Βασικές Έννοιες Θεωρίας Γραφημάτων
|
|
- Ευδοκία Ευταξίας
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
2 Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα, διαδρομές, δρομολόγηση ανάθεση πόρων, layouts, ). Γράφημα G(V, E): V κορυφές Ε ακμές(ζεύγη σχετιζόμενων κορυφών) Τάξη V = n και μέγεθος E = m. Κατευθυνόμενα και μη-κατευθυνόμενα, απλά μη-κατευθ. Βάρη (μήκη) στις ακμές Αλγόριθμοι & Πολυπλοκότητα 2
3 Πλήρες και Συμπληρωματικό Γράφημα Πλήρες γράφημα n κορυφών: Κ n Όλα τα ζεύγη κορυφών συνδέονται με ακμή: n(n-1)/2 ακμές. Συμπληρωματικό γράφημα γραφήματος G. Ίδιο σύνολο κορυφών. Ακμές: όσες δεν υπάρχουν στο G. Συμπληρωματικό : αρχικό γράφημα G. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 3
4 Υπο-Γραφήματα Υπογράφημα G (V, E ) του G(V, E) όταν V V και E E. Επικαλύπτον ή συνδετικό (spanning) όταν V = V, δηλ. έχει όλες τις κορυφές του αρχικού γραφήματος, επιλέγουμε τις ακμές που τις συνδέουν. Επαγόμενο (induced) όταν δηλ. έχει όλες τις ακμές του αρχικού μεταξύ των επιλεγμένων κορυφών Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 4
5 Βαθμός Κορυφής Βαθμός κορυφής deg(v): #ακμών εφαπτόμενων στη v. Κατευθυνόμενα: προς-τα-έσω και προς-τα-έξω βαθμός. Μη-κατευθυνόμενο G(V, E): Άρτιο πλήθος κορυφών περιττού βαθμού Αλγόριθμοι & Πολυπλοκότητα 5
6 ιαδρομές, Μονοπάτια, και Κύκλοι ιαδρομή Μονοκονδυλιά Μονοπάτι Κύκλος ιαδρομή: ακολουθία «διαδοχικών» ακμών. «ιαδοχικές» ακμές: κατάληξη πρώτης = αρχή της δεύτερης. Π.χ. {2, 1}, {1, 3}, {3, 4}, {4, 1}, {1, 5}, {5, 3}, {3, 6}. Μονοκονδυλιά: διαδρομή χωρίς επανάληψη ακμών. (Απλό) μονοπάτι: διαδρομή χωρίς επανάληψη κορυφών (και ακμών). Υπάρχει διαδρομή u v ανν υπάρχει μονοπάτι u v. Απόσταση d(u, v) (χωρίς και με βάρη): μήκος συντομότερου u v μονοπατιού. Κλειστή διαδρομή όταν άκρα της ταυτίζονται. Κλειστή μονοκονδυλιά ή κύκλωμα. (Απλός) κύκλος: μονοπάτι που άκρα του ταυτίζονται («κλειστό» μονοπάτι). Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 6
7 Συνεκτικότητα (Μη-κατευθυνόμενο) γράφημα G(V, E) συνεκτικό αν για κάθε ζευγάρι κορυφών u, v V, υπάρχει u v μονοπάτι. Μη-συνεκτικό γράφημα αποτελείται από συνεκτικές συνιστώσες: μεγιστικά (maximal) συνεκτικά υπογραφήματα. Γέφυρα (ακμή τομής): ακμή που αν αφαιρεθεί αυξάνει το πλήθος των συνεκτικών συνιστωσών. Ακμή γέφυρα ανν δεν ανήκει σε κύκλο. Σημείο άρθρωσης (κορυφή τομής): κορυφή που αν αφαιρεθεί αυξάνει το πλήθος των συνεκτικών συνιστωσών Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 7
8 Συνεκτικότητα (Κατευθυνόμενο) γράφημα G(V, E) ισχυρά συνεκτικό αν u, v V, υπάρχουν u v και v u μονοπάτια. Για κάθε ζευγάρι κορυφών ισχυρά συνεκτικού γραφήματος, υπάρχει κύκλος που τις περιλαμβάνει. Αν ένα κατευθυνόμενο γράφημα δεν είναι ισχυρά συνεκτικό, διαμερίζεται σε ισχυρά συνεκτικές συνιστώσες: Μεγιστικά ισχυρά συνεκτικά υπογραφήματα. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 8
9 Κύκλος Euler Κλειστή μονοκονδυλιά που διέρχεται: από κάθε ακμή 1 φορά, και από κάθε κορυφή τουλάχιστον 1 φορά. Συνεκτικό (μη-κατευθ.) γράφημα έχει κύκλο Euler ανν όλες οι κορυφές έχουν άρτιο βαθμό. C g c d A e D a B b f Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 9
10 Κύκλος Hamilton (Απλός) κύκλος που διέρχεται από όλες τις κορυφές. ιέρχεται από κάθε κορυφή 1 φορά. Μπορεί να μην διέρχεται από κάποιες ακμές. εν είναι γνωστή ικανή και αναγκαία συνθήκη! Ικανές συνθήκες ώστε G(V, E) έχει κύκλο Hamilton: v V, deg(v) V /2 (Θ. Dirac). u, v V, deg(u) + deg(v) V (Θ. Ore). Αναγκαίες συνθήκες για ύπαρξη κύκλου Hamilton σε γραφήμα G: G δεν έχει γέφυρα ή σημείο άρθρωσης. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 10
11 ιμερές Γράφημα Ανεξάρτητο σύνολο: σύνολο κορυφών που δεν συνδέονται με ακμή. Υπάρχει διαμέριση κορυφών σε δύο ανεξάρτητα σύνολα. G(X, Y, E): X και Y ανεξάρτητα σύνολα, ακμές μόνο μεταξύ κορυφών Χ και Υ. G διμερές ανν χ(g) 2. G διμερές ανν δεν έχει κύκλους περιττού μήκους. Κύκλος n κορυφών C n : διμερές ανν n άρτιος. Πλήρες διμερές γράφημα Κ n,m : ύο ανεξάρτητα σύνολα με n και m κορυφές. Όλες οι n m ακμές μεταξύ τους. Π.χ. Κ 3,3 έχει 9 ακμές. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 11
12 Χρωματικός Αριθμός Ανεξάρτητο σύνολο: σύνολο κορυφών που δεν συνδέονται με ακμή. k-μερές γράφημα: κορυφές του διαμερίζονται σε k ανεξάρτητα σύνολα. Ενδιαφέρει ελάχιστο k για το οποίο γράφημα G είναι k-μερές. Αυτό ταυτίζεται με χρωματικό αριθμό χ(g) γραφήματος G. Χρωματικός αριθμός: ελάχιστο πλήθος χρωμάτων για χρωματισμό κορυφών ώστε όλες οι ακμές να έχουν άκρα διαφορετικού χρώματος. Κορυφές ίδιου χρώματος: ανεξάρτητο σύνολο. Αν G περιέχει Κ m, χ(g) m χ(g) +1 Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 12
13 Χρωματικός Αριθμός Χρωματικός αριθμός: ελάχιστο πλήθος χρωμάτων για χρωματισμό κορυφών ώστε όλες οι ακμές να έχουν άκρα διαφορετικού χρώματος. Κορυφές ίδιου χρώματος: ανεξάρτητο σύνολο. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 13
14 Χρωματικός Αριθμός Χρωματικά k-κρίσιμο γράφημα G: χ(g) = k και για κάθε ακμή e, χ(g e) = k 1. K n n-κρίσιμο: χ(k n ) = n και για κάθε e, χ(k n e) = n 1. Απλός κύκλος C n, n άρτιος: χ(c n ) = 2 και όχι 2-κρίσιμο. Απλός κύκλος C n, n περιττός: χ(c n ) = 3 και 3-κρίσιμο. Τροχός W n, n άρτιος: χ(w n ) = 3 και όχι 3-κρίσιμο. Τροχός W n, n περιττός: χ(w n ) = 4 και 4-κρίσιμο. 14
15 Αναπαράσταση Γραφημάτων με πίνακα γειτνίασης: Αν έχουμε βάρη, (Απλό) μη κατευθυνόμενο: συμμετρικός, διαγώνιος 0. Άθροισμα στοιχείων γραμμής (στήλης): βαθμός κορυφής. Χώρος Θ(n 2 ). Άμεσος έλεγχος για ύπαρξη ακμής Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 15
16 Πίνακας Γειτνίασης Α k [u i, u j ] = #διαδρομών u i u j μήκους k. ιαγώνιος τετραγώνου: Α 2 [u i, u i ] = βαθμός(u i ). Α 3 [u i, u i ] = 2 #τριγώνων που συμμετέχει u i. Ορίζουμε: Υ[u i, u j ] = #διαδρομών u i u j μήκους n 1. Μονοπάτια έχουν μήκος n 1, και διαδρομή ανν μονοπάτι. Γράφημα συνεκτικό ανν όλα τα στοιχεία του Υθετικά(> 0). Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 16
17 Αναπαράσταση Γραφημάτων με λίστα γειτνίασης: γειτονικές κορυφές σε λίστα. Αν έχουμε βάρη, τα αποθηκεύουμε στους κόμβους. Χώρος Θ(m). Έλεγχος για ύπαρξη ακμής σε χρόνο Ο(deg(u)) / / / / / 6 4 / Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 17
18 Πίνακας Πρόσπτωσης ,2 1,5 1,6 2,3 2,7 3,4 3,8 4,5 4,9 5, 10 6,8 6,9 7,9 7, 10 8, Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 18
19 Ισομορφικά Γραφήματα Γραφήματα G(V G, E G ) και H(V H, E H ) είναι ισομορφικά ανν υπάρχει 1-1 και επί συνάρτηση f: V G V H (ισομορφισμός) ώστε για κάθε u, v V G, {u, v} E G ανν {f(u), f(v)} E H Υπάρχει αντιστοιχία κορυφών που διατηρεί τη γειτονικότητα. Ισομορφισμός αποτελεί σχέση ισοδυναμίας. Αναλλοίωτη ιδιότητα: ισομορφικά γραφήματα «συμφωνούν». Όλες οι σημαντικές ιδιότητες: #κορυφών, #ακμών, βαθμοί, συνεκτικότητα, κύκλος Euler και Hamilton, χρωματικός αριθμός,... Πως αποδεικνύω ότι δύο γραφήματα ισομορφικά: Βρίσκω ισομορφισμό και ελέγχω ότι διατηρεί γειτονικότητα. Αποδεικνύω (με ισομορφισμό) ότι τα συμπληρωματικά τους είναι ισομορφικά. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 19
20 Ισομορφικά Γραφήματα Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 20
21 Ισομορφικά Γραφήματα Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 21
22 Ισομορφικά Γραφήματα Πως αποδεικνύω ότι δύο γραφήματα δεν είναι ισομορφικά: Βρίσκω μια αναλλοίωτη ιδιότητα στην οποία «διαφωνούν». Αυτοσυμπληρωματικό γράφημα: ισομορφικό με το συμπληρωματικό του. Αυτοσυμπληρωματικό γράφημα έχει n(n-1)/4 ακμές. Αυτοσυμπληρωματικά γραφήματα υπάρχουν μόνο αν n ή n-1 είναι πολλαπλάσιο του 4. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 22
23 Επίπεδα Γραφήματα Επίπεδο ένα γράφημα που μπορεί να ζωγραφιστεί στο επίπεδο χωρίς να τέμνονται οι ακμές του. Θεώρημα 4 χρωμάτων: Επίπεδο γράφημα έχει χρωματικό αριθμό 4. Επίπεδη αποτύπωση ορίζει όψεις (faces). Περιοχή επιπέδου που ορίζεται από (απλό) κύκλο και δεν μπορεί να διαιρεθεί σε μικρότερες όψεις. Εσωτερικές και εξωτερική όψη. f = #όψεων επίπεδου γραφήματος. Τύπος του Euler για συνεκτικά επίπεδα γραφ.: n + f = m + 2 #όψεων είναι αναλλοίωτη ιδιότητα, δεν εξαρτάται από αποτύπωση! Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 23
24 Επίπεδα Γραφήματα Μέγιστος αριθμός ακμών απλού επίπεδου γραφήματος. Απλό: κάθε όψη ορίζεται από τουλάχιστον 3 ακμές. Κάθε ακμή «ανήκει» σε μία ή δύο όψεις: Αν ανήκει σε κύκλο: σύνορο δύο όψεων. ιαφορετικά, «ανήκει» σε μία όψη. (Κάθε ακυκλικό γράφημα είναι επίπεδο με μία όψη, την εξωτερική). Υπάρχει συνεκτικό απλό επίπεδο γράφημα με m = 3n 6. Όλες του οι όψεις είναι τρίγωνα. Απλό διμερές επίπεδο γράφημα: m 2n 4. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 24
25 Επίπεδα Γραφήματα Άρα αν απλό γράφημα έχει m > 3n 6 (m > 2n 4 αν διμερές), δεν είναι επίπεδο. Τα Κ 5 και Κ 3,3 δεν είναι επίπεδα. Το συμπληρωματικό του γραφ. Petersen δεν είναι επίπεδο. Απλό επίπεδο γράφημα περιέχει κορυφή βαθμού 5. Π.χ. χρησιμοποιείται για να δείξουμε επαγωγικά ότι κάθε επίπεδο γράφημα έχει χρωματικό αριθμό 5. Κάθε γράφημα G με n 11 κορυφές, είτε το G είτε το συμπληρωματικό του δεν είναι επίπεδο. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 25
26 Ομοιομορφικά Γραφήματα Απλοποίηση σειράς: απαλοιφή κορυφών βαθμού 2 (δεν επηρεάζουν επιπεδότητα). Γραφήματα G και H ομοιομορφικά ανν μπορούν να καταλήξουν ισομορφικά με διαδοχική εφαρμογή απλοποιήσεων σειράς. Ομοιομορφικά μπορούν να «διαφωνούν» σε αναλλοίωτες ιδιότητες, αλλά «συμφωνούν» σε επιπεδότητα. Ομοιομορφικά «συμφωνούν» σε κύκλο Euler και κύκλο Hamilton; Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 26
27 Θεώρημα Kuratowski Θ. Kuratowski: Γράφημα επίπεδο ανν δεν περιέχει υπογράφημα ομοιομορφικό με Κ 5 ήκ 3,3. Ένα γράφημα δεν είναι επίπεδο ανν μπορούμε με απλοποιήσεις (διαγραφές κορυφών και ακμών, απλοποιήσεις σειράς) να καταλήξουμε σε Κ 5 ήκ 3,3. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 27
28 έντρα έντρο: μοντέλο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών) σχέσεων: προγόνου-απογόνου, προϊσταμένου-υφισταμένου, όλου-μέρους, Εφαρμογές: Γενεαλογικά δέντρα. Οργανόγραμμα επιχείρησης, ιεραρχία διοίκησης. User interfaces, web sites, module hierarchy, δέντρα απόφασης, Ιεραρχική οργάνωση: ταχύτερη πρόσβαση σε δεδομένα!
29 έντρα: Βασικές Ιδιότητες Γράφημα ακυκλικό και συνεκτικό. Τα παρακάτω είναι ισοδύναμα για κάθε απλό μη κατευθυνόμενο γράφημα G(V, E): G είναι δέντρο. Κάθε ζευγάρι κορυφών του G συνδέεται με μοναδικό μονοπάτι. G ελαχιστικά συνεκτικό. G συνεκτικό και E = V -1. G ακυκλικό και E = V -1. G μεγιστικά ακυκλικό. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 29
30 έντρα: Ορολογία Γράφημα ακυκλικό και συνεκτικό. έντρο με n κορυφές έχει m = n 1 ακμές. Ρίζα: κόμβος χωρίς πρόγονο. έντρο με ρίζα : ιεραρχία Φύλλο: κόμβος χωρίς απογόνους. Πρόγονοι u: κόμβοι στο (μοναδικό) μονοπάτι u προς ρίζα. Απόγονοι u: κόμβοι που έχουν ως πρόγονο το u. Υποδέντρο u: έντρο αποτελούμενο από u και απόγονούς του. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 30
31 έντρα: Ορολογία Επίπεδο u: μήκος μονοπατιού από u προς ρίζα. Ύψος: μέγιστο επίπεδο κόμβου (φύλλου). Μέγιστη απόσταση από ρίζα. Βαθμός u: αριθμός παιδιών u. υαδικό δέντρο : κάθε κορυφή 2 παιδιά Αριστερό και δεξιό. Κάθε υποδέντρο είναι δυαδικό δέντρο. Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 31
32 υαδικά έντρα Ύψος h : h+1 #κορυφών 2 h+1 1 h+1 επίπεδα, 1 κορ. / επίπ i κορυφές στο επίπεδο i h = 2 h #κορυφών n : log 2 (n+1) 1 h n Πλήρες (complete) : n = 2 h+1 1 Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 32
33 Inorder Ενδο-διατεταγμένη (inorder) διέλευση: Αριστερό Ρίζα εξί. Κόμβος εξετάζεται μετά από κόμβους αριστερού υποδέντρου και πριν από κόμβους δεξιού υποδέντρου Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 33
34 Preorder Προ-διατεταγμένη (preorder) διέλευση: Ρίζα Αριστερό εξί. Κόμβος εξετάζεται πριν από κόμβους αριστερού και δεξιού υποδέντρου Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 34
35 Postorder Μετα-διατεταγμένη (preorder) διέλευση: Αριστερό εξί Ρίζα Κόμβος εξετάζεται μετά από κόμβους αριστερού και δεξιού υποδέντρου Αλγόριθμοι & Πολυπλοκότητα Βασικές Έννοιες Θεωρίας Γραφημάτων 35
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις
ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Δέντρα Δέντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών)
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου, Θ Λιανέας η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α)
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
... a b c d. b d a c
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α) Σε ένα διάστηµα
Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.
Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που
Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.
Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
2 ) d i = 2e 28, i=1. a b c
ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Στοιχεία Θεωρίας Γραφηµάτων (1)
Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα
Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)
Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Θεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.
Θεωρία Γραφημάτων 11η Διάλεξη
Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.
ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς
Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)
Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ
Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.
Παράδειγµα (2) s t Στοιχεία Θεωρίας Γραφηµάτων (2) w x Ορέστης Τελέλης z y tllis@unipi.r v u Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Τα δύο γραφήµατα δεν είναι ισόµορφα. Ο κόµβος (αριστερά) είναι
Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Γράφοι Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Συντομότερες Διαδρομές
Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος
z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από
Επίπεδα Γραφήματα (planar graphs)
Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν
E(G) 2(k 1) = 2k 3.
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από
Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017
Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;
Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018
Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018 Άσκηση 9.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;
Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017
Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 ΕΓΘΑ : Σ. Κοσμαδάκης, «Εισαγωγή στα Γραφήματα, Θεωρία-Ασκήσεις». Α 1 Έστω η παρακάτω σχέση Q(k) πάνω στο σύνολο {1, 2} όπου k τυχαίος
Στοιχεία Θεωρίας Γραφηµάτων (2)
Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (2) 1 / 21 Παράδειγµα (2) s t w x h g
Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα
Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και
Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017
HY118-Διακριτά Μαθηματικά Τι είδαμε την προηγούμενη φορά Παρασκευή, 12/05/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Υπογράφημα Συμπληρωματικά γραφήματα Ισομορφισμός γράφων Υπολογιστική πολυπλοκότητα
HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι
HY118-Διακριτά Μαθηματικά Θεωρία γράφων/ γραφήματα Πέμπτη, 17/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 17-May-18 1 1 17-May-18 2 2 Τι είδαμε την προηγούμενη φορά Ισομορφισμός γράφων Υπολογιστική
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Θεωρία Γραφημάτων 1η Διάλεξη
Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη
βασικές έννοιες (τόμος Β)
θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)
Αναζήτηση Κατά Βάθος. Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα
Μαθηματικά Πληροφορικής
Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενα γραφήματα Ορισμός Κατευθυνόμενογράφημα Gείναιέναζεύγος (V,E)όπου V πεπερασμένο σύνολο του οποίου
Θεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,
Μαθηματικά Πληροφορικής
Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενα γραφήματα Ορισμός Κατευθυνόμενογράφημα Gείναιέναζεύγος (V,E)όπου V πεπερασμένο σύνολο του οποίου
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους
Θεωρία Γραφημάτων 7η Διάλεξη
Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού
HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Παρασκευή, 20/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είδαµε την προηγούµενη φορά Συνεκτικότητα Υπογράφηµα
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 9 Απριλίου 2009 1 / 0 Παραδείγµατα γράφων
Συνεκτικότητα Γραφήματος
Συνεκτικότητα Γραφήματος Θεμελιώδης έννοια στη Θεωρία Γραφημάτων. Πληθώρα πρακτικών εφαρμογών, όπως: Αξιόπιστη και ασφαλής επικοινωνία. Δρομολόγηση σε δίκτυα. Πλοήγηση. Συνεκτικότητα Γραφήματος Θεμελιώδης
Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα
Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω
ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι
Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης
Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016
Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;
Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ2 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Θεωρίας Γραφηµάτων.
d(v) = 3 S. q(g \ S) S
Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο
Θεωρία Γραφημάτων 9η Διάλεξη
Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη
χ(k n ) = n χ(c 5 ) = 3
Διάλεξη 20: 16.12.26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιώτης Ρεπούσκος 20.1 Βασικές Ιδιότητες Θεώρημα 20.1 Για ένα πλέγμα Γ r r, ισχύει ότι bn(γ r r ) r + 1. Απόδειξη: Κατασκευάζουμε
Θεωρία Γραφημάτων 10η Διάλεξη
Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα