί για το κενό αδιάστατο μέγεθος και ίσο προς τη μονάδα, τότε από την (1.26) ορίζεται η μονάδα του ηλεκτρικού φορτίου στο CGS. Έτσι, ως μονάδα στο σύστημα αυτό επιλέγεται το Franklin (Fr), που ορίζεται ως το ηλεκτρικό φορτίο το οποίο εξασκεί, στο κενό και σε απόσταση 1 cm, πάνω σ ένα ίσο φορτίο δύναμη 1 δύνης (dyn). Όπως, όμως, δηλώθηκε σε προηγούμενη παράγραφο, στο παρόν βιβλίο χρησιμοποιείται αποκλειστικά το κανονικοποιημένο σύστημα MKSA, αφού η χρήση του συστήματος CGS εμφανίζεται σήμερα πολύ περιορισμένη. Στο σύστημα MKSA, η τιμή k 0 της σταθεράς k στο κενό έχει την τιμή k 0 = 8, Vm As m F (1.27) Η μονάδα, συνεπώς, Coulomb (C) του φορτίου πέραν από τον ορισμό που δόθηκε στην παράγραφο 1.1 μπορεί να οριστεί και ως το ηλεκτρικό φορτίο που ασκεί, στο κενό και σε απόσταση 1 m, πάνω σ ένα ίσο φορτίο δύναμη ίση προς 8, N. Όπως ήδη αναφέρθηκε, η k δεν πρέπει να θεωρείται ως μια απλή σταθερά αναλογίας, αλλά ως ένας παράγοντας που, πέραν της αντιστοίχισής του στο χρησιμοποιούμενο σύστημα μονάδων, αντιπροσωπεύει και τις φυσικές ιδιότητες του μέσου που σχετίζονται με τη συμπεριφορά του κατά τη μετάδοση ηλεκτρικών δράσεων. Για το κενό, στο οποίο ως γνωστόν αναφέρονται οι σχετικές πειραματικές εργασίες του Coulomb, η σταθερά k 0 στο σύστημα MKSA αντικαθίσταται από τον συντελεστή k 0 = 1/(4πϵ 0 ), οπότε η (1.26) γράφεται F AB = 1 q A q B. (1.28) 4πϵ 0 Η σταθερά ϵ 0 ονομάζεται διηλεκτρική σταθερά (dielectric constant), ή ηλεκτρική διαπερατότητα, ή επιτρεπότητα (permittivity) του κενού χώρου, έχει δε στο σύστημα MKSA μονάδα το farad/meter (F/m) και τιμή R 2 AB ϵ 0 = 1 4πk 0 = 8, F m 1 36π 10 9 F m (1.29)

15 1.4 ΝΟΜΟΣ ΤΟΥ COULOMB 21 Η σκοπιμότητα εισαγωγής του παράγοντα 4π, που καθιστά αναμφίβολα τη διατύπωση (1.28) του νόμου του Coulomb περισσότερο πολύπλοκη από την αρχική διατύπωση (1.26) του ίδιου νόμου, δικαιολογείται από το γεγονός ότι, με τον τρόπο αυτό, άλλες γενικότερες και περισσότερο χρησιμοποιούμενες σχέσεις του ηλεκτρομαγνητικού πεδίου (όπως για παράδειγμα οι εξισώσεις Maxwell) αποκτούν απλούστερη μορφή, αφού απαλλάσσονται από τον παράγοντα 4π που αναγκαστικά θα εμφανίζονταν σ αυτές αν δεν υπήρχε στον παρονομαστή της (1.29). Στην περίπτωση όπου δύο ακίνητα σημειακά φορτία βρίσκονται μόνα, όχι στο κενό, αλλά μέσα σ ένα ομογενές και ισότροπο μονωτικό μέσο που εκτείνεται στο άπειρο, τα φορτία αλληλεπενεργούν και πάλι με τον τρόπο που περιγράφει ο νόμος του Coulomb. Το μέτρο, όμως, της δύναμης με την οποία αλληλεπενεργούν τα φορτία δεν είναι ίσο με το μέτρο της δύναμης που θα ασκούνταν στα δύο φορτία αν αυτά βρίσκονταν στο κενό ή τον ατμοσφαιρικό αέρα. Αυτό σημαίνει ότι η διηλεκτρική σταθερά ϵ του μονωτικού μέσου δεν είναι ίση με τη διηλεκτρική σταθερά ϵ 0 του κενού χώρου. Αν, λοιπόν, ϵ είναι η διηλεκτρική σταθερά ενός τυχόντος μονωτικού μέσου, η μαθηματική διατύπωση του νόμου του Coulomb σ αυτό είναι η F AB = 1 q A q B 4πϵ R 2 = 1 q A q B AB 4πϵ r ϵ 0 R 2 AB (1.30) όπου ϵ r = ϵ ϵ 0 (1.31) είναι μια αδιάστατη χαρακτηριστική σταθερά του κάθε μέσου, ανεξάρτητη από το χρησιμοποιούμενο σύστημα μονάδων. Η σταθερά αυτή ονομάζεται σχετική διηλεκτρική σταθερά (relative permittivity) ή σχετική επιτρεπτότητα του μέσου. Η σχετική διηλεκτρική σταθερά του αέρα για κανονικές συνθήκες θερμοκρασίας και πίεσης είναι μόλις μεγαλύτερη της μονάδας, στις περισσότερες, όμως, πρακτικές εφαρμογές λαμβάνεται ίση προς τη μονάδα. Στον Πίνακα 1.2 σημειώνονται οι τιμές της σχετικής διηλεκτρικής σταθεράς διαφόρων μέσων. Οι, ούτως ή άλλως, ενδεικτικές τιμές του πίνακα αυτού μπορούν να διαφοροποιηθούν ριζικά όταν τα μεγέθη του πεδίου υπόκεινται σε ταχύτατες χρονικές μεταβολές (μικροκυματικές-οπτικές συχνότητες). Η (1.30) μπορεί να γραφεί και κατά τέτοιο τρόπο ώστε να δίνει όχι μόνον το μέτρο αλλά και την κατεύθυνση (διεύθυνση και φορά) της δύναμης που ασκείται στα δύο φορτία. Έτσι, αν F AB είναι η δύναμη που ασκείται από το φορτίο q A

16 22 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ ΠΙΝΑΚΑΣ 1.2: Τιμές σχετικής διηλεκτρικής σταθεράς Διηλεκτρικό μέσο Ενδεικτικές τιμές Κενό 1 Αέρας 1,0006 Teflon 2,1 Παραφίνη 2,1 Χαρτί 2 4 Λάδι 2,3 Πολυαιθυλένιο 2,3 Ελαστικό 2,5 3 Έδαφος (αμμώδες ξηρό) 3,2 Πλεξιγκλάς 3,4 Γυαλί 5 10 Χαλαζίας 5 Βακελίτης 4,4 5,4 Πορσελάνη 5,1 6 Ξύλο 1,5 6 Μίκα 5,4 6 Νερό αποσταγμένο 80 στο φορτίο q B, R AB είναι η διανυσματική απόσταση των δύο φορτίων με φορά από το q A προς το q B, και ϵ η διηλεκτρική σταθερά του μέσου, η διανυσματική διατύπωση του νόμου του Coulomb είναι η F AB = 1 q A q B 4πϵ R 3 R AB (1.32) AB όπου τα φορτία q A και q B νοούνται με το αλγεβρικό τους πρόσημο. Η (1.32), αν ê AB = R AB /R AB είναι το μοναδιαίο διάνυσμα με φορά από το q A προς το q B, γράφεται, επίσης, και με τη μορφή F AB = 1 q A q B 4πϵ R 2 ê AB. (1.33) AB Είναι φανερό ότι η δύναμη F BA που ασκεί το φορτίο q B πάνω στο φορτίο q A είναι (ίση και) αντίθετη προς τη δύναμη F AB (F AB = F BA ).

17 1.4 ΝΟΜΟΣ ΤΟΥ COULOMB 23 Δύο, ακόμη, παρατηρήσεις που προκύπτουν από τα προηγούμενα και αξίζει ν αναφερθούν είναι οι εξής: α) Επειδή η τιμή της διηλεκτρικής σταθεράς ενός μέσου δεν επηρεάζεται από την παρουσία ή μη ηλεκτρικών φορτίων, από τη μαθηματική διατύπωση του νόμου του Coulomb προκύπτει ότι είναι δυνατή η εφαρμογή της γενικής αρχής της υπέρθεσης (επαλληλίας) των δυνάμεων που ασκούν τα διάφορα φορτία. β) Η τιμή ενός φορτίου ίσου προς τη μονάδα, δηλαδή 1 C, είναι εξαιρετικά μεγάλη. Πράγματι, αν λάβουμε υπόψη ότι το φορτίο του ηλεκτρονίου (αρνητικό) ή του πρωτονίου (θετικό) είναι ίσο προς 1, C, τότε ένα αρνητικό φορτίο 1 C θα αντιπροσώπευε έναν αριθμό περίπου ηλεκτρονίων. Εξάλλου, από τον νόμο του Coulomb προκύπτει ότι η δύναμη με την οποία θα αλληλεπενεργούσαν δύο ίσα φορτία 1 C, που θα βρίσκονταν σε απόσταση 1 m στον αέρα, θα έφθανε την απίστευτη τιμή των N, θα ήταν δηλαδή ίση προς εννιακόσιες χιλιάδες τόνους περίπου. Η πιο πάνω επισήμανση δικαιολογεί το γεγονός της συστηματικής χρησιμοποίησης υποπολλαπλάσιων της μονάδας φορτίου στα πρακτικά προβλήματα. ΠΑΡΑΔΕΙΓΜΑ 1.1 Να διερευνηθεί η ποσοτική-συγκριτική σχέση μεταξύ των ηλεκτρικών δυνάμεων και των δυνάμεων της παγκόσμιας έλξης της μηχανικής. Ας θεωρήσουμε ότι δύο υλικά σώματα 1 και 2 με μάζες m 1, m 2 και φορτία Q 1, Q 2, αντίστοιχα, βρίσκονται μόνα στον άπειρο κενό χώρο. Σύμφωνα με τον νόμο της έλξης των μαζών, το μέτρο F m της ελκτικής δύναμης μεταξύ των δύο μαζών δίνεται από την F m = G m 1m 2 R12 2, (i) όπου G = 6, Nm 2 /Kg 2 είναι η σταθερά της παγκόσμιας έλξης, και R 2 12 είναι η μεταξύ των δύο σωμάτων απόσταση. Πέραν της δυνάμεως αυτής, επειδή τα σώματα είναι ηλεκτρικά φορτισμένα, ασκείται και η δύναμη Coulomb που, για ομόσημα φορτία, έχει μέτρο F e = 1 Q 1 Q 2. (ii) 4πϵ 0 Για μια συγκριτική διερεύνηση των δύο αυτών δυνάμεων, θεωρούμε τον λόγο τους λ, R 2 12 λ = F m F e = 4πϵ 0 G m 1m 2 Q 1 Q 2 ο οποίος είναι ανεξάρτητος της απόστασης των δύο σωμάτων. (iii)

18 24 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ Για να καταστεί ακόμα σαφέστερη η πιο πάνω συγκριτική διερεύνηση, ας υποθέσουμε ότι τα δύο σώματα είναι δύο ίσες μεταλλικές σφαίρες ακτίνας R και πυκνότητας μάζας d. Αν, επιπλέον, θεωρηθεί ότι οι δύο σφαίρες είναι ομοιόμορφα φορτισμένες με το ίδιο συνολικό φορτίο Q και την ίδια επιφανειακή πυκνότητα φορτίου ρ s, τότε η προηγούμενη σχέση γράφεται λ = F m F e = 4πϵ 0 G ( 4πR 3 d/3 ) 2 (4πR 2 ρ s ) 2 = 4πϵ 0G 9 d 2 R 2 ρ 2, (iv) s και εκφράζει ότι ο λόγος λ μεταβάλλεται ανάλογα προς το τετράγωνο της ακτίνας των δύο σφαιρών. Εξειδικεύοντας, περισσότερο, το παράδειγμα, ας υποθέσουμε ότι η πυκνότητα d του υλικού των δύο σωμάτων είναι d = Kg/m 3, και η τιμή της πυκνότητας των επιφανειακά διανεμημένων φορτίων είναι ρ s = C/m 2 (βρίσκεται, δηλαδή κοντά στο όριο της διηλεκτρικής αντοχής του περιβάλλοντος χώρου πριν τη διάσπασή του και την εκδήλωση της ηλεκτρικής εκκένωσης των φορτίων). Με αντικατάσταση των αριθμητικών αυτών τιμών στην (iv), προκύπτει η ακόλουθη έκφραση του λόγου λ των δύο δυνάμεων ή λ = 4 π 8, , λ (R/109) 2, ( ) 2 R 2 ( ) 2 = R όπου η ακτίνα R μετράται, φυσικά, σε μέτρα. Από τη σχέση αυτή παρατηρούμε ότι, για R 109 m, οι μηχανικές δυνάμεις είναι πολύ μεγαλύτερες από τις ηλεκτρικές δυνάμεις που οφείλονται σε τυχόν φορτία που είναι διανεμημένα σ αυτά. π.χ. για δύο ουράνια σώματα με ακτίνα R = Km, ίση περίπου με την ακτίνα της γης, η τιμή της μηχανικής δύναμης θα ήταν 3, περίπου φορές μεγαλύτερη από την ηλεκτρική δύναμη. Αντίθετα, σε φορτισμένα σώματα με διαστάσεις πολύ μικρότερες από την οριακή τιμή R c = 109 m, οι μηχανικές δυνάμεις είναι πολύ μικρότερες από τις ηλεκτρικές. π.χ. στην περίπτωση δύο φορτισμένων σφαιρών ακτίνων R = 1 cm, οι ηλεκτρικές δυνάμεις θα ήταν 1, περίπου φορές μεγαλύτερες από τις αντίστοιχες μηχανικές δυνάμεις. (v) 1.5 Δυνάμεις σε σύστημα πολλών σημειακών φορτίων Όπως ήδη διευκρινίσθηκε, ο νόμος του Coulomb επιτρέπει τον υπολογισμό των δυνάμεων με τις οποίες αλληλεπενεργούν δύο σημειακά φορτία που βρίσκονται μόνα σ ένα άπειρο, ομογενές και ισότροπο μονωτικό μέσο. Και στην περίπτωση, όμως, παρουσίας σ ένα τέτοιο μέσο περισσότερων

19 1.5 ΔΥΝΑΜΕΙΣ ΣΕ ΣΥΣΤΗΜΑ ΠΟΛΛΩΝ ΣΗΜΕΙΑΚΩΝ ΦΟΡΤΙΩΝ 25 σημειακών φορτίων, είναι δυνατός ο υπολογισμός της δύναμης που ασκείται σε κάθε φορτίο, με βάση τον νόμο του Coulomb και τη γενική αρχή της υπέρθεσης. Έστω, λοιπόν, ότι σ ένα ομογενές και ισότροπο μέσο βρίσκονται μόνα και ακίνητα τα σημειακά φορτία q, q 1, q 2,..., q n, στις θέσεις που προσδιορίζονται από τα διανύσματα r, r 1, r 2,..., r n, αντίστοιχα (Σχήμα 1.2). Αν F είναι η συνολική δύναμη που ασκείται στο φορτίο q από το σύστημα των υπόλοιπων φορτίων και F i είναι η δύναμη που ασκεί το σημειακό φορτίο q i στο σημειακό φορτίο q, τότε, σύμφωνα με τα παραπάνω και την (1.32) έχουμε F = n F i = i=1 q 4πϵ n q i R 3 i=1 i R i (1.34) όπου R i = r r i είναι η διανυσματική απόσταση των φορτίων q i και q με φορά από το φορτίο q i προς το φορτίο q. q 1 q q i R i F i F z r i r q n O y x ΣXHMA 1.2: Πεδίο πολλών σημειακών φορτίων. Αν x i, y i, z i είναι οι συντεταγμένες της θέσης του τυχόντος σημειακού φορτίου q i (i = 1, 2,..., n) σ ένα σύστημα ορθογώνιων καρτεσιανών συντεταγμένων και x, y, z είναι οι συντεταγμένες της θέσης του ηλεκτρικού φορτίου q, τότε η (1.34), επειδή ισχύουν οι r i = x iˆx + y i ŷ + z i ẑ, (1.35) R i = r r i = (x x i )ˆx + (y y i )ŷ + (z z i )ẑ, (1.36)

20 26 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ R i = r r i = [ (x x i ) 2 + (y y i ) 2 + (z z i ) 2] 1/2, (1.37) όπου ˆx, ŷ, ẑ είναι τα μοναδιαία διανύσματα κατά τους άξονες x, y, z, αντίστοιχα, γράφεται F = q n q i [(x x i )ˆx + (y y i )ŷ + (z z i )ẑ]. (1.38) 4πϵ [(x x i=1 i ) 2 + (y y i ) 2 + (z z i ) 2 3/2 ] Από την (1.38) προκύπτουν, εύκολα, οι τρεις συνιστώσες F x, F y, F z της δύναμης κατά τις διευθύνσεις των αξόνων x, y, z, αντίστοιχα. Έτσι, η συνιστώσα F x, για παράδειγμα, δίνεται από τη σχέση F x = q n q i (x x i ), (1.39) 4πϵ [(x x i=1 i ) 2 + (y y i ) 2 + (z z i ) 2 3/2 ] ενώ ανάλογες είναι και οι εκφράσεις των συνιστωσών F y και F z. ΠΑΡΑΔΕΙΓΜΑ 1.2 Τα σημειακά φορτία q 1 = 1 μc και q 2 = 4 μc είναι τοποθετημένα στα σημεία με συντεταγμένες (2, 1, 4) και (3, 2, 4), αντίστοιχα, σ ένα μέσο με σχετική διηλεκτρική σταθερά ϵ r = 2. Να υπολογιστεί η δύναμη που ασκούν τα δύο αυτά φορτία σ ένα τρίτο σημειακό φορτίο q 3 = 2 nc, τοποθετημένο στο σημείο (1, 2, 1) του ίδιου μέσου. Η ζητούμενη δύναμη, που υπολογίζεται από την αντικατάσταση των δεδομένων του παραδείγματος στην (1.38), είναι F = q 3 4πϵ r ϵ 0 2 q i [(x x i )ˆx + (y y i )ŷ + (z z i )ẑ] i=1 = π π [(x x i ) 2 + (y y i ) 2 + (z z i ) 2 ] 3/2 { [(1 2)ˆx + (2 1)ŷ + (1 + 4)ẑ] [(1 2) 2 + (2 1) 2 + (1 + 4) 2 ] 3/2 } [(1 3)ˆx + (2 + 2)ŷ + (1 4)ẑ] [(1 3) 2 + (2 + 2) 2 + (1 4) 2 ] 3/2 { } = ( ˆx + ŷ + 5ẑ) 4( 2ˆx + 4ŷ 3ẑ) + [( 1) /2 ] [( 2) ( 3) 2 ] 3/2 ( } ˆx ŷ 5ẑ = ˆx + 16ŷ 12ẑ /2 29 3/2 = ( 0,397ˆx + 0,858ŷ 1,012ẑ) μn.

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ Μοντέλο ατόμου m p m n =1,7x10-27 Kg m e =9,1x10-31 Kg Πυρήνας: πρωτόνια (p + ) και νετρόνια (n) Γύρω από τον πυρήνα νέφος ηλεκτρονίων (e -

Διαβάστε περισσότερα

φυσική Βꞌ Λυκείου γενικής παιδείας 1 ο Κεφάλαιο

φυσική Βꞌ Λυκείου γενικής παιδείας 1 ο Κεφάλαιο φυσική Βꞌ Λυκείου γενικής παιδείας ο Κεφάλαιο ΗΛΕΚΤΡΟΣΤΑΤΙΚΕΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ. Η προέλευση της ονομασίας ηλεκτρισμός Τον 6 ο αιώνα π.χ. οι αρχαίοι Έλληνες ανακάλυψαν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 1 Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 Ο Ηλεκτρική δύναμη και φορτίο Ηλεκτρισμένα σώματα 1.1 Ποια είναι ; Σώματα (πλαστικό, γυαλί, ήλεκτρο) που έχουν την ιδιότητα να ασκούν δύναμη σε ελαφρά

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη.

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. 1. Σώματα, όπως ο πλαστικός χάρακας ή το ήλεκτρο, που αποκτούν την ιδιότητα να ασκούν δύναμη σε ελαφρά

Διαβάστε περισσότερα

Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006

Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006 ιαλέξεις στη ΦΥΣΙΚΗ Α. ΚΑΝΑΠΙΤΣΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΛΑΜΙΑΣ ΛΑΜΙΑ, 2006 Σηµειώσεις εποπτικό υλικό για το µάθηµα ΦΥΣΙΚΗ. Τα παρακάτω είναι βασισµένα στις διαλέξεις του διδάσκοντα. Το υλικό αποτελεί

Διαβάστε περισσότερα

Κεφάλαιο 5: Στατικός Ηλεκτρισμός

Κεφάλαιο 5: Στατικός Ηλεκτρισμός Κεφάλαιο 5: Στατικός Ηλεκτρισμός Ο Θαλής ο Μιλήσιος (600 π.χ) παρατήρησε ότι αν τρίψουμε το ήλεκτρο (κεχριμπάρι) με ένα στεγνό μάλλινο ύφασμα αποκτά την ιδιότητα να έλκει μικρά κομματάκια από χαρτί, τρίχες

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΔΥΝΑΜΗ ΚΑΙΙ ΦΟΡΤΙΙΟ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ 2012 - \ ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις - Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» ΒΡΕΝΤΖΟΥ ΤΙΝΑ ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ 1. Κατά την ηλέκτριση με τριβή μεταφέρονται από το ένα σώμα στο άλλο i. πρωτόνια. ii. ηλεκτρόνια iii iν. νετρόνια ιόντα. 2. Το σχήμα απεικονίζει

Διαβάστε περισσότερα

Ηλεκτρισμός. TINA ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις -Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια»

Ηλεκτρισμός. TINA ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις -Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» Ηλεκτρισμός TINA ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις -Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» 1 ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ - ΗΛΕΚΤΡΙΚΟ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘEMA A: ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Αντιστάτης με αντίσταση R συνδέεται με ηλεκτρική πηγή, συνεχούς τάσης V

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΥΛΗ Οτιδήποτε έχει μάζα και καταλαμβάνει χώρο Μάζα είναι η ποσότητα αδράνειας ενός σώματος, μονάδα kilogram (kg) (σύνδεση( δύναμης & επιτάχυνσης) F=m*γ Καταστάσεις της ύλης Στερεά,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Νόμος του Coulomb Έστω δύο ακίνητα σημειακά φορτία, τα οποία βρίσκονται σε απόσταση μεταξύ τους. Τα φορτία αυτά αλληλεπιδρούν μέσω δύναμης F, της οποίας

Διαβάστε περισσότερα

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση

Διαβάστε περισσότερα

Τα σώματα που έχουν ομόσημα ( ομώνυμα ) φορτία απωθούνται ενώ τα σώματα που έχουν ετερόσημα ( ετερώνυμα ) φορτία έλκονται.

Τα σώματα που έχουν ομόσημα ( ομώνυμα ) φορτία απωθούνται ενώ τα σώματα που έχουν ετερόσημα ( ετερώνυμα ) φορτία έλκονται. 1. Ηλεκτρικό φορτίο Ηλεκτρικό φορτίο Q ή ονομάζεται το φυσικό μέγεθος με το οποίο εξηγούνται οι αλληλεπιδράσεις ανάμεσα στα ηλεκτρισμένα σώματα και γενικότερα το φαινόμενο του ηλεκτρισμού. Μονάδα ηλεκτρικού

Διαβάστε περισσότερα

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù www.ziti.gr Πρόλογος Το βιβλίο που κρατάτε στα χέρια σας είναι γραμμένο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. 1. Τι είναι ο ηλεκτρισµός, τι ονοµάζουµε ηλέκτριση των σωµάτων, ποια σώµατα ονοµάζονται ηλεκτρισµένα;

ΚΕΦΑΛΑΙΟ 1. 1. Τι είναι ο ηλεκτρισµός, τι ονοµάζουµε ηλέκτριση των σωµάτων, ποια σώµατα ονοµάζονται ηλεκτρισµένα; ΚΕΦΑΛΑΙΟ ΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ. Τι είναι ο ηλεκτρισµός, τι ονοµάζουµε ηλέκτριση των σωµάτων, ποια σώµατα ονοµάζονται ηλεκτρισµένα; Ηλεκτρισµός ονοµάζεται η ιδιότητα που εµφανίζουν ορισµένα

Διαβάστε περισσότερα

Ηλεκτρισμός: Το φορτίο στο εσωτερικό του ατόμου

Ηλεκτρισμός: Το φορτίο στο εσωτερικό του ατόμου Ηλεκτρισμός: Το φορτίο στο εσωτερικό του ατόμου TINA ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις -Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» 1 ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή

Διαβάστε περισσότερα

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων 3.1.1 Ο Νόμος του Coulomb Στη φύση εμφανίζονται δύο ειδών φορτία. Θετικό (+) και αρνητικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Στατικός Ηλεκτρισμός

ΚΕΦΑΛΑΙΟ 1: Στατικός Ηλεκτρισμός ΚΕΦΑΛΑΙΟ 1: Στατικός Ηλεκτρισμός Βασίλης Γαργανουράκης Φυσική Γ Γυμνασίου http://users.sch.gr/vgargan g g Φυσική Γ Γυμνασίου Κεφάλαιο 1: Στατικός Ηλεκτρισμός - http://vgargan.gr Τι είναι ο Στατικός Ηλεκτρισμός;

Διαβάστε περισσότερα

Κεφάλαιο Η1. Ηλεκτρικά πεδία

Κεφάλαιο Η1. Ηλεκτρικά πεδία Κεφάλαιο Η1 Ηλεκτρικά πεδία Ηλεκτρισµός και µαγνητισµός Οι νόµοι του ηλεκτρισµού και του µαγνητισµού έχουν πρωταρχικό ρόλο στη λειτουργία πολλών σύγχρονων συσκευών. Οι ενδοατοµικές και ενδοµοριακές δυνάµεις,

Διαβάστε περισσότερα

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Μαγνητικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SERWAY, Physics for scientists and engineers YOUNG H.D., University

Διαβάστε περισσότερα

ΘΕΜΑ B ΝΟΜΟΣ ΤΟΥ COULOMB

ΘΕΜΑ B ΝΟΜΟΣ ΤΟΥ COULOMB 1 ΘΕΜΑ B ΝΟΜΟΣ ΤΟΥ OULOMB 1. ΘΕΜΑ Β -1596 B.1 Διαθέτουμε έξι φορτισμένα, με ηλεκτρικό φορτίο, σώματα Α, Β, Γ, Δ, Ε και Ζ, μικρών διαστάσεων. Με βάση μια σειρά παρατηρήσεων, ένας μαθητής οδηγήθηκε στα εξής

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΙΣΑΓΩΓΙΚΑ Η ηλεκτρική μηχανή είναι μια διάταξη μετατροπής μηχανικής ενέργειας σε ηλεκτρική και αντίστροφα. απώλειες Μηχανική ενέργεια Γεννήτρια Κινητήρας Ηλεκτρική ενέργεια

Διαβάστε περισσότερα

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία Στατικός Ηλεκτρισµός, Ηλεκτρικό Φορτίο και η διατήρηση αυτού Ηλεκτρικό φορτίο στο άτοµο Αγωγοί και Μονωτές Επαγόµενα Φορτία Ο Νόµος του Coulomb Το Ηλεκτρικό

Διαβάστε περισσότερα

4πε Όπου ε ο µια φυσική σταθερά που ονοµάζεται απόλυτη διηλεκτρική σταθερά του κενού. ΚΕΦΑΛΑΙΟ 3.1 ΠΑΡΑΓΡΑΦΟΣ Ο νόµος του Coulomb

4πε Όπου ε ο µια φυσική σταθερά που ονοµάζεται απόλυτη διηλεκτρική σταθερά του κενού. ΚΕΦΑΛΑΙΟ 3.1 ΠΑΡΑΓΡΑΦΟΣ Ο νόµος του Coulomb ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΕΦΑΛΑΙΟ 3.1 ΠΑΡΑΓΡΑΦΟΣ 3.1.1 Ο νόµος του Coulomb Συµπλήρωµα θεωρίας Τα υλικά σώµατα αποτελούνται από άτοµα Ένα άτοµο έχει έναν θετικά φορτισµένο πυρήνα γύρω από τον οποίο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΟΥ ΗΛΕΚΤΡΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΟΥ ΗΛΕΚΤΡΙΣΜΟΥ ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΟΥ ΗΛΕΚΤΡΙΣΜΟΥ 1.Β1. α) Να διατυπώσετε το νόµο του Coulomb και να γράψετε την αντίστοιχη σχέση. β) Ποιες οι µονάδες των µεγεθών που εµφανίζονται στη σχέση; 2.Β2. Ποιες οι οµοιότητες και

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΜΙΚΡΟΚΥΜΑΤΑ

ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΜΙΚΡΟΚΥΜΑΤΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΦΑΡΜΟΣΜΕΝΟΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΜΙΚΡΟΚΥΜΑΤΑ.. Α.Μ.. ΛΑΜΙΑ 2015 Παράδοση και προφορική εξέταση της εργασίας Για να ληφθεί

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB Η δύναμη που ασκείται μεταξύ σημειακών ηλεκτρικών φορτιών 1, είναι ανάλογη του γινομένου των φορτίων, και αντιστρόφως

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ 1ο ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η αντίσταση ενός µεταλλικού αγωγού που

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Τρίτη Ιουνίου 9 11. 14. ΤΟ

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων:

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: ΤΥΠΟΛΟΓΙΟ Φυσική της Λυκείου Γενικής Παιδείας Στατικός Ηλεκτρισμός Τύποι που ισχύουν Νόμος του Coulomb Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: α. Χρησιμοποιούμε τη μέθοδο του παραλλογράμμου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΕΠΙΜΕΛΕΙΑ: Ν.ΠΑΠΑΓΙΑΝΝΗΣ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΕΠΙΜΕΛΕΙΑ: Ν.ΠΑΠΑΓΙΑΝΝΗΣ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Ν.ΠΑΠΑΓΙΑΝΝΗΣ ΝΙΚΗΤΑΣ ΠΑΠΑΓΙΑΝΝΗΣ 1 ΝΙΚΗΤΑΣ ΠΑΠΑΓΙΑΝΝΗΣ 2 ΝΙΚΗΤΑΣ ΠΑΠΑΓΙΑΝΝΗΣ 3 ΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010 ΦΥΕ4, 9--Εργασιά 6 η Ημερομηνία παράδοσης 8/6/ Άσκηση A) Μια ράβδος μήκους είναι ομοιόμορφα φορτισμένη θετικά με συνολικό ηλεκτρικό φορτίο Q και βρίσκεται κατά μήκος του θετικού άξονα x από το σημείο x

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να

Διαβάστε περισσότερα

Απαντήσεις στις ερωτήσεις του σχολικού βιβλίου

Απαντήσεις στις ερωτήσεις του σχολικού βιβλίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 Απαντήσεις στις ερωτήσεις του σχολικού βιβλίου Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Νίκος Ν. Αρπατζάνης Πεδίο Πολλές φορές είναι χρήσιμα κάποια φυσικά μεγέθη που έχουν διαφορετική τιμή, σε διαφορετικά σημεία του χώρου (π.χ. μετεωρολογικά δεδομένα,όπως θερμοκρασία, πίεση,

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 2ο ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Σκοπός Στο δεύτερο κεφάλαιο θα εισαχθεί η έννοια του ηλεκτρικού ρεύματος και της ηλεκτρικής τάσης,θα μελετηθεί ένα ηλεκτρικό κύκλωμα και θα εισαχθεί η έννοια της αντίστασης.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β' ΛΥΚΕΙΟΥ 2004

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β' ΛΥΚΕΙΟΥ 2004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Β' ΛΥΚΕΙΟΥ 004 ΕΚΦΩΝΗΕΙ ΘΕΜΑ ο Για τις ερωτήσεις - 4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Μια

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 23 Ηλεκτρικό Δυναµικό Διαφορά Δυναµικού-Δυναµική Ενέργεια Σχέση Ηλεκτρικού Πεδίου και Ηλεκτρικού Δυναµικού Ηλεκτρικό Δυναµικό Σηµειακών Φορτίων Δυναµικό Κατανοµής Φορτίων Ισοδυναµικές Επιφάνειες

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 2 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα ΠεριεχόµεναΚεφαλαίου 31 Τα µεταβαλλόµενα ηλεκτρικά πεδία παράγουν µαγνητικά πεδία. Ο Νόµος του Ampère-Ρεύµα µετατόπισης Νόµος του Gauss s στο µαγνητισµό

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑΤΑ ΚΑΙ ΛΥΕΙ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΕΩΝ 004 ΦΥΙΚΗ ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ ΘΕΜΑ ο Για τις ερωτήσεις -4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ 1

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ γ ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΝΑ ΑΠΑΝΤΗΘΟΥΝ ΤΑ ΕΞΙ ( 6 ) ΑΠΟ ΤΑ ΕΝΝΕΑ ( 9 ) ΘΕΜΑΤΑ ΠΟΥ ΑΚΟΛΟΥΘΟΥΝ, ΣΤΗΝ ΚΟΛΛΑ ΑΝΑΦΟΡΑΣ. ΘΕΜΑ 1 (α) Όταν θέλετε να ανάψετε το φως στο

Διαβάστε περισσότερα

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC

6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC 6η Εργαστηριακή Άσκηση Μέτρηση διηλεκτρικής σταθεράς σε κύκλωµα RLC Θεωρητικό µέρος Αν µεταξύ δύο αρχικά αφόρτιστων αγωγών εφαρµοστεί µία συνεχής διαφορά δυναµικού ή τάση V, τότε στις επιφάνειές τους θα

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Φυσική Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Φυσική Β Γυμνασίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 2 Εισαγωγή 1.1 Οι φυσικές επιστήμες και η μεθοδολογία τους Φαινόμενα: Μεταβολές όπως το λιώσιμο του πάγου, η

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 23 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ 1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ και ΕΦΑΡΜΟΓΕΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΜΑΘΗΜΑΤΟΣ 1) Να αναφέρετε τις 4 παραδοχές που ισχύουν για το ηλεκτρικό φορτίο 2) Εξηγήστε πόσα είδη κατανοµών ηλεκτρικού φορτίου υπάρχουν. ιατυπώστε τους

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΒΒ ΛΥΥΚΚΕΕΙΙΟΥΥ 1133 33 001111 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναμική ενέργεια του συστήματος των δύο φορτίων δίνεται από

Διαβάστε περισσότερα

Φυσική Β Γενικού Λυκείου

Φυσική Β Γενικού Λυκείου Φυσική Β Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: Νεκτάριος Πρωτοπαπάς Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση

Διαβάστε περισσότερα

Πεδία δυνάμεων. Ηλεκτρισμός και μαγνητισμός διαφορετικές όψεις του ίδιου φαινομένου του ηλεκτρομαγνητισμού. Ενοποίηση των δύο πεδίων μετά το 1819.

Πεδία δυνάμεων. Ηλεκτρισμός και μαγνητισμός διαφορετικές όψεις του ίδιου φαινομένου του ηλεκτρομαγνητισμού. Ενοποίηση των δύο πεδίων μετά το 1819. Πεδία δυνάμεων Πεδίο βαρύτητας, ηλεκτρικό πεδίο, μαγνητικό πεδίο: χώροι που ασκούνται δυνάμεις σε κατάλληλους φορείς. Κατάλληλος φορέας για το πεδίο βαρύτητας: μάζα Για το ηλεκτρικό πεδίο: ηλεκτρικό φορτίο.

Διαβάστε περισσότερα

ΤΡΟΠΟΙ ΗΛΕΚΤΡΙΣΗΣ ΚΑΙ Η ΜΙΚΡΟΣΚΟΠΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥΣ

ΤΡΟΠΟΙ ΗΛΕΚΤΡΙΣΗΣ ΚΑΙ Η ΜΙΚΡΟΣΚΟΠΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥΣ 1.4 ΤΡΟΠΟΙ ΗΛΕΚΤΡΙΣΗΣ ΚΑΙ Η ΜΙΚΡΟΣΚΟΠΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥΣ Λέξεις κλειδιά: Τρόποι ηλέκτρισης, ηλεκτρόνια, τριβή, επαγωγή, επαφή, ηλεκτρικοί αγωγοί, μονωτές Πόσους τρόπους ηλέκτρισης ενός σώματος γνωρίζετε;

Διαβάστε περισσότερα

5 σειρά ασκήσεων. 1. Να υπολογισθεί το μαγνητικό πεδίο που δημιουργεί ευθύγραμμος αγωγός με άπειρο μήκος, που διαρρέεται από ρεύμα σταθερής έντασης.

5 σειρά ασκήσεων. 1. Να υπολογισθεί το μαγνητικό πεδίο που δημιουργεί ευθύγραμμος αγωγός με άπειρο μήκος, που διαρρέεται από ρεύμα σταθερής έντασης. η 5 σειρά ασκήσεων Σε όλα τα πιο κάτω προβλήματα δίνεται ότι μ o = 4πx10-7 Τm/Α 1. Να υπολογισθεί το μαγνητικό πεδίο που δημιουργεί ευθύγραμμος αγωγός με άπειρο μήκος, που διαρρέεται από ρεύμα σταθερής

Διαβάστε περισσότερα

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α.

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α. 1. Ένα σφαιρικό κέλυφος που θεωρούμε ότι έχει αμελητέο πάχος έχει ακτίνα α και φέρει φορτίο Q, ομοιόμορφα κατανεμημένο στην επιφάνειά του. Βρείτε την ένταση του ηλεκτρικού πεδίου στο εξωτερικό και στο

Διαβάστε περισσότερα

1.1 Το ηλεκτροστατικό πεδίο (ΗΣΠ) 1.2 Ολοκληρωτικά μεγέθη του ΗΣΠ. 1.4 Ενέργεια και δυνάμεις στο ΗΣΠ. 1.5 Λυμένα Προβλήματα 1ου Κεφαλαίου

1.1 Το ηλεκτροστατικό πεδίο (ΗΣΠ) 1.2 Ολοκληρωτικά μεγέθη του ΗΣΠ. 1.4 Ενέργεια και δυνάμεις στο ΗΣΠ. 1.5 Λυμένα Προβλήματα 1ου Κεφαλαίου ΚΕΦΑΛΑΙΟ 1: ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ I 1.1 Το ηλεκτροστατικό πεδίο (ΗΣΠ) 1.2 Ολοκληρωτικά μεγέθη του ΗΣΠ 1.3 Χωρητικότητα, πυκνωτής 1.4 Ενέργεια και δυνάμεις στο ΗΣΠ 1.5 Λυμένα Προβλήματα 1ου Κεφαλαίου 1.6 Αλυτα

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3.3 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Οι μαγνητικοί πόλοι υπάρχουν πάντοτε σε ζευγάρια. ΔΕΝ ΥΠΑΡΧΟΥΝ ΜΑΓΝΗΤΙΚΑ ΜΟΝΟΠΟΛΑ. Οι ομώνυμοι πόλοι απωθούνται, ενώ οι

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Κεφάλαιο - Ηλεκτροστατική

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Κεφάλαιο - Ηλεκτροστατική Φυσική Β Λυκειου, Γενικής Παιδείας - Ηλεκτροστατική Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://www.perifysikhs.com 1 Ηλεκτρικό ϕορτίο - οµή της Υλης Το εκτρικό ϕορτίο ( ή Q) είναι µια από

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 14 8:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Β Λυκείου 1999

Θέµατα Φυσικής Γενικής Παιδείας Β Λυκείου 1999 Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Β Λυκείου 1999 Στις ερωτήσεις 1 6, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Όταν η απόσταση

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ - \ 2012 ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις - Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» ΒΡΕΝΤΖΟΥ ΤΙΝΑ 2 ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ : η μετατόπιση ενός σώματος (m) () Δx x x x : η τελική θέση του σώματος (m) x : η αρχική θέση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 - ΟΡΓΑΝΟΛΟΓΙΑ

ΑΣΚΗΣΗ 1 - ΟΡΓΑΝΟΛΟΓΙΑ ΣΚΟΠΟΣ ΑΣΚΗΣΗ 1 - ΟΡΓΑΝΟΛΟΓΙΑ Σκοπός της εργαστηριακής άσκησης είναι η ενημέρωση και εξοικείωση με τα βασικά όργανα μέτρησης ηλεκτρικών μεγεθών, όπως το αμπερόμετρο, το βολτόμετρο, το πολύμετρο και ο παλμογράφος

Διαβάστε περισσότερα