ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES"

Transcript

1 ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES ρ. Παύλος Αντωνίου Department of Computer Science 1

2 S-DES Γενικά (1) Ο αλγόριθμος DES χρησιμοποιεί κλειδιά μεγέθους 56 bit Ο απλοποιημένος συμμετρικός αλγόριθμος S- DES. Ο S-DES παίρνει σαν είσοδο ένα 8-bit απλό κείμενο και ένα κλειδί 10-bit και παράγει ένα 8-bit κρυπτογράφημα σαν έξοδο: Είσοδος: Κλειδί: Έξοδος:

3 S-DES Γενικά (2) Ο S-DES εσωκλείει 5 συναρτήσεις για τη διαδικασία κρυπτογράφησης: Συνάρτηση1: αρχική αντιμετάθεση (initial permutation, IP). Συνάρτηση2: σύνθετη συνάρτηση f K (περιλαμβάνει αντιμετάθεση και αλλαγή και εξαρτάται από το κλειδί εισόδου). Συνάρτηση3: απλή συνάρτηση αντιμετάθεσης των δύο μισών εισόδου (switch, SW). Συνάρτηση4: τη σύνθετη συνάρτηση f K και πάλι. Συνάρτηση5: τελική αντιμετάθεση, που είναι η αντίστροφη της αρχικής αντιμετάθεσης (IP -1 ). 3

4 S-DES Γενικά (3) Ο S-DES εσωκλείει 5 βήματα για την παραγωγή των δύο υποκλειδιών: Βήμα1: Αντιμετάθεση P 10. Βήμα2: Αριστερή ολίσθηση LS-1. Βήμα3: Αντιμετάθεση P 8. Βήμα4: ιπλή αριστερή ολίσθηση LS-2. Βήμα5: Αντιμετάθεση P 8 (ξανά). 4

5 S-DES Γενικά (4) Σχηματικά: αρχική αντιμετάθεση απλή συνάρτηση αντιμετάθεσης των δύο μισών εισόδου τελική αντιμετάθεση 5

6 S-DES Γενικά (5) Παρατηρήσεις: Οι διαδικασίες P 8 και P 10 είναι απλές αντιμεταθέσεις. Είναι φανερό ότι από το γράφημα χρησιμοποιούνται δύο κλειδιά, το κλειδί Κ 1 και το κλειδί Κ 2, τα οποία προκύπτουν από το αρχικό κλειδί Κ. Το αρχικό κλειδί Κ έχει εύρος 10-bit, ενώ τα υποκλειδιά Κ 1 και Κ 2 έχουν εύρος 8-bit το καθένα. Η κρυπτογράφηση τροφοδοτείται πρώτα με το υποκλειδί Κ 1 και στη συνέχεια με το υποκλειδί Κ 2. 6

7 S-DES Γενικά (6) Η κρυπτογράφηση μπορεί να εκφραστεί ως εξής: c = κρυπτογράφημα. m = απλό κείμενο. c= IP -1 (f K2 (SW(f K1 (IP(m))))). Η παραγωγή των υποκλειδιών αναλύεται: K 1 = P8(Shift(P10(K))). K 2 = P8(Shift(Shift(P10(K)))). 7

8 S-DES Γενικά (7) Η αποκρυπτογράφηση μπορεί να εκφραστεί ως εξής: c = κρυπτογράφημα. m = απλό κείμενο. m= IP -1 (f K1 (SW(f K2 (IP(c))))). Η παραγωγή των υποκλειδιών αναλύεται: K 1 = P8(Shift(P10(K))). K 2 = P8(Shift(Shift(P10(K)))). 8

9 S-DES Παραγωγή υποκλειδιών (1) Η παραγωγή του κλειδιού εμπεριέχει μία σειρά από στάδια όπου σχηματίζονται τα υποκλειδιά Κ 1 και Κ 2. LS-1: Αριστερή ολίσθηση κατά 1 bit 9

10 S-DES Παραγωγή υποκλειδιών (2) Εάν θεωρήσουμε ότι το 10-bit κλειδί έχει την ακόλουθη μορφή: (k 1, k 2, k 3, k 4, k 5, k 6, k 7, k 8, k 9, k 10 ) Μετά την αντιμετάθεση της συνάρτησης P 10 το κλειδί αλλάζει μορφή: (k 3, k 5, k 2, k 7, k 4, k 10, k 1, k 9, k 8, k 6 ) Αφού η αντιμετάθεση της συνάρτησης P 10 έχει ως εξής: P

11 S-DES Παραγωγή υποκλειδιών (3) Παράδειγμα: Το κλειδί Κ πριν την εφαρμογή της P 10 : Το κλειδί Κ μετά την εφαρμογή της P 10 :

12 Παραγωγή υποκλειδιών 12

13 S-DES Παραγωγή υποκλειδιών (4) Στη συνέχεια το κλειδί διαχωρίζεται στη μέση και στο κάθε κομμάτι ξεχωριστά εφαρμόζεται η ολίσθηση LS-1 Κυκλική αριστερή ολίσθηση κατά 1 bit 13

14 S-DES Παραγωγή υποκλειδιών (5) Παράδειγμα: Το κλειδί Κ πριν την μετατόπιση της LS-1: Μέρος1: Μέρος2: Το κλειδί Κ μετά την μετατόπιση της LS-1: Μέρος1: Μέρος2:

15 Παραγωγή υποκλειδιών 15

16 S-DES Παραγωγή υποκλειδιών (6) Ακολούθως εφαρμόζεται η αντιμετάθεση P 8 στα δύο μέρη του κλειδιού και προκύπτει το υποκλειδί Κ 1. Στην μετατόπιση P 8 εισάγονται δύο μέρη των 5-bit και εξάγεται ένα ενιαίο υποκλειδί των 8-bit. 16

17 S-DES Παραγωγή υποκλειδιών (7) Εάν θεωρήσουμε ότι το 10-bit κλειδί έχει την ακόλουθη μορφή: Μέρος1: (k 1, k 2, k 3, k 4, k 5 ) Μέρος2: (k 6, k 7, k 8, k 9, k 10 ) Μετά την αντιμετάθεση της συνάρτησης P 8 σχηματίζεται το υποκλειδί Κ 1 : (k 6, k 3, k 7, k 4, k 8, k 5, k 10, k 9 ) Αφού η αντιμετάθεση της συνάρτησης P 8 έχει ως εξής: P

18 Παραγωγή υποκλειδιών 18

19 S-DES Παραγωγή υποκλειδιών (8) Αφού σχηματιστεί το υποκλειδί Κ 1 τα δύο μέρη των 5-bit (πριν την εφαρμογή της μετατόπισης P 8 ) υφίστανται ξεχωριστά ολίσθηση με βάση τη συνάρτηση LS-2 Κυκλική αριστερή ολίσθηση κατά 2 bit 19

20 S-DES Παραγωγή υποκλειδιών (9) Παράδειγμα: Τα δύο μέρη πριν την μετατόπιση της LS-2: Μέρος1: Μέρος2: Τα δύο μέρη μετά την μετατόπιση της LS-2: Μέρος1: Μέρος2:

21 Παραγωγή υποκλειδιών 21

22 S-DES Παραγωγή υποκλειδιών (10) Μετά την ολίσθηση LS-2 τα δύο μέρη των 5-bit υφίστανται αντιμετάθεση σύμφωνα με την συνάρτηση P 8. Στη συνάρτηση P 8 εισάγονται δύο μέρη των 5-bit και εξάγεται το υποκλειδί K 2 που έχει εύρος 8-bit. 22

23 S-DES Παραγωγή υποκλειδιών (11) Παράδειγμα: Τα δύο μέρη πριν την αντιμετάθεση P 8 : Μέρος1: Μέρος2: Το υποκλειδί Κ 2 μετά την αντιμετάθεση P 8 : Υποκλειδί Κ 2 :

24 S-DES Παραγωγή υποκλειδιών (12) Παράδειγμα παραγωγής των υποκλειδιών Κ 1 και Κ 2 από το ενιαίο κλειδί Κ: Το 10-bit κλειδί Κ: Το 8-bit υποκλειδί Κ 1 : Το 8-bit υποκλειδί Κ 2 :

25 S-DES Κρυπτογράφηση (1) Σχηματικά η διαδικασία κρυπτογράφησης: 25

26 S-DES Κρυπτογράφηση (2) Η κρυπτογράφηση του S-DES αποτελείται από δύο συνεχόμενα βήματα όπου γίνεται διπλή εφαρμογή της συνάρτησης f K, πρώτα με είσοδο το υποκλειδί Κ 1 και μετά με είσοδο το υποκλειδί Κ 2. Η συνάρτηση f K μπορεί να περιγραφεί: f K (L,R) = (L XOR F(R,SK),R) Όπου: L: το αριστερό 4-bit μέρος του απλού μηνύματος. R: το δεξί 4-bit μέρος του απλού μηνύματος. F: η ενδιάμεση διαδικασία αντιμετάθεσης και μετατόπισης (εισάγονται 4-bit και εξάγονται 4-bit). SK: το υποκλειδί. 26

27 S-DES Κρυπτογράφηση (3) Αρχικά το απλό μήνυμα των 8-bit εισάγεται για κρυπτογράφηση. Το αρχικό απλό μήνυμα αντιμετατίθεται σύμφωνα με τη συνάρτηση IP. 27

28 S-DES Κρυπτογράφηση (4) Εάν θεωρήσουμε ότι το 8-bit απλό μήνυμα έχει την ακόλουθη μορφή: (m 1, m 2, m 3, m 4, m 5,m 6, m 7, m 8 ) Μετά την αντιμετάθεση της συνάρτησης IP σχηματίζεται το μήνυμα: (m 2, m 6, m 3, m 1, m 4,m 8, m 5, m 7 ) Αφού η αντιμετάθεση της συνάρτησης IP έχει ως εξής: IP Παράδειγμα: Το μήνυμα m πριν την εφαρμογή της IP: Το μήνυμα m μετά την εφαρμογή της IP:

29 S-DES Κρυπτογράφηση (5) Μετά την αντιμετάθεση της συνάρτησης IP το μήνυμα χωρίζεται στο αριστερό (L) και στο δεξί (R) μέρος του. Παράδειγμα: Το μήνυμα m ( ) χωρίζεται: Στο αριστερό μέρος L: 1011 Και στο δεξί μέρος R:

30 S-DES Κρυπτογράφηση 30

31 S-DES Κρυπτογράφηση (6) Στη συνέχεια το δεξιό μέρος R εισάγεται στη συνάρτηση E/P. Η συνάρτηση E/P λαμβάνει 4-bit είσοδο και παράγει 8-bit έξοδο. ηλαδή Εάν θεωρήσουμε ότι το δεξί 4-bit μέρος έχει την ακόλουθη μορφή: (r 1, r 2, r 3, r 4 ) Μετά την αντιμετάθεση/επέκταση της συνάρτησης E/P σχηματίζεται η 8-bit μορφή: (r 4, r 1, r 2, r 3, r 2,r 3, r 4, r 1 ) Αφού η αντιμετάθεση/επέκταση της συνάρτησης E/P έχει ως εξής: E/P

32 S-DES Κρυπτογράφηση (7) Παράδειγμα: Το δεξί μέρος r πριν από την είσοδο στη συνάρτηση E/P: r = 1101 Μετά την έξοδο από τη συνάρτηση E/P:

33 S-DES Κρυπτογράφηση (8) H 8-bit έξοδος από τη συνάρτηση E/P συνδυάζεται με το 8-bit υποκλειδί K 1 με πράξη XOR. Η 8-bit έξοδος από την συνάρτηση E/P είναι: Το 8-bit υποκλειδί Κ 1 είναι: Το 8-bit αποτέλεσμα έχει τη μορφή:

34 S-DES Κρυπτογράφηση 34

35 S-DES Κρυπτογράφηση (9) Το πρώτο (αριστερό) μέρος εισάγεται στο κουτί-s 0 και το δεύτερο (δεξιό) εισάγεται στο κουτί-s 1. Τα κουτιά S 0 και S 1 δέχονται 4-bit εισόδους και παράγουν 2-bit εξόδους. Τα κουτιά αποτελούν διδιάστατους πίνακες 4Χ4 που περιέχουν δεκαδικούς αριθμούς από 0 έως και 3. Η 4-bit είσοδος «σπάει» στη μέση και το πρώτο μέρος δηλώνει το δεκαδικό αριθμό σειράς και το δεύτερο μέρος δηλώνει το δεκαδικό αριθμό στήλης. 35

36 S-DES Κρυπτογράφηση (10) Στο κουτί S 0 εισάγεται το 4-bit μέρος 0100 και στο κουτί S 1 εισάγεται το 4-bit μέρος Για το κουτί S 0 : Το πρώτο και το τέταρτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την γραμμή στο κουτί S 0 : ηλαδή: 00 (2) 0 (10) σειρά 0 Το δεύτερο και το τρίτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την στήλη στο κουτί S 0 : ηλαδή: 10 (2) 2 (10) στήλη 2 Για το κουτί S 1 : Το πρώτο και το τέταρτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την γραμμή στο κουτί S 1 : ηλαδή: 11 (2) 3 (10) σειρά 3 Το δεύτερο και το τρίτο bit μετατρέπονται σε δεκαδικό αριθμό και δηλώνουν την στήλη στο κουτί S 1 : ηλαδή: 11 (2) 3 (10) στήλη 3 36

37 S-DES Κρυπτογράφηση (11) Τα κουτιά S 0 και S 1 περιέχουν συγκεκριμένες τιμές: S 0 S

38 S-DES Κρυπτογράφηση (11) Επομένως το τμήμα που εξάγεται από το κουτί S 0 δείχνει στη δεκαδική τιμή 3 11 και το τμήμα που εξάγεται από το κουτί S 1 δείχνει στη δεκαδική τιμή Με αυτόν τον τρόπο από το κουτί S 0 εξάγεται το τμήμα 11 και από το κουτί S 1 εξάγεται το τμήμα

39 S-DES Κρυπτογράφηση 39

40 S-DES Κρυπτογράφηση (12) Τα δύο τμήματα εισάγονται ενοποιημένα στην συνάρτηση αντιμετάθεσης P 4. Η συνάρτηση P 4 δέχεται δύο τμήματα των 2-bit και εξάγει ένα 4-bit τμήμα. ηλαδή Εάν θεωρήσουμε ότι τα δύο τμήματα των 2-bit έχουν την ακόλουθη μορφή: (t 1, t 2 ), (t 3, t 4 ) Μετά την αντιμετάθεση της συνάρτησης P 4 σχηματίζεται η 4-bit μορφή: (t 2, t 4, t 3, t 1 ) Αφού η αντιμετάθεση της συνάρτησης P 4 έχει ως εξής: P

41 S-DES Κρυπτογράφηση (13) Για το συγκεκριμένο παράδειγμα η έξοδος από τη συνάρτηση P 4 θα είναι: 1111 Έπειτα το 4-bit μέρος συνδυάζεται με πράξη XOR με το αρχικό τμήμα L: 1111 XOR L = 1111 XOR 1011 = 0100 Το τμήμα αυτό εισάγεται στη συνάρτηση SW σαν αριστερό μέλος, ενώ το δεξιό μέλος είναι το τμήμα R = Η συνάρτηση SW αντιστρέφει το αριστερό και δεξί μέλος και τα δύο τμήματα επαναεισάγονται στη συνάρτηση f K με όμοιο τρόπο. Η μόνη αλλαγή στη νέα εκτέλεση της f K είναι ότι χρησιμοποιείται το υποκλειδί Κ 2. 41

42 S-DES Ισχύς & Σχέση με DES Ισχύς του S-DES. Μία «βίαιη επίθεση» είναι εφικτό να παραβιάσει τον S- DES, αφού με ένα 10-bit κλειδί υπάρχουν μόνο 2 10 = 1024 πιθανότητες. Ο S-DES αποτελεί μία μικρογραφία του DES (χρησιμοποιείται για εκπαιδευτικούς σκοπούς). Ο S-DES δέχεται 8-bit απλό κείμενο, ενώ ο DES 64-bit απλό κείμενο. Ο S-DES δέχεται 10-bit κλειδί, ενώ ο DES 64-bit (το οποίο μετατρέπεται σε 56-bit). Ο S-DES χρησιμοποιεί 2 υποκλειδιά, ενώ ο DES

43 Παράδειγμα (1) K = P10 = P10(K) = KL = KR = LS-1(KL) = LS-1(KR) = K`= LS-1(KL) LS-1(KR) =

44 Παράδειγμα (2) K`= P8 = P8(K`) = K1 = LS-2(LS-1(KL))=LS-2(10101) = LS-2(LS-1(KR))= LS-2(11000) =

45 Παράδειγμα (3) K`` = LS-2(LS-1(KL)) LS-2(LS-1(KR)) = P8 = P8(K``) = = K2 45

46 Παράδειγμα (4) K1 = K2 = Plaintext m = IP = IP(m) = ml = 1011 mr =

47 Παράδειγμα (5) E/P = E/P(mR) = E\P(1000) = E/P(mR) xor K1 = xor = m`l = 1010 m`r =

48 Παράδειγμα (6) m`l = 1010 S 0 (m`l) = 2 = 10 m`r = 0101 S 1 (m`r) = 1 = 01 m``= m`l m`r = 1001 P4 = P4(m``) = 0101 ml xor P4(m``) = 1011 xor 0101= 1110 S S

49 Παράδειγμα (7) (ml xor P4(m``)) SW mr = 1110 SW 1000 = ML = 1000 MR = 1110 K2 =

50 Παράδειγμα (8) E/P = E/P(MR) = E/P(1110) = E/P(MR) xor K2 = = xor = M`L = 0010 M`R =

51 Παράδειγμα (9) M`L = 0010 S 0 (M`L) = 0 = 00 M`R = 1110 S 1 (m`r) = 0 = 00 M``= M`L M`R = 0000 P4 = P4(M``) = 0000 ML xor P4(M``) = 1000 xor 0000 = 1000 S S

52 Παράδειγμα (10) IP = IP-1(ML xor P4(M``),MR) = IP-1(1000,1110)= = c =

53 Αποκωδικοποίηση IP = E/P = P4 = SW αντιμετάθεση left and right S S

ΕΠΛ 674: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES

ΕΠΛ 674: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES ΕΠΛ 674: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES Παύλος Αντωνίου Εαρινό Εξάμηνο 2011 Department of Computer Science 1 S-DES Γενικά (1) Ο απλοποιημένος συμμετρικός αλγόριθμος S- DES.

Διαβάστε περισσότερα

Ενςωματωμένα Συςτήματα Υλοποίηςη του SDES ςε Hardware

Ενςωματωμένα Συςτήματα Υλοποίηςη του SDES ςε Hardware Ενςωματωμένα Συςτήματα Υλοποίηςη του SDES ςε Hardware June 1 2012 Κεχαγιάσ Απόςτολοσ ΑΕΜ:134 Table of Contents O αλγόριθμοσ... 2 Υλοποίηςη ςε Hardware... 7 Xρονιςμόσ ςημάτων VGA... 12 Επαλήθευςη... 14

Διαβάστε περισσότερα

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση

Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Συμμετρικά κρυπτοσυστήματα

Συμμετρικά κρυπτοσυστήματα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές

Διαβάστε περισσότερα

UP class. & DES και AES

UP class. & DES και AES Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων UP class & DES και AES Επιμέλεια σημειώσεων: Ιωάννης Νέμπαρης Μάριος Κουβαράς Διδάσκοντες: Στάθης Ζάχος

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2 ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ

KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Βασικές έννοιες KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Ένα κρυπτοσύστηµα όπου οι χώροι των καθαρών µηνυµάτων, των κρυπτογραφηµένων µυνηµάτων και των κλειδιών είναι ο m,,,... m = καλείται ψηφιακό κρυπτοσύστηµα.

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΙΑ 1: Ονοματεπώνυμο: Εξάμηνο: Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Α.Μ: Έτος: 1. Το δεκαδικό σύστημα Είναι φανερό ότι οι χιλιάδες, εκατοντάδες, δεκάδες, μονάδες και τα δεκαδικά ψηφία είναι δυνάμεις

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Πολλαπλασιασμός: αλγόριθμος

Πολλαπλασιασμός: αλγόριθμος ΟΛΛΑΛΑΣΙΑΣΜΟΣ ολλαπλασιασμός: αλγόριθμος Για να πολλαπλασιάσουμε δύο αριθμούς x και κατασκευάζουμε έναν πίνακα από ενδιάμεσα αθροίσματα, κάθε ένα από τα οποία προκύπτει ως γινόμενο του x με ένα ψηφίο του

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται

Διαβάστε περισσότερα

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος

Λύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις

Διαβάστε περισσότερα

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Διάλεξη 19: Κατανομή Πόρων Κόψιμο Τούρτας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 19: Κατανομή Πόρων Κόψιμο Τούρτας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 19: Κατανομή Πόρων Κόψιμο Τούρτας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκη Δικαιοσύνης Αλγόριθμος 2 επεξεργαστών (Cut & Choose) Αλγόριθμος 3 επεξεργαστών

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων

Διαβάστε περισσότερα

Οδηγός Ασκήσεων Υποδικτύωσης

Οδηγός Ασκήσεων Υποδικτύωσης Οδηγός Ασκήσεων Υποδικτύωσης Για να επιλύσουμε ασκήσεις υποδικτύωσης θα πρέπει: Να γνωρίζουμε μετατροπή από δυαδικό στο δεκαδικό και το ανάποδο (το βιβλίο και το βοήθημα περιγράφουν κάποιους εύκολους τρόπους).

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Θεοδωρακοπούλου Ανδριάνα atheodorak@outlook.com Βαθμολόγηση Ασκήσεις Εργαστηρίου: 40% Τελική Εξέταση: 60% Ρήτρα: Βαθμός τελικής εξέτασης > 3.5 ΠΡΟΣΟΧΗ στις

Διαβάστε περισσότερα

Ο Σ ο β ι ε τ ι κ ό ς Κ ρ υ π τ α λ γ ό ρ ι θ μ ο ς G O S T

Ο Σ ο β ι ε τ ι κ ό ς Κ ρ υ π τ α λ γ ό ρ ι θ μ ο ς G O S T Ο Σ ο β ι ε τ ι κ ό ς Κ ρ υ π τ α λ γ ό ρ ι θ μ ο ς G O S T Στην παρούσα εργασία παρουσιάζεται η υλοποίηση του Σοβιετικού κρυπταλγορίθμου GOST για την πλατφόρμα επεξεργαστήσυνεπεξεργαστή(αναδιατασ σόμενης

Διαβάστε περισσότερα

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. 6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια

Διαβάστε περισσότερα

Ισοζυγισμένα υαδικά έντρα Αναζήτησης

Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα υαδικά έντρα Αναζήτησης ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα Α είναι

Διαβάστε περισσότερα

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε.

Αννα Νταγιου ΑΕΜ: 432. Εξαμηνο 8. Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Αννα Νταγιου ΑΕΜ: 432 Εξαμηνο 8 Ερώτηση 1. Πληκτρολογήστε την εντολή: openssl help Παρατηρήστε τις πληροφορίες που λαµβάνετε. Παρόµοια, πληκτρολογήστε την εντολή: openssl ciphers v Ποιοι συµµετρικοί αλγόριθµοι

Διαβάστε περισσότερα

Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών

Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασύρματες Επικοινωνίες Μέρος V Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Slide: 1/30 Περιεχόμενα IEEE 802.11i ΤΟ ΠΡΩΤΟΚΟΛΛΟ CCMP Γενικά Λίγα

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Κρυπτοσύστηµα µετατόπισης Στο συγκεκριµένο κρυπτοσύστηµα, οι χώροι P, C, K είναι ο δακτύλιος. Για κάθε κλειδί k, ορίζουµε τη συνάρτηση κρυπτογράφησης: f : : x x+ k, k

Διαβάστε περισσότερα

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 6: Κρυπτογραφία Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Πάτρα 3/5/2017 Ονοματεπώνυμο:.. Α1. Να γράψετε στην κόλλα σας τον αριθμό

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 30 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΙΚΤΥΑ

Διαβάστε περισσότερα

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν.

Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές αν όλοι οι σταθεροί όροι του (δηλαδή οι όροι του δεξιού μέλους του συστήματος) είναι μηδέν. Ομογενή Συστήματα Ορισμός Ενα σύστημα λέγεται ομογενές

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Αλγόριθµοι συµµετρικού κλειδιού

Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΚΑΤΑΡΤΙΚΗΣ ΦΑΣΗΣ 7 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ 1995 ΘΕΜΑΤΑ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΚΑΤΑΡΤΙΚΗΣ ΦΑΣΗΣ 7 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ 1995 ΘΕΜΑΤΑ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΚΑΤΑΡΤΙΚΗΣ ΦΑΣΗΣ 7 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ 1995 ΘΕΜΑΤΑ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ 1 Λίγο πριν ξεκινήσει μια παρέλαση, Ν μαθητές είναι τοποθετημένοι σε μια τριγωνική παράταξη Α με k γραμμές

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey

Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou AES Ιαν. 1997: Το NIST (National Institute of Standards and Technology) απευθύνει κάλεσμα για τη δημιουργία

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Εισαγωγή Εγγραφών Κέντρων Κόστους

Εισαγωγή Εγγραφών Κέντρων Κόστους Εισαγωγή Εγγραφών Κέντρων Κόστους Το συγκεκριμένο εγχειρίδιο δημιουργήθηκε για να βοηθήσει την κατανόηση της διαδικασίας ολοκληρωμένου συστήματος εισαγωγής εγγραφών κέντρων κόστους. Παρακάτω προτείνεται

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 2: Συμμετρική κρυπτογραφία Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; 1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα

Διαβάστε περισσότερα

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΑΓΩΓΟΙ & ΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΣΥΓΚΡΟΥΣΕΙΣ ΣΕ ΑΓΩΓΟΥΣ & ΜΕΓΙΣΤΟΠΟΙΗΣΗ ΠΑΡΑΓΩΓΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers

Κρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Κρυπτογραφία Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Αλγόριθμοι τμήματος Τμήμα (μπλοκ) αρχικού μηνύματος μήκους n encrypt decrypt Τμήμα (μπλοκ) κρυπτογράμματος μήκους n 2 Σχηματική αναπαράσταση Plaintext

Διαβάστε περισσότερα

«Η ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ BarCode» ( Μια πρόταση για ένα μαθητικό project )

«Η ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ BarCode» ( Μια πρόταση για ένα μαθητικό project ) «Η ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ BarCode» ( Μια πρόταση για ένα μαθητικό project ) Παναγιώτης Μουρούζης Φυσικός Ρ/Η - Υπεύθυνος Ε.Κ.Φ.Ε Κέρκυρας ekfekerk@otenet.gr ΠΕΡΙΛΗΨΗ Ένα τεχνολογικό επίτευγμα που βλέπουμε καθημερινώς

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ 7 ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCODERS )

ΑΣΚΗΣΗ 7 ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ 7 ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCODERS ) ΑΣΚΗΣΗ ΚΩΔΙΚΕΣ Η ΟΘΟΝΗ ΤΜΗΜΑΤΩΝ - ΚΩΔΙΚΟΠΟΙΗTΕΣ ( ENCOERS ).. ΣΚΟΠΟΣ Η κατανόηση των κωδίκων των ψηφίων του δεκαδικού αριθμητικού συστήματος, της λειτουργίας των κωδικοποιητών και των εφαρμογών τους και

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΣΧ... ΕΤΤΟΣΣ 22000099-22001100 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

Πρωτόκολλα Διαδικτύου

Πρωτόκολλα Διαδικτύου Πρωτόκολλα Διαδικτύου Ερωτήσεις Ασκήσεις Επικοινωνίες Δεδομένων Μάθημα 3 ο Ερωτήσεις 1. Τι είναι το intranet και ποια τα πλεονεκτήματα που προσφέρει; 2. Τι δηλώνει ο όρος «TCP/IP»; 3. Να αναφέρετε τα πρωτόκολλα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ Παύλος Εφραιμίδης προηγμένα κρυπτογραφικά πρωτόκολλα Ασφ Υπολ Συστ 1 Zero-Knowledge Proofs Zero-Knowledge Proofs of Identity Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous

Διαβάστε περισσότερα

7.5 Πρωτόκολλο IP. Τεχνολογία ικτύων Επικοινωνιών ΙΙ

7.5 Πρωτόκολλο IP. Τεχνολογία ικτύων Επικοινωνιών ΙΙ Τεχνολογία ικτύων Επικοινωνιών ΙΙ 7.5 Πρωτόκολλο IP 38. Τι είναι το πρωτόκολλο ιαδικτύου (Internet Protocol, IP); Είναι το βασικό πρωτόκολλο του επιπέδου δικτύου της τεχνολογίας TCP/IP. Βασίζεται στα αυτοδύναµα

Διαβάστε περισσότερα

Παράλληλοι Υπολογισµοί (Μεταπτυχιακό)

Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης ΕΚΠΑ 19 Απριλίου 2010 ιδάσκων: Επίκ. Καθηγητής Φ. Τζαφέρης (ΕΚΠΑ) Παράλληλοι Υπολογισµοί (Μεταπτυχιακό) 19 Απριλίου 2010 1 / 31

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

WIRELESS SENSOR NETWORKS (WSN)

WIRELESS SENSOR NETWORKS (WSN) WIRELESS SENSOR NETWORKS (WSN) Δρ. Ιωάννης Παναγόπουλος Εργαστήριο Υπολογιστικών Συστημάτων Καθ. Γεώργιος Παπακωνσταντίνου Αθήνα 2008 ΕΙΣΑΓΩΓΗ ΣΤΑ WSN Σε συγκεκριμένες εφαρμογές, επιθυμείται η μέτρηση

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα

1 η ΑΣΚΗΣΗ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Ακ. έτος , 5ο Εξάμηνο, Σχολή ΗΜ&ΜΥ

1 η ΑΣΚΗΣΗ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Ακ. έτος , 5ο Εξάμηνο, Σχολή ΗΜ&ΜΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr 1 η ΑΣΚΗΣΗ ΣΤΗΝ

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 3: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ 2. ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ 2.1 Εισαγωγικές Παρατηρήσεις Στο κεφάλαιο αυτό επεξηγούνται οι βασικές ενότητες από την Εφαρμοσμένη Κρυπτογραφία που θεωρούνται απαραίτητες για

Διαβάστε περισσότερα

Visual Flowchart Γενικά

Visual Flowchart Γενικά Visual Flowchart 3.020 -Γενικά Το Visual Flowchart ή «Data-Flow Visual Programming Language 3.020» (http://www. emu8086.com/fp) είναι ένα περιβάλλον ανάπτυξης και εκτέλεσης αλγορίθμων απευθείας σε μορφή

Διαβάστε περισσότερα

Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης

Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία I Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία I 1 Αρχές του Kerckhoff `La Cryptographie Militaire' (1883) Auguste Kerkhoffs, Ολλανδός φιλόλογος Πρώτη επιστημονική

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή

Διαβάστε περισσότερα

Οδηγίες αξιοποίησης για τον Εκπαιδευτικό

Οδηγίες αξιοποίησης για τον Εκπαιδευτικό Ανάδοχοι Φορέας Υλοποίησης Έργο ΛΑΕΡΤΗΣ Λογισμικό Δικτύων Οδηγίες αξιοποίησης για τον Εκπαιδευτικό Ερευνητικό Ακαδημαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Ανάδοχος φορέας: CONCEPTUM A.E. 1 Προσομοίωση

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x 7. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ () = α ΘΕΩΡΙΑ. Μορφή της συνάρτησης (Ισοσκελής υπερβολή) Ιδιότητες Πεδίο ορισµού g() = R = (, 0) (0, + ) Είναι περιττή, άρα συµµετρική ως προς την αρχή των αξόνων Είναι γν.φθίνουσα

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4

Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4 Κρυπτογραφία Εργαστηριακό μάθημα 2-3-4 Ασκήσεις επανάληψης Αλγόριθμοι μετατόπισης Προσπαθήστε, χωρίς να γνωρίζετε το κλειδί, να αποκρυπτογραφήσετε το ακόλουθο κρυπτόγραμμα που έχει προκύψει από κάποιον

Διαβάστε περισσότερα