Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση"

Transcript

1 Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση (clustering) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων Περιεχόµενα Γενική εικόνα προβλήµατος συσταδοποίησης Τεχνικές Συσταδοποίησης Ιεραρχικοί Αλγόριθµοι ιαµεριστικοί Αλγόριθµοι Γενετικοί Αλγόριθµοι Συσταδοποίηση Μεγάλων Β Βασισµένες κατά κύριο λόγο (αλλά όχι αποκλειστικά) στις διαφάνειες που συνοδεύουν το βιβλίο M. H. Dunham: Data Mining, Introductory and Advanced Topics Prentice Hall, Επιµέλεια Ελληνικής έκδοσης Βασίλης Βερύκιος & Γιάννης Θεοδωρίδης,

2 Περιεχόµενα Γενική εικόνα προβλήµατος συσταδοποίησης Τεχνικές Συσταδοποίησης Ιεραρχικοί Αλγόριθµοι ιαµεριστικοί Αλγόριθµοι Γενετικοί Αλγόριθµοι Συσταδοποίηση Μεγάλων Β Εφαρµογές Συσταδοποίησης ιαµέριση µίας Β πελατών µε βάση παρόµοια πρότυπα αγοράς προϊόντων. Οµαδοποίηση των σπιτιών µίας πόλης σε γειτονιές µε βάσηπαρόµοιες ιδιότητες. Αναγνώριση νέων ειδών φυτών Αναγνώριση παρόµοιων προτύπων στη χρήση του Web. Συσταδοποίηση vs. Κατηγοριοποίηση Καµία εκ των προτέρων γνώση (αριθµός συστάδων, σηµασία των συστάδων) Μη Εποπτευόµενη Μάθηση 4 5.

3 Ζητήµατα στη Συσταδοποίηση Χειρισµός Ακραίων Σηµείων (outliers) υναµικά Μεταβαλλόµενα εδοµένα αλλαγή συστάδων στην πορεία του χρόνου Ερµηνεία και Αξιολόγηση των αποτελεσµάτων Πλήθος Συστάδων οβέλτιστοςαριθµόςσυστάδωνδενείναιεκτωνπροτέρωνγνωστός Ποια δεδοµέναθαχρησιµοποιηθούν Κλιµάκωση 5 Επίδραση Ακραίων Σηµείων Έχουν αναπτυχθεί ειδικές τεχνικές για ανίχνευση / εξόρυξη ακραίων σηµείων (outlier detection / mining) 6 5.

4 Το Πρόβληµα της Συσταδοποίησης οθέντων: µιας Β D={t 1,t,,t n } από εγγραφές, ενός µέτρου οµοιότητας sim(t i, t j ) µεταξύ δύο εγγραφών της Β και µιαςακέραιαςτιµής k, το Πρόβληµα της Συσταδοποίησης είναι η εύρεση µίας αντιστοίχισης f:d {1,..., k} όπου κάθε εγγραφή t i της Β αντιστοιχίζεται σε µία συστάδα K j, 1 j k, έτσι ώστε: για κάθε εγγραφή η οµοιότητα µεταξύ αυτής και οποιασδήποτε εγγραφής από την ίδια συστάδα να είναι µεγαλύτερη από την οµοιότητα µεταξύ αυτής και οποιασδήποτε εγγραφής από άλλες συστάδες. Μία Συστάδα, K j, περιέχει ακριβώς εκείνες τις πλειάδες που αντιστοιχίζονται σε αυτήν. 7 Συσταδοποίηση Σπιτιών µε βάσητη(γεωγραφική) απόσταση µε βάση κάποιο άλλο χαρακτηριστικό (π.χ. µέγεθος) 8 5.4

5 Περιεχόµενα Γενική εικόνα προβλήµατος συσταδοποίησης Τεχνικές Συσταδοποίησης Ιεραρχικοί Αλγόριθµοι ιαµεριστικοί Αλγόριθµοι Γενετικοί Αλγόριθµοι Συσταδοποίηση Μεγάλων Β 9 Τύποι Συσταδοποίησης Ιεραρχική vs. ιαµέρισης δηµιουργούνται εµφωλιασµένα σύνολα συστάδων από 1 σε,, Νσυστάδες(διαιρετικοί αλγόριθµοι) ή από Ν σε Ν-1,...,, 1 συστάδες (συσσωρευτικοί αλγόριθµοι) ήδηµιουργείται απευθείας ένα σύνολο k συστάδων. Αυξητική (ή Σειριακή) vs. Ταυτόχρονη χειρισµός ενός στοιχείου την φορά ή όλων των στοιχείων µαζί. Επικαλυπτόµενη vs. µη-επικαλυπτόµενη επιτρέπεται ή όχι η τοποθέτηση ενός στοιχείου σε περισσότερες από µία συστάδες. Για µικρές (που χωράνε στην κύρια µνήµη) ή µεγάλες Β 1 5.5

6 Προσεγγίσεις Συσταδοποίησης Συσταδοποίηση Ιεραρχική ιαµέρισης Κατηγορική για µεγάλες Β Συσσώρευσης ιαιρετική ειγµατοληψίας Συµπίεσης 11 Απόσταση µεταξύ δύο Συστάδων Απόσταση απλού συνδέσµου (single link): ηελάχιστηαπόσταση µεταξύ στοιχείων των συστάδων Απόσταση πλήρους Συνδέσµου (complete link): η µέγιστη απόσταση µεταξύ στοιχείων των συστάδων Μέση απόσταση: η µέση απόσταση µεταξύ στοιχείων των συστάδων Centroid απόσταση: απόσταση µεταξύ των κέντρων βάρους (centroids) των συστάδων Χαρακτηριστικές τιµές µιας συστάδας Ν στοιχείων 1 5.6

7 Περιεχόµενα Γενική εικόνα προβλήµατος συσταδοποίησης Τεχνικές Συσταδοποίησης Ιεραρχικοί Αλγόριθµοι ιαµεριστικοί Αλγόριθµοι Γενετικοί Αλγόριθµοι Συσταδοποίηση Μεγάλων Β 1 Ιεραρχική Συσταδοποίηση Οι συστάδες δηµιουργούνται σε επίπεδα Κάθε επίπεδο αντιπροσωπεύει ένα σύνολο από συστάδες Συσσωρευτικοί αλγόριθµοι (agglomerative) Αρχικά κάθε στοιχείο είναι µία συστάδα Επαναληπτικά οι συστάδες συγχωνεύονται Προσέγγιση bottom-up ιαιρετικοί αλγόριθµοι (divisive) Αρχικάόλαταστοιχείασε µία συστάδα. Οι µεγάλες συστάδες προοδευτικά διαιρούνται. Προσέγγιση top-down

8 ενδρόγραµµα ενδρόγραµµα (dendrogram): µία δενδρική δοµή δεδοµένων η οποία επιδεικνύει τις ιεραρχικές τεχνικές συσταδοποίησης. Κάθε επίπεδο δείχνει τις συστάδες εκείνου του επιπέδου. Φύλλα κάθε στοιχείο αποτελεί ξεχωριστή συστάδα Ρίζα όλαταστοιχείααποτελούν µία συστάδα Μία συστάδα στο επίπεδο i είναι η ένωση των συστάδων-παιδιών στο επίπεδο i Επίπεδα της Συσταδοποίησης

9 Παράδειγµα Συσσώρευσης Μήτρα γειτνίασης A B C D E Γράφος αποστάσεων A B A 1 B C E C D 4 1 E 5 D Κατώφλι απόστασης A B C D E 17 Συσσωρευτικός Αλγόριθµος

10 Προσεγγίσεις Συσσωρευτικού Αλγόριθµου Με βάση την τεχνική που χρησιµοποιείται για τον καθορισµό της απόστασης µεταξύ δύο συστάδων Τεχνική Απλού Συνδέσµου (single link) αναζητά συνεκτικές συνιστώσες στο γράφο αποστάσεων ονοµάζεται και τεχνική συσταδοποίησης πλησιέστερου γείτονα (nearest neighbor) Παραλλαγή: µε χρήσηδένδρου ελάχιστης ζεύξης (Minimum Spanning Tree MST) Τεχνική Πλήρους Συνδέσµου (complete link) αναζητά κλίκες στο γράφο αποστάσεων Παραλλαγή: τεχνική συσταδοποίησης απώτατου γείτονα (farthest neighbor) Τεχνική Μέσου Συνδέσµου (average link) 19 Εναλλακτικές Τεχνικές Συσσώρευσης 5.1

11 Συσσώρευση βασισµένη σε MST 5 E 1 4 D 5 1 C 4 1 B 1 A E D C B A A B C D E B A E C D Συσσωρευτικός Αλγόριθµος Απλού Συνδέσµου βασισµένος σε MST

12 ιαίρεση βασισµένη σε MST A B C D E A B A 1 B 1 4 C C 1 5 E D 4 1 D E 5 A B C D E Περιεχόµενα Γενική εικόνα προβλήµατος συσταδοποίησης Τεχνικές Συσταδοποίησης Ιεραρχικοί Αλγόριθµοι ιαµεριστικοί Αλγόριθµοι Γενετικοί Αλγόριθµοι Συσταδοποίηση Μεγάλων Β 4 5.1

13 Συσταδοποίηση µε ιαµέριση Μη ιεραρχική ηµιουργεί τις συστάδες σε ένα βήµα µόνο. Εφόσον υπάρχει µόνο ένα σύνολο συστάδων στην έξοδο, ο χρήστης πρέπει να εισάγει τον επιθυµητό αριθµό των συστάδων, k. Συνήθως χειρίζεται στατικά σύνολα. Πρόβληµα: οι πιθανοί συνδυασµοί n στοιχείων σε k συστάδες είναι ένας πολύ µεγάλος αριθµός (π.χ. >1 1 για n=19, k=4) Αναγκαστικά, η αναζήτηση γίνεται σε ένα µικρό υποσύνολο των πιθανών λύσεων 5 ιαµεριστικοί Αλγόριθµοι Τεχνική βασισµένη σε ένδρο Ελάχιστης Ζεύξης (MST) Τετραγωνικού Σφάλµατος (squared error) K-Μέσων (K-means) Πλησιέστερου Γείτονα (nearest neighbor) PAM (partitioning around medoids διαµερισµός γύρω από medoids) Τεχνική βασισµένη σε Γενετικούς Αλγορίθµους Τεχνική βασισµένη σε Νευρωνικά ίκτυα

14 Αλγόριθµος MST Πολυπλοκότητα O(n ) O(n ) για τη δηµιουργία του MST + O(k ) για τα τελευταία βήµατα 7 Αλγόριθµος Squared Error Στόχος: η ελαχιστοποίηση του Τετραγωνικού Σφάλµατος 8 Πολυπλοκότητα O(tkn) όπου t το πλήθος των επαναλήψεων 5.14

15 Συσταδοποίηση K-Means Το αρχικό σύνολο συστάδων επιλέγεται τυχαία. Επαναληπτικά, τα στοιχεία µετακινούνται µεταξύ συνόλων συστάδων µέχρι να φτάσουµε τοεπιθυµητό σύνολο. Επιτυγχάνεται υψηλός βαθµός οµοιότητας µεταξύ των στοιχείων µίας συστάδας. εδοµένης µίας συστάδας K i ={t i1,t i,,t im }, ο µέσος της συστάδας είναι m i = (1/m)(t i1 + + t im ) Ο µέσοςτηςσυστάδαςταυτίζεταιµε τοκέντροβάρους 9 Παράδειγµα K-Means (σε 1 διάσταση) ίνεται: {, 4, 1, 1,,,, 11, 5}, k= Τυχαία επιλέγουµε, έστω m 1 =, m =4 1 η επανάληψη: K 1 ={, }, K ={4, 1, 1,,, 11, 5}, m 1 =.5, m =16 η επανάληψη: K 1 ={,, 4}, K ={1, 1,,, 11, 5}, m 1 =, m =18 η επανάληψη: K 1 ={,, 4, 1}, K ={1,,, 11, 5}, m 1 =4.75, m = η επανάληψη: K 1 ={,, 4, 1, 11, 1}, K ={,, 5}, m 1 =7, m =5 5 η επανάληψη: δεν αλλάζει τίποτα. Τέλος 5.15

16 Αλγόριθµος K-Means 1 Πολυπλοκότητα O(tkn) όπου t το πλήθος των επαναλήψεων Παράδειγµα K-Means (σε διαστάσεις) Τυχαία επιλογή τριών (k=) αρχικών κέντρων Y k 1 k k X 5.16

17 Παράδειγµα K-means, 1 η επανάληψη Εκχώρηση κάθε στοιχείου στο πλησιέστερό του cluster (µε βάση την απόσταση από το κέντρο του cluster) Y k 1 k k X Παράδειγµα K-means, 1 η επανάληψη Επανυπολογισµός του νέου κέντρου βάρους του κάθε cluster Y k 1 k 1 k k k k 4 X 5.17

18 Παράδειγµα K-means, η επανάληψη Εκχώρηση κάθε στοιχείου στο πλησιέστερό του cluster (µε βάση την απόσταση από το κέντρο του cluster) Y k 1 k k 5 X Παράδειγµα K-means, η επανάληψη τρία στοιχεία αλλάζουν cluster Y k k 1 k 6 X 5.18

19 Παράδειγµα K-means, η επανάληψη Επανυπολογισµός του νέου κέντρου βάρους του κάθε cluster Y k 1 k k 7 X Παράδειγµα K-means, η επανάληψη Εκχώρηση κάθε στοιχείου στο πλησιέστερό του cluster (µε βάση την απόσταση από το κέντρο του cluster) Y k 1 k k εν αλλάζει τίποτα. Άρα, τέλος! 8 X 5.19

20 Πλησιέστερος Γείτονας Τα στοιχεία συγχωνεύονται επαναληπτικά µέσα σε συστάδες που βρίσκονται πιο κοντά. Αυξητική προσέγγιση Ένα κατώφλι, t, χρησιµοποιείται για να καθορίσει εάν ένα στοιχείο θα ενταχθεί σε µία από τις υπάρχουσες συστάδες ή εάν θα δηµιουργηθεί µία νέα συστάδα. 9 Αλγόριθµος Πλησιέστερου Γείτονα Πολυπλοκότητα O(n ) 4 5.

21 PAM (k-medoids) ιαµέριση γύρω από Medoids (PAM) Χειρίζεται καλά τα ακραία σηµεία (σε αντίθεση µε τονk-means). Η διάταξη της εισόδου δεν επηρεάζει τα αποτελέσµατα (σε αντίθεση µε τονk-means). Κάθε συστάδα αναπαρίσταται από ένα αντιπροσωπευτικό στοιχείο, το οποίο καλείται medoid (*). Προσοχή: το medoid ΕΝ είναι το κέντρο βάρους της συστάδας (ή ο µέσος, στην ορολογία του K-means) αλλά ένα από τα στοιχεία της Το αρχικό σύνολο των k medoids επιλέγεται τυχαία. (*) τεχνικός όρος που προέρχεται από τον όρο multivariate median (πολυµεταβλητός µέσος) 41 Παράδειγµα PAM A B C D E A 1 B 1 4 C 1 5 D 4 1 E 5 TC ih : το κόστος αντικατάστασης του µέσου i από τον µη-µέσο j Στόχος είναι να βρεθεί η αντικατάσταση µε τοελάχιστο κόστος 4 5.1

22 Υπολογισµός Κόστους TC ih Σε κάθε βήµα του αλγορίθµου, οι µέσοι µεταβάλλονται εάν το συνολικό κόστος βελτιώνεται. C jih αλλαγή κόστους για ένα στοιχείο t j που σχετίζεται µε την αντικατάσταση του µέσου t i από τον µη-µέσο t h. 4 περιπτώσεις προς εξέταση: 4 Αλγόριθµος PAM 44 Πολυπλοκότητα O(tn(n-k) ) όπου t το πλήθος των επαναλήψεων 5.

23 Περιεχόµενα Γενική εικόνα προβλήµατος συσταδοποίησης Τεχνικές Συσταδοποίησης Ιεραρχικοί Αλγόριθµοι ιαµεριστικοί Αλγόριθµοι Γενετικοί Αλγόριθµοι Συσταδοποίηση Μεγάλων Β 45 Παράδειγµα Γενετικού Αλγορίθµου {A,B,C,D,E,F,G,H} Τυχαία επιλέγουµε αρχική λύση: {A, C, E} {B, F} {D, G, H} ή 111, 11, 111 Υποθέτουµε διασταύρωση στο σηµείο 4 και επιλέγουµε τα1 και ως γονείς: 1111, 11, 11 Ποια πρέπει να είναι τα κριτήρια τερµατισµού; 46 5.

24 Αλγόριθµος GA 47 Περιεχόµενα Γενική εικόνα προβλήµατος συσταδοποίησης Τεχνικές Συσταδοποίησης Ιεραρχικοί Αλγόριθµοι ιαµεριστικοί Αλγόριθµοι Γενετικοί Αλγόριθµοι Συσταδοποίηση Μεγάλων Β

25 Συσταδοποίηση Μεγάλων Β Οι περισσότεροι αλγόριθµοι συσταδοποίησης προϋποθέτουν µία µεγάλη δοµή δεδοµένων που βρίσκεται στην κύρια µνήµη. Η συσταδοποίηση θα µπορούσε να εφαρµοστεί πρώτα σε ένα δείγµα τηςβ και µετά σε ολόκληρη τη Β. Αλγόριθµοι BIRCH DBSCAN CURE 49 Επιθυµητά Χαρακτηριστικά για Μεγάλες Β Ένα πέρασµα (το πολύ) της Β Απευθείας επεξεργασία Με δυνατότητα διακοπής, τέλους, επανεκίνησης Αυξητικό Να δουλεύει µε περιορισµένη κύρια µνήµη ιαφορετικές Τεχνικές Περασµάτων (π.χ. δειγµατοληψία) Επεξεργασία κάθε εγγραφής µία µόνο φορά 5 5.5

26 BIRCH Σταθµισµένη Επαναληπτική Μείωση και Συσταδοποίηση µε την χρήση Ιεραρχιών Αυξητική, ιεραρχική, ένα πέρασµα Σώζουµε πληροφορίες σχετικές µε την συσταδοποίηση σε ένα δέντρο Κάθε καταχώρηση του δέντρου περιέχει πληροφορίες για µία συστάδα Καινούργιοι κόµβοι εισάγονται στην πιο κοντινή καταχώρηση του δέντρου 51 Ιδιότητα Συσταδοποίησης CT Τριάδα: (N,LS,SS) N: Αριθµός σηµείων στη συστάδα LS: Άθροισµα σηµείων στην συστάδα SS: Άθροισµα τετραγώνων σηµείων της συστάδας CF έντρο Σταθµισµένο έντρο Αναζήτησης Οκόµβος έχει µία CF τριάδα για κάθε παιδί Το φύλλο αναπαριστά τη συστάδα και έχει τιµή CF για κάθε υποσυστάδα µέσα σε αυτή. Η υποσυστάδα έχει µέγιστη διάµετρο 5 5.6

27 Αλγόριθµος BIRCH 5 Βελτίωση Συστάδων

28 DBSCAN Χωρική Συσταδοποίηση Εφαρµογών µε Θόρυβοµε βάσητην Πυκνότητα Τα ακραία σηµεία δεν θα έχουν ως αποτέλεσµα τηνδηµιουργία µίας συστάδας. Είσοδος MinPts ελάχιστος αριθµός σηµείων στη συστάδα Eps για κάθε σηµείο σε µίασυστάδαθαπρέπειναυπάρχειέναάλλο σηµείο σε αυτό µε µικρότερη από αυτή την απόσταση µακρυά. 55 DBSCAN Έννοιες της Πυκνότητας Eps-γειτονιά: Σηµεία µέσα σε Eps απόσταση από σηµείο. Σηµείο Πυρήνα: Eps-γειτονιά αρκετά πυκνή (MinPts) Απευθείας density-reachable: Ένα σηµείο p είναι απευθείας density-reachable από ένα σηµείο q εάν η απόσταση είναι µικρή (Eps) και το q είναι ένα σηµείο του πυρήνα. Density-reachable: Ένα σηµείο είναι density-reachable από ένα άλλο σηµείο εάν υπάρχει ένα µονοπάτι από το ένα στο άλλο το οποίο αποτελείται µόνο από σηµεία πυρήνες

29 Έννοιες της Πυκνότητας 57 DBSCAN Αλγόριθµος

30 CURE Συσταδοποίηση µε τη χρήση αντιπροσώπων. Χρήση πολλών σηµείων για την αναπαράσταση µίας συστάδας αντί µόνο ένα. Τα σηµεία θα είναι αρκετά διασκορπισµένα. 59 Προσέγγιση CURE 6 5.

31 Αλγόριθµος CURE 61 CURE για µεγάλες Β 6 5.1

32 Σύνοψη Συσταδοποίηση: η εύρεσηοµάδων µεταξύ των δεδοµένων ενός συνόλου µε βάσηέναµέτρο απόστασης Τεχνικές: Ιεραρχικές (συσσωρευτικές/διαιρετικές, απλού/πλήρους/µέσου συνδέσµου) ιαµεριστικές (µε πιοδηµοφιλή τον αλγόριθµο Apriori) Άλλες (βασισµένες στην πυκνότητα, σε γενετικούς αλγορίθµους, παράλληλες τεχνικές κ.α.) 6 Σύγκριση Τεχνικών Συσταδοποίησης 64 5.

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 9: Ομαδοποίηση Μέρος Γ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων Clustering Αλγόριθµοι Οµαδοποίησης Αντικειµένων Εισαγωγή Οµαδοποίηση (clustering): οργάνωση µιας συλλογής από αντικείµενα-στοιχεία (objects) σε οµάδες (clusters) µε βάση κάποιο µέτρο οµοιότητας. Στοιχεία

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Γ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6.

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6. Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Γνώσης από χωρικά δεδοµένα (κεφ. 8) Γιάννης Θεοδωρίδης Νίκος Πελέκης http://isl.cs.unipi.gr/db/courses/dwdm Περιεχόµενα

Διαβάστε περισσότερα

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Γνώσης από Χωρικά εδοµένα (spatial data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΟΜΑΔΕΣ. Δημιουργία Ομάδων

ΟΜΑΔΕΣ. Δημιουργία Ομάδων Δημιουργία Ομάδων Μεθοδολογίες ομαδοποίησης δεδομένων: Μέθοδοι για την εύρεση των κατηγοριών και των υποκατηγοριών που σχηματίζουν τα δεδομένα του εκάστοτε προβλήματος. Ομαδοποίηση (clustering): εργαλείο

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 8: Ομαδοποίηση Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ

ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα σε κάθε ομάδα να είναι όμοια (ή να σχετίζονται) και διαφορετικά (ή μη σχετιζόμενα) από τα αντικείμενα των άλλων ομάδων Συσταδοποίηση

Διαβάστε περισσότερα

Ομαδοποίηση ΙΙ (Clustering)

Ομαδοποίηση ΙΙ (Clustering) Ομαδοποίηση ΙΙ (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος Δ http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ

ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ ΔΙΑΧΩΡΙΣΤΙΚΗ ΟΜΑΔΟΠΟΙΗΣΗ Εισαγωγή Τεχνικές διαχωριστικής ομαδοποίησης: Ν πρότυπα k ομάδες Ν>>k Συνήθως k καθορίζεται από χρήστη Διαχωριστικές τεχνικές: επιτρέπουν πρότυπα να μετακινούνται από ομάδα σε

Διαβάστε περισσότερα

BIRCH: : An Efficient Data Clustering Method for Very Large Databases

BIRCH: : An Efficient Data Clustering Method for Very Large Databases BIRCH: : An Efficient Data Clustering Method for Very Large Databases Tian Zhang Raghu Ramakrishnan Miron Livny Παρουσίαση: Μαρία Καθηγητής: Μιχάλης Μάθημα: Θέματα Μαρία Δήμα Μιχάλης Χατζόπουλος Θέματα

Διαβάστε περισσότερα

Ομαδοποίηση Ι (Clustering)

Ομαδοποίηση Ι (Clustering) Ομαδοποίηση Ι (Clustering) Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr Αλγόριθμοι ομαδοποίησης Επίπεδοι αλγόριθμοι Αρχίζουμε με μια τυχαία ομαδοποίηση Βελτιώνουμε επαναληπτικά KMeans Ομαδοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση

Διαβάστε περισσότερα

Αλγόριθμοι Εξόρυξης Χωρικών εδομένων

Αλγόριθμοι Εξόρυξης Χωρικών εδομένων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων και Τοπογράφων Μηχανικών ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ» Αλγόριθμοι Εξόρυξης Χωρικών εδομένων Εφαρμογή σε Αλγόριθμους Συσταδοποίησης

Διαβάστε περισσότερα

Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH

Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH Συσταδοποίηση II DBScan Εγκυρότητα Συσταδοποίησης BIRCH Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εξόρυξη Δεδομένων: Ακ. Έτος

Διαβάστε περισσότερα

P.-N. Tan, M.Steinbach, V. Kumar, Introduction to Data Mining»,

P.-N. Tan, M.Steinbach, V. Kumar, Introduction to Data Mining», Συσταδοποίηση Ι Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα

Διαβάστε περισσότερα

Ανάλυση κατά Συστάδες. Cluster analysis

Ανάλυση κατά Συστάδες. Cluster analysis Ανάλυση κατά Συστάδες Cluster analysis 1 H ανάλυση κατά συστάδες είναι µια µέθοδος που σκοπό έχει να κατατάξει σε οµάδες τις υπάρχουσες παρατηρήσεις χρησιµοποιώντας την πληροφορία που υπάρχει σε κάποιες

Διαβάστε περισσότερα

ιαµέριση - Partitioning

ιαµέριση - Partitioning ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 10: Ομαδοποίηση Μέρος Δ Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

Γ. Κορίλη Αλγόριθµοι ροµολόγησης - Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση II Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 006 Εξόρυξη Δεδομένων: Ακ. Έτος 008-009 ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΙΙ Τι είναι συσταδοποίηση

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη # 09 Ομαδοποίηση και Ταξινόμηση Κειμένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας

Διαβάστε περισσότερα

Κεφάλαιο 6: Συσταδοποίηση

Κεφάλαιο 6: Συσταδοποίηση Κεφάλαιο 6: Συσταδοποίηση Σύνοψη Ο βασικός στόχος αυτού του κεφαλαίου είναι η εξοικείωση με θέματα που αφορούν την τρίτη σημαντική εργασία της εξόρυξης δεδομένων, δηλαδή την ανάλυση των συστάδων. Πιο συγκεκριμένα,

Διαβάστε περισσότερα

10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ

10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ 1 2 3 1 ΚΑΤΗΓΟΡΊΕΣ ΤΑΞΙΝΌΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervised classification) Μη-κατευθυνόμενη ταξινόμηση (unsupervised classification) Γραμμική: Μη-Γραμμική: Ιεραρχική: Επιμεριστική:

Διαβάστε περισσότερα

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα,

ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ. Εξόρυξη Δεδομένων. Ανάλυση Δεδομένων. Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, ΕΞΟΡΥΞΗ ΔΕΔΟΜΕΝΩΝ Ηλίας Κ. Σάββας Εξόρυξη Δεδομένων Η διαδικασία εύρεσης κρυφών (ήκαλύτεραμηεμφανών) ιδιοτήτων από αποθηκευμένα δεδομένα, Μετατροπή δεδομένων σε ΠΛΗΡΟΦΟΡΙΑ, Πολλά δεδομένα αποθηκευμένα

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση I Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 6 Τι είναι συσταδοποίηση Εύρεση συστάδων αντικειμένων έτσι ώστε τα αντικείμενα

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΟΜΑ Α ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Στην εικόνα παρακάτω φαίνεται ένα νευρωνικό

Διαβάστε περισσότερα

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς

Διαβάστε περισσότερα

ιαχείριση Εφοδιαστικής Αλυσίδας

ιαχείριση Εφοδιαστικής Αλυσίδας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ιαχείριση Εφοδιαστικής Αλυσίδας Εφοδιαστική Αλυσίδα (ΕΡΓ.)

Διαβάστε περισσότερα

Συσταδοποίηση/ Ομαδοποίηση

Συσταδοποίηση/ Ομαδοποίηση Συσταδοποίηση/ Ομαδοποίηση Lecture Notes for Chapter 8 Introduction to Data Mining by Tan, Steinbach, Kumar 1 Τι είναι η ανάλυση ομάδων/ομαδοποίηση (Συσταδοποίηση)? Εύρεση συνόλων από αντικείμενα έτσι

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πληροφορικής και Επικοινωνιών

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πληροφορικής και Επικοινωνιών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πληροφορικής και Επικοινωνιών ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Ο αλγόριθμος Simulated Annealing στην κατευθυνόμενη στοχαστική αναζήτηση της βέλτιστης

Διαβάστε περισσότερα

Αποθήκες και Εξόρυξη Δεδομένων

Αποθήκες και Εξόρυξη Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 3 Ο Εργαστήριο WEKA (CLUSTERING) Στουγιάννου Ελευθερία estoug@unipi.gr -2- Συσταδοποίηση (Clustering) Συσταδοποίηση / Ομαδοποίηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ

ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΔΙΑΧΕΙΡΙΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ Ενότητα 8: Μοντέλα χωροθέτησης και ανάθεσης δυναμικότητας - Μέρος ΙΙ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ»

«ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΑΝΑΛΥΣΗ ΣΥΣΤΑΔΩΝ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΠΟ ΤΟΥΣ ΦΟΙΤΗΤΕΣ» Της σπουδάστριας ΚΑΤΣΑΡΟΥ ΧΑΡΙΚΛΕΙΑΣ Επιβλέπων Δρ. ΓΕΡΟΝΤΙΔΗΣ

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Παπαδάκης Χαράλαμπος 1, Παναγιωτάκης Κώστας 2, Παρασκευή Φραγκοπούλου 1 1 Τμήμα Μηχ/κών Πληροφορικής, ΤΕΙ Κρήτης 2 Τμήμα

Διαβάστε περισσότερα

ιαχείριση και Ανάκτηση Εικόνας µε χρήση Οµοιότητας Γράφων (WW-test)

ιαχείριση και Ανάκτηση Εικόνας µε χρήση Οµοιότητας Γράφων (WW-test) ιαχείριση και Ανάκτηση Εικόνας µε χρήση Οµοιότητας Γράφων (WW-test) Θεοχαράτος Χρήστος Εργαστήριο Ηλεκτρονικής (ELLAB), Τµήµα Φυσικής, Πανεπιστήµιο Πατρών email: htheohar@upatras.gr http://www.ellab.physics.upatras.gr/users/theoharatos/default.htm

Διαβάστε περισσότερα

Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ

Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Ορισµός του Προβλήµατος Ευθυγράµµιση : Εύρεση ενός γεωµετρικού µετασχηµατισµού που ϕέρνει κοντά δύο τρισδιάσ Εισαγωγή Αλγόριθµοι Αποτελέσµατα Επίλογος Αλγόριθµοι Ευθυγράµµισης Τρισδιάστατων Αντικειµένων Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό & Καποδιστριακό Πανεπιστήµιο Αθηνών 20 Οκτωβρίου 2005 Εισαγωγή

Διαβάστε περισσότερα

Αποθήκες εδομένων και Εξόρυξη εδομένων:

Αποθήκες εδομένων και Εξόρυξη εδομένων: Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths

Διαβάστε περισσότερα

Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων

Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Εφαρμοσμένη Πολυμεταβλητή Ανάλυση : Ανάλυση κατά συστάδες 1. Εισαγωγή Ανάλυση κατά συστάδες με χρήση στατιστικών πακέτων Η ομαδοποίηση δεδομένων

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευσης Συστήματα Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευσης Συστήματα Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Τμήμα Εφαρμοσμένης Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευσης Συστήματα Υπολογιστών ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Δημιουργία μοντέλου γνώσης από βάση δεδομένων βλαβών ΑDSL με την χρήση εργαλείων DATA

Διαβάστε περισσότερα

Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463

Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463 ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF CRETE Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463 4 η Σειρά Ασκήσεων Ψαράκη Μαρία-Γεωργία ΜΕΤ 556 psaraki@csd.uoc.gr Εαρινό Εξάμηνο 2008-2009

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Βιομηχανικής Πληροφορικής Διπλωματική Εργασία: Ομαδοποίηση γράφων με τους αλγόριθμους k-means και DBSCAN. Σπουδαστής: Νικηφοράκης

Διαβάστε περισσότερα

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση

Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, Τι είναι συσταδοποίηση Συσταδοποίηση I Εισαγωγή Ο αλγόριθμος k-means Αποστάσεις Ιεραρχική Συσταδοποίηση Μέρος των διαφανειών είναι από το P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 006 Τι

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

P-Μiner : ιαχείριση Πυλών Καταλόγων (Portals) µε Υποστήριξη ιαδικασιών Εξόρυξης εδοµένων Χρήσης

P-Μiner : ιαχείριση Πυλών Καταλόγων (Portals) µε Υποστήριξη ιαδικασιών Εξόρυξης εδοµένων Χρήσης P-Μiner : ιαχείριση Πυλών Καταλόγων (Portals) µε Υποστήριξη ιαδικασιών Εξόρυξης εδοµένων Χρήσης ιπλωµατική Εργασία του Θεοδώρου Ι. Γαλάνη ΠΕΡΙΛΗΨΗ Γενικά Με την εξάπλωση του διαδικτύου όλο και περισσότεροι

Διαβάστε περισσότερα

Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας

Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας ΚΕΦΑΛΑΙΟ 8: Αφηρηµένοι τύποι δεδοµένων 8.1 οµές δεδοµένων (data structures) 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας Αδόµητα δεδοµένα οδός Ζέας

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Efficient and Effective Clustering Methods for Spatial Data Mining (Αποδοτικές και αποτελεσματικές μέθοδοι ομαδοποίησης για εξόρυξη χωρικών δεδομένων)

Efficient and Effective Clustering Methods for Spatial Data Mining (Αποδοτικές και αποτελεσματικές μέθοδοι ομαδοποίησης για εξόρυξη χωρικών δεδομένων) Efficient and Effective Clustering Methods for Spatial Data Mining (Αποδοτικές και αποτελεσματικές μέθοδοι ομαδοποίησης για εξόρυξη χωρικών δεδομένων) Των Raymond T. Ng και Jiawei Han (1994) Παρουσίαση

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: ΑΝΑΛΥΣΗ ΙΣΤΟΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΧΗΜΙΚΟΥ ΕΡΓΟΣΤΑΣΙΟΥ ΜΕ ΧΡΗΣΗ ΑΛΓΟΡΙΘΜΩΝ

Διαβάστε περισσότερα

Heapsort Using Multiple Heaps

Heapsort Using Multiple Heaps sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα (ADT) Λεξικού υναμικά μεταβαλλόμενη

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών &

Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών & Data Path Allocation Σύνθεση Data Path Το DataPath είναι ένα netlist που αποτελείται από τρεις τύπους µονάδων: (α) Λειτουργικές Μονάδες, (β) Μονάδες Αποθήκευσης και (γ) Μονάδες ιασύνδεσης Αριθµό Μονάδων

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Data Mining - Classification Data Mining Ανακάλυψη προτύπων σε μεγάλο όγκο δεδομένων. Σαν πεδίο περιλαμβάνει κλάσεις εργασιών: Anomaly Detection:

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Συσταδοποίηση IΙ. ιαχείριση Ποιότητας Cluster validity

Συσταδοποίηση IΙ. ιαχείριση Ποιότητας Cluster validity Συσταδοποίηση IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 006 ιαχείριση Ποιότητας Cluster validity Εξόρυξη Δεδομένων: Ακ. Έτος 006-007

Διαβάστε περισσότερα

Επιβλέπων καθηγητής: Βασίλειος Μεγαλοοικονόμου

Επιβλέπων καθηγητής: Βασίλειος Μεγαλοοικονόμου ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΟΡΥΞΗΣ ΔΕΔΟΜΕΝΩΝ

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

«Ομαδοποίηση δεδομένων Κοινωνικού Ιστού»

«Ομαδοποίηση δεδομένων Κοινωνικού Ιστού» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑΝΝΑΚΙΔΟΥ ΕΙΡΗΝΗ (Α.Μ. 49) «Ομαδοποίηση δεδομένων Κοινωνικού

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D.

Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) Ιστοσελίδα του µαθήµατος. Περιεχόµενα. ηµήτριος Κατσαρός, Ph.D. 1 Κινητός και ιάχυτος Υπολογισµός (Mobile & Pervasive Computing) ηµήτριος Κατσαρός, Ph.D. Χειµώνας 2006 ιάλεξη 5η Ιστοσελίδα του µαθήµατος 2 http://skyblue.csd.auth.gr/~dimitris/courses/mpc_fall06.htm

Διαβάστε περισσότερα

ιπλωµατική Εργασία «Οµαδοποίηση δεδοµένων σε περιβάλλον υπηρεσιών καταλόγου»

ιπλωµατική Εργασία «Οµαδοποίηση δεδοµένων σε περιβάλλον υπηρεσιών καταλόγου» Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Πληροφορικής ιπλωµατική Εργασία «Οµαδοποίηση δεδοµένων σε περιβάλλον υπηρεσιών καταλόγου» Μπαλασάς Αντώνιος ΑΕΜ 638 antoniom@csd.auth.gr Επιβλέπουσα Καθηγήτρια

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράµµατα για τη διαχείριση της ΒΔ Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Αρχεία δεδοµένων συστήµατος Σύστηµα Βάσεων Δεδοµένων (ΣΒΔ)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη

Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη Ευρετήρια 1 Αρχεία Τα δεδοµένα συνήθως αποθηκεύονται σε αρχεία στο δίσκο Για να επεξεργαστούµε τα δεδοµένα θα πρέπει αυτά να βρίσκονται στη µνήµη. Η µεταφορά δεδοµένων από το δίσκο στη µνήµη και από τη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K.

Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K. Δοµές Δεδοµένων 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης Βασίζεται στις διαφάνειες των R. Sedgewick K. Wayne Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις Συνδεδεµένα συστατικά Αφηρηµένη

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΠΤΥΞΗ ΓΡΑΦΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΣΕ MATLAB ΓΙΑ ΣΥΣΤΑΔΟΠΟΙΗΣΗ ΜΕΣΩ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ISODATA Μαρκαντωνάτου Μαρία Α.Μ.: 379 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Δρ. Τσιμπίρης

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ

ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΧΡΟΝΟΣΗΜΑΣΜΕΝΩΝ, ΑΚΟΛΟΥΘΙΑΚΩΝ, ΣΥΝΘΕΤΩΝ ΤΥΠΩΝ ΔΕΔΟΜΕΝΩΝ Δομή παρουσίασης Εισαγωγή Βασικές Έννοιες Σχετικές μελέτες Εφαρμογή Δεδομένων Συμπεράσματα Εισαγωγή Μελέτη και προσαρμογή των διάφορων

Διαβάστε περισσότερα