ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 5: Δυαδική Αρίθμηση, Αθροιστές Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Όχι Παράγωγο Έργο 3.0 Ελλάδα (Attribution Non Commercial Non-derivatives 3.0 Greece). CC BY-NC-ND 3.0 GR Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς. Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 2

3 Ψηφιακή Σχεδίαση Εργαστήριο 5: Δυαδική Αρίθμηση, Αθροιστές [Βιβλία: προαιρετικά μπορείτε να διαβάσετε: Wakerly: (σελ ), και (σελ ) Mano: (σελ. 3-9), και 4.5 (σελ )]. Ασκήσεις 4.7 και 4.8 στην Άλγεβρα Boole 5.1 Δυαδική Αρίθμηση: Μία δυαδική λέξη των n bits μπορεί να αναπαραστήσει ένα από 2 n διακριτά στοιχεία, μέσω ενός κώδικα που αντιστοιχίζει (αυθαίρετα) κάθε συνδυασμό των bits στο κάθε επιθυμητό στοιχείο. Με τον ίδιο αυτό τρόπο, οι δυαδικές λέξεις μπορούν να αναπαραστήσουν αριθμούς, αρκεί να επιλέξουμε τον επιθυμητό κώδικα. Γιά την αναπαράσταση των μη-αρνητικών ακεραίων (non-negative integers) (άλλως: "μη προσημασμένων ακεραίων" - unsigned integers) χρησιμοποιείται καθολικά η κωδικοποίηση του δυαδικού συστήματος μέτρησης που αποτελεί κατ' ευθείαν μεταφορά στη "βάση 2" των όσων ισχύουν στη "βάση 10", δηλαδή στο δεκαδικό σύστημα μέτρησης. Όπως ξέρουμε, ο δεκαδικός n-ψήφιος αριθμός "d n-1 d n- 2...d 2 d 1 d 0 ", όπου τα "ψηφία" d i (γιά i=0, 1,..., n-1) είναι ακέραιοι αριθμοί μεταξύ του 0 και του 9, παριστάνει τον ακέραιο αριθμό: d n-1 10 n-1 + d n-2 10 n d d d Γιά παράδειγμα, ο συμβολισμός "14508", όταν ερμηνευτεί σαν δεκαδικός αριθμός, παριστάνει τον ακέραιο = Κατά εντελώς ανάλογο τρόπο, ο δυαδικός αριθμός μεγέθους n bits "b n-1 b n- 2...b 2 b 1 b 0 ", όπου τα "bits" b i (γιά i=0, 1,..., n-1) είναι ακέραιοι αριθμοί μεταξύ του 0 και του 1, παριστάνει τον αριθμό: b n-1 2 n-1 + b n-2 2 n b b b Το bit b 0 λέγεται το λιγότερο σημαντικό (least significant - LS) bit επειδή είναι ο συντελεστής της μικρότερης δύναμης του 2, και το bit b n-1 λέγεται το περισσότερο σημαντικό (most significant - MS) bit του αριθμού επειδή είναι ο συντελεστής της μεγαλύτερης δύναμης του 2. Γιά παράδειγμα, η οκτάμπιτη δυαδική λέξη " ", όταν ερμηνευτεί σαν (δυαδικός) αριθμός, παριστάνει τον ακέραιο = = = 209 (δεκαδικό). Γενικότερα, ο n-ψήφιος αριθμός σε βάση H (όπου H είναι ένας ακέραιος μεγαλύτερος του 1) "h n-1 h n-2...h 2 h 1 h 0 ", όπου τα "ψηφία" h i (γιά i=0, 1,..., n-1) είναι ακέραιοι αριθμοί μεταξύ του 0 και του H-1, παριστάνει τον αριθμό: h n-1 H n-1 + h n-2 H n h 2 H 2 + h 1 H 1 + h 0 H 0 Στην καθημερινή μας ζωή χρησιμοποιούμε δεκαδικούς αριθμούς, δηλαδή αριθμούς με βάση H=10. Η μέτρηση του χρόνου (60 δευτερόλεπτα, 60 λεπτά, 12 ή 24 ώρες), καθώς και ορισμένες Αγγλοσαξωνικές μονάδες (π.χ. ένα πόδι = 12 ίντσες), είναι κατάλοιπα ενός (παλαιοτέρου;) δωδεκαδικού συστήματος μέτρησης (βάση H=12). Τα ψηφιακά συστήματα λειτουργούν με δυαδικούς αριθμούς (βάση H=2). Επίσης, στην επιστήμη υπολογιστών χρησιμοποιούμε οκταδικούς (octal) αριθμούς (βάση H=8) και 3

4 δεκαεξαδικούς (hexadecimal) αριθμούς (βάση H=16), επειδή η μετατροπή ανάμεσα σε αυτούς και τους δυαδικούς αριθμούς είναι απλούστατη, και, απ' την άλλη μεριά, οι οκταδικοί και δεκαεξαδικοί αριθμοί έχουν πολύ λιγότερα ψηφία από τους δυαδικούς, κι έτσι τους γράφει και τους διαβάζει πολύ ευκολότερα ο άνθρωπος. Οι οκταδικοί αριθμοί χρησιμοποιούν 8 ψηφία: τα ψηφία 0, 1, 2, 3, 4, 5, 6, και 7. Οι δεκαεξαδικοί αριθμοί χρησιμοποιούν 16 ψηφία: τα ψηφία 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, και F. Έτσι, οι πρώτοι 65 αριθμοί στο δεκαδικό (decimal), δυαδικό (binary), οκταδικό (octal), και δεκαεξαδικό (hex) είναι αυτοί που φαίνονται στον παρακάνω πίνακα. Dec Binary Oct Hex Dec Binary Oct Hex Dec Binary Oct Hex A A A E B B F C C D D E E E F F F Η μετατροπή αριθμού μεταξύ δυαδικού, οκταδικού, και δεκαεξαδικού είναι εντελώς τετριμένη, βάσει της εξής παρατήρησης: Επειδή η βάση H = 8 = 2 3, κάθε ψηφίο ενός οκταδικού αριθμού αντιστοιχεί ακριβώς σε μιά τριάδα από bits του ίδιου αριθμού γραμμένου στο δυαδικό, ξεκινώντας από δεξιά. Ομοίως, επειδή η βάση H = 16 = 2 4, κάθε ψηφίο ενός δεκαεξαδικού αριθμού αντιστοιχεί ακριβώς σε μιά τετράδα από bits του ίδιου αριθμού γραμμένου στο δυαδικό, ξεκινώντας πάλι από δεξιά. Η μετατροπή αριθμού από το δυαδικό στο δεκαδικό μπορεί να γίνει όπως στο παράδειγμα στην αρχή της παραγράφου, προσθέτοντας δηλαδή τις δυνάμεις του 2 που αντιστοιχούν στους άσσους του αριθμού. Τέλος, η μετατροπή αριθμού από το δεκαδικό στο δυαδικό μπορεί να γίνει βάσει της παρατήρησης ότι αν ένας αριθμός είναι μονός (περιττός) τότε το λιγότερο σημαντικό (LS) bit του θα είναι άσσος, ενώ αν ο αριθμός είναι ζυγός (άρτιος) τότε το LS bit του θα είναι μηδέν. Πράγματι, αν ο αριθμός A είναι ο b n-1 b n-2...b 2 b 1 b 0, όπως παραπάνω, τότε διαιρώντας τον A διά 2 4

5 έχουμε: A/2 = b n-1 2 n-2 + b n-2 2 n b b ( b 0 / 2 ) Έτσι διαπιστώνουμε ότι το ακέραιο πηλίκο της διαίρεσης του A διά 2 είναι ο δυαδικός αριθμός b n-1 b n-2...b 2 b 1, ενώ το υπόλοιπο της διαίρεσης είναι το bit b 0. Με αυτόν τον τρόπο βρίσκουμε το λιγότερο σημαντικό (LS) bit του A στο δυαδικό. Συνεχίζοντας με τον ίδιο τρόπο, διαιρώντας το προηγούμενο ακέραιο πηλίκο διά 2, βρίσκουμε το επόμενο bit, b 1, κ.ο.κ. Ο τρόπος αυτός εύρεσης, με μονοσήμαντο τρόπο, των bits της δυαδικής αναπαράστασης δοθέντα αριθμού αποδεικνύει και ότι η αναπαράσταση αυτή είναι μοναδική γιά τον κάθε αριθμό. Άσκηση 5.2: Μετατροπές Βάσης Αριθμών [Άσκηση στο χαρτί παράδοση μέσα στην αναφορά του εργαστηρίου]. (α) Θεωρήστε δεκαεξάμπιτους (16-bit) μη προσημασμένους (unsigned) αριθμούς. Πόσα ψηφία θα έχουν αυτοί όταν εκφραστούν στο δεκαεξαδικό; Γιατί; Πόσα ψηφία στο οκταδικό; Γιατί; Στο οκταδικό, το αριστερότερό τους ψηφίο (περισσότερο σημαντικό - most significant - MS) τι μπορεί να είναι μόνο; Γιατί; (β) Μετατρέψτε τους δεκαδικούς αριθμούς 9501 και σε δεκαεξάμπιτους δυαδικούς αριθμούς, δείχνοντας και τις ενδιάμεσες πράξεις που κάνετε. Στη συνέχεια, επαληθεύστε τις μετατροπές αυτές, βρίσκοντας από τους δυαδικούς αριθμούς τους δεκαδικούς στους οποίους αυτοί αντιστοιχούν. Τέλος, γράψτε τους δύο δεκαεξάμπιτους δυαδικούς αριθμούς που βρήκατε στο οκταδικό και στο δεκαεξαδικό, δείχνοντας καθαρά από που προκύπτει το κάθε ψηφίο του κάθε οκταδικού και δεκαεξαδικού αριθμού. (γ) Θεωρήστε τον πενταψήφιο δεκαεξαδικό αριθμό 8FB7C. Πόσα bits έχει; Γιατί; Γράψτε τον στο δυαδικό και στη συνέχεια στο οκταδικό. 5.3 Πρόσθεση Δυαδικών Αριθμών: Αλγόριθμος "Κρατουμένου" Έστω ότι θέλουμε να προσθέσουμε τους δυαδικούς αριθμούς, μεγέθους n bits ο καθένας, A = a n-1 a n-2...a 2 a 1 a 0 και B = b n-1 b n-2...b 2 b 1 b 0. Προφανώς, από μαθηματική άποψη, το άθροισμά τους είναι: A + B = (a n-1 +b n-1 ) 2 n-1 + (a n-2 +b n-2 ) 2 n (a 2 +b 2 ) (a 1 +b 1 ) (a 0 +b 0 ) 2 0 Το πρόβλημα είναι ότι αυτή η μαθηματική απεικόνιση δεν μας δίνει με άμεσο τρόπο τη δυαδική αναπαράσταση του αθροίσματος, διότι οι συντελεστές (a i +b i ) των δυνάμεων του 2 (γιά i=0, 1,..., n-1) δεν είναι ακέραιοι αριθμοί μεταξύ του 0 και του 1, όπως πρέπει γιά τη δυαδική αναπαράσταση, αλλά είναι ακέραιοι αριθμοί μεταξύ του 0 και του 2, δηλαδή μπορούν να έχουν τρείς διαφορετικές τιμές ο καθένας. Γιά να βρούμε το άθροισμα σε μορφή δυαδικής αναπαράστασης πρέπει να ακολουθήσουμε μιά διαδικασία ("αλγόριθμο"!) ανάλογη της πρόσθεση με "κρατούμενο" (carry) του δημοτικού σχολείου. Ξεκινάμε από τη λιγότερο σημαντική (LS) θέση (θέση 0), (a 0 +b 0 ). Εάν το άθροισμα αυτό είναι 0 ή 1, τότε το ονομάζουμε s 0, και αυτό αποτελεί το λιγότερο σημαντικό (LS) bit του αθροίσματος. Εάν όμως a 0 +b 0 = 2, τότε εκφράζουμε το 2 στο δυαδικό (10), και επομένως θέτουμε s 0 = 0 (αφού το άθροισμα είναι ζυγός αριθμός), και θυμόμαστε ότι μας έχει "περισσέψει" μιά ποσότητα (όταν μας προέκυψε στη θέση 0) = (όταν τη μεταφέρουμε στη θέση 1), την οποία και "κρατάμε" γιά να τη μεταφέρουμε στη θέση 1, ονομάζοντας την c 1 (κρατούμενο - carry). 5

6 Συνεχίζοντας με τη θέση 1, πρέπει να προσθέσουμε τα bits a 1 και b 1 των δύο αριθμών, καθώς και το κρατούμενο c 1 που προέκυψε από τη θέση 0. Καθένας από αυτούς τους τρείς αριθμούς είναι 0 ή 1 (το κρατούμενο μπορεί να ήταν "2" στη θέση 0, αλλά όταν μεταφέρθηκε στη θέση 1 έγινε το μισό ("1"), διότι η θέση 1 έχει διπλάσια "σημαντικότητα" (δύναμη του 2) από τη θέση 0). Αθροίζοντας αυτούς τους 3 αριθμούς, που καθένας τους είναι 0 ή 1, προκύπτει ένας αριθμός μεταξύ 0 και 3. Αν το άθροισμα αυτό είναι 0 ή 1, τότε το ονομάζουμε s 1, και αυτό αποτελεί το bit του αθροίσματος στη θέση 1. Εάν όμως a 1 +b 1 +c 1 είναι 2 ή 3, τότε το εκφράζουμε στο δυαδικό σαν έναν αριθμό των 2 bits (2 bits αρκούν!), ονομάζουμε s 1 το δεξιό και c 2 το αριστερό από αυτά τα 2 bits, και θυμόμαστε ότι μας έχει "περισσέψει" μιά ποσότητα 2c (όταν μας προέκυψε στη θέση 1) = c (όταν τη μεταφέρουμε στη θέση 2), την οποία και "κρατάμε" γιά να τη μεταφέρουμε στη θέση 2. Από κει και πέρα, η διαδικασία (αλγόριθμος) της πρόσθεσης προχωρεί με τον ίδιο τρόπο. Η παρατήρηση-κλειδί ("αναλλοίωτη συνθήκη" - invariant property) είναι ότι το "κρατούμενο εισόδου" c i στη θέση i είναι πάντα 0 ή 1. Την ιδιότητα αυτή την αποδείξαμε στη θέση i=1, και την αποδεικνύουμε στη συνέχεια επαγωγικά, από τη θέση i γιά τη θέση i+1: αφού το άθροισμα (a i +b i +c i ) είναι άθροισμα τριών αριθμών που καθένας τους είναι 0 ή 1, τότε το άθροισμα αυτό θα είναι μεταξύ 0 και 3, άρα μπορεί να εκφραστεί με μοναδικό τρόπο σαν δυαδικός αριθμός των 2 bits, c i+1 2 i+1 + s i 2 i, όπου οι αριθμοί c i+1 και s i είναι μεταξύ 0 και 1. Από αυτόν τον αλγόριθμο πρόσθεσης, λοιπόν, προέκυψαν τα n bits αθροίσματος s i (i από 0 έως n-1) και το ένα τελικό bit κρατουμένου c n, τα οποία n+1 bits είναι όλα 0 ή 1, και γιά τα οποία ισχύει, από τον αλγόριθμο μετασχηματισμού της αρχικής μας σχέσης, ότι: A + B = c n 2 n + s n-1 2 n-1 + s n-2 2 n s s s Επειδή αυτή είναι μία νόμιμη αναπαράσταση του αθροίσματος A+B στο δυαδικό σύστημα, και επειδή η αναπαράσταση κάθε αριθμού στο δυαδικό σύστημα είναι μοναδική, προκύπτει ότι αυτή είναι η αναπαράσταση του αθροίσματος στο δυαδικό. Ο.Ε.Δ. 5.4 Ο Ψηφιακός Αθροιστής Η διαδικασία πρόσθεσης που διατυπώσαμε παραπάνω μεταφράζεται άμεσα σε ψηφιακό κύκλωμα όπως φαίνεται στο σχήμα. Το παράδειγμα εδώ αφορά την πρόσθεση δύο οκτάμπιτων δυαδικών αριθμών, A και B. Κάθε ορθογώνιο κουτί παριστά ένα κύκλωμα πρόσθεσης γιά μία θέση σημαντικότητας των bits. Το δεξιό (LS) κύκλωμα είναι απλούστερο από τα άλλα, διότι έχει να προσθέσει μόνο δύο εισόδους (του ενός bit καθεμία) αυτό λέγεται "ημιαθροιστής" (half-adder, "HA"). Το άθροισμα που υπολογίζει το εκφράζει σαν δύο bits: το bit s 0 που έχει τον ίδιο βαθμό σημαντικότητας με τις εισόδους (θέση 0), και το bit c 1 που έχει βαθμό σημαντικότητας κατά 1 μεγαλύτερο αυτού των εισόδων. Τα υπόλοιπα 7 κυκλώματα 6

7 είναι κάπως πιό πολύπλοκα: πρέπει να προσθέσουν τρείς εισόδους (του ενός bit) το καθένα αυτά λέγονται "πλήρεις αθροιστές" (full-adders, "FA"). Ο ρόλος τους είναι να μετράνε πόσοι άσσοι υπάρχουν στις τρείς εισόδους τους και να εκφράζουν αυτό τον αριθμό στο δυαδικό, με 2 bits, τα c i+1 και s i. Ο πίνακας αληθείας τους προκύπτει από αυτό τον ορισμό και φαίνεται στο επόμενο σχήμα. Παρατηρήστε ότι ο πίνακας αληθείας του αθροίσματος, s, έχει τους άσσους σε σχήμα "σκακιέρας": καμία απλοποίηση δεν είναι εφικτή! Ο λόγος είναι ότι το s ισούται με την "περιττή ισοτιμία" (odd parity) των εισόδων, δηλαδή το αν το πλήθος των άσσων στις εισόδους είναι περιττός (μονός) αριθμός. Οιαδήποτε δύο γειτονικά τετράγωνα στο χάρτη Karnaugh διαφέρουν μεταξύ τους κατά την τιμή μίας και μόνο μίας μεταβλητής εισόδου άρα, αλλάζοντας τιμή αυτή η μία μόνο είσοδος αλλάζει και η ισοτιμία της εισόδου από άρτια σε περιττή ή από περιττή σε άρτια, κι έτσι αλλάζει και το s. Κατά βάθος, η περιττή ισοτιμία είναι η επέκταση του αποκλειστικού-ή σε περισσότερες των δύο μεταβλητές εισόδου, και η παραπάνω ιδιότητά του είναι αυτή ακριβώς που το κάνει χρήσιμο σε διατάξεις όπως οι διακόπτες allez-retour και οι κώδικες ανίχνευσης σφαλμάτων: αν ένα οιοδήποτε bit εισόδου αλλάξει τιμή, ο κώδικας αυτός αλλάζει επίσης τιμή ( 1.4) Το κρατούμενο εξόδου του κάθε αθροιστή είναι είσοδος στον επόμενο προς τα "αριστερά" (προς MS) αθροιστή. Στην αριστερότερη (MS) θέση, το κρατούμενο εξόδου πρέπει να θεωρηθεί ότι αποτελεί το επόμενο σε σημαντικότητα bit του αθροίσματος, αφού το άθροισμα δύο οκτάμπιτων αριθμών (από 0 έως 255 καθένας) ενδέχεται να απαιτεί 9 bits γιά να παρασταθεί (άθροισμα από 0 έως 510). Ο οκτάμπιτος αθροιστής που μόλις σχεδιάσαμε είναι ένα συνδυαστικό κύκλωμα, διότι οι έξοδοί του, S, εξαρτώνται μόνο από τις παρούσες τιμές των εισόδων του, A και B, δηλαδή δεν έχει μνήμη. Όταν συνθέταμε συνδυαστικά κυκλώματα είχαμε δεί τη μέθοδο του χάρτη Karnaugh, με την οποία το κύκλωμα εκφράζονταν σαν το λογικό Ή κάμποσων όρων που ο καθένας τους ήταν το λογικό ΚΑΙ εισόδων ή συμπληρωμάτων τους. Ακολουθόντας τη μέθοδο αυτή μπορεί κανείς να φτιάξει το ένα από τα κουτιά του σχήματος, όπως στη σελίδα 152 του βιβλίου. Όμως, αν προσπαθήσουμε να εφαρμόσουμε τη μέθοδο αυτή σε ολόκληρο τον (π.χ. οκτάμπιτο) αθροιστή, πρώτον ο χάρτης Karnaugh θα είναι τεραστίων διαστάσεων (2 16 τετράγωνα!), και δεύτερον το κύκλωμα που θα προέκυπτε θα ήταν εξωπραγματικά τεράστιο. Αντ' αυτού, το κύκλωμα που σχεδιάσαμε εδώ, στο παραπάνω σχήμα, είναι πολύ διαφορετικό: αποτελείται από πολλά υποκυκλώματα (ένα γιά κάθε θέση bit), όπου η έξοδος του ενός είναι είσοδος στο άλλο (κρατούμενα), δηλαδή πρόκειται γιά μιάν αλυσίδα πολλών κυκλωμάτων αντί γιά μόλις δύο επίπεδα πυλών (ΚΑΙ - Ή) που δίνει ο χάρτης Karnaugh. Το πλεονέκτημα της νέας μεθόδου είναι η τεράστια απλοποίηση του κυκλώματος. Το μειονέκτημα είναι η μεγαλύτερη καθυστέρηση: γιά να προκύψουν τα τελευταία 2 MS bits του αθροίσματος πρέπει πρώτα να τελειώσουν τη δουλειά τους, "σειριακά" ο ένας μετά τον άλλον, όλοι οι επιμέρους αθροιστές (ενός bit καθένας), από τη δεξιά μέχρι την αριστερή άκρη. Άσκηση 5.5: Δυαδική Πρόσθεση [Άσκηση στο χαρτί παράδοση με την αναφορά του εργαστηρίου]. Προσθέστε στο δυαδικό, με τον παραπάνω αλγόριθμο πρόσθεσης με κρατούμενα, τους δύο δεκαεξάμπιτους δυαδικούς αριθμούς που βρήκατε στην άσκηση 5.2(β) όταν μετατρέψατε τους δεκαδικούς αριθμούς 9501 και στο δυαδικό. Στη συνέχεια, 7

8 μετατρέψτε το δυαδικό άθροισμα που βρήκατε στο δεκαδικό, και επαληθεύστε ότι αυτό ισούται με Άσκηση 5.6: Ημιαθροιστής (Half-Adder), Πλήρης Αθροιστής (Full- Adder) Ονομάσαμε ημιαθροιστή (half-adder, HA) το κύκλωμα που προσθέτει δύο bits, a i και b i, και εκφράζει το άθροισμά τους σε μορφή ενός δυαδικού αριθμού 2 bits, c i+1 s i. Ονομάσαμε πλήρη αθροιστή (fulladder, FA) το κύκλωμα που προσθέτει τρία bits, a i, b i, και c i, και εκφράζει το άθροισμά τους σε μορφή ενός δυαδικού αριθμού 2 bits, c i+1 s i. Εκτός από την κατ'ευθείαν σύνθεσή του βάσει των χαρτών Karnaugh στο δεύτερο σχήμα της 5.4 παραπάνω, το κύκλωμα αυτό μπορεί να κατασκευαστεί και χρησιμοποιώντας ημιαθροιστές όπως δείχνει το σχήμα εδώ: γιά να προσθέσω τρείς αριθμούς αρκεί να προσθέσω τους δύο πρώτους και στο άθροισμά τους να προσθέσω τον τρίτο. Κανονικά, πρέπει επίσης να προσθέσω και τα κρατούμενα. Όμως, μπορεί κανείς εύκολα να αποδείξει ότι το πολύ ένας από τους δύο ημιαθροιστές του σχήματος μπορεί να βγάζει κρατούμενο 1, κάθε φορά άρα, αντί γιά κύκλωμα πρόσθεσης των δύο επιμέρους κρατουμένων, αρκεί να χρησιμοποιηθεί μιά πύλη Ή. Γιά την άσκηση αυτή: a. Κατασκευάστε τον πίνακα αληθείας του ημιαθροιστή, και αποδείξτε μ' αυτόν ότι ο ημιαθροιστής μπορεί να υλοποιηθεί όπως δείχνει το σχήμα. Η επάνω πύλη στο σχήμα, της οποίας το σύμβολο μοιάζει με πύλη Ή αλλά έχει διπλό τόξο στην αριστερή της πλευρά, είναι πύλη αποκλειστικού Ή ( 1.4). b. Γράψτε την απόδειξη της παραπάνω ιδιότητας σχετικά με τα κρατούμενα εξόδου των δύο ημιαθροιστών του πλήρους αθροιστή. c. Κατασκευάστε τον πίνακα αληθείας του κυκλώματος με τους δύο ημιαθροιστές και την πύλη Ή που φαίνεται στο σχήμα, και συγκρίνετέ τον με τον πίνακα αληθείας του πλήρη αθροιστή που φαίνονταν στο δεύτερο σχήμα της 5.4 παραπάνω, αποδεικνύοντας έτσι ότι το κύκλωμα του σχήματος υλοποιεί όντως έναν πλήρη αθροιστή. Πείραμα 5.7: Πλήρη Αθροιστή Κατασκευή Ημιαθροιστή και Κατασκευάστε και ελέγξτε έναν ημιαθροιστή, και στη συνέχεια προσθέστε άλλον έναν ημιαθροιστή και την πύλη Ή όπως στο παραπάνω κύκλωμα της 5.6 προκειμένου να φτιάξτε και να ελέγξτε έναν πλήρη αθροιστή. Χρησιμοποιήστε ένα chip 7408 (πύλες AND), ένα chip 7432 (πύλες OR), και ένα chip 7486 που περιέχει 4 πύλες Αποκλειστικού-Ή (XOR). Οι ακροδέκτες των chips αυτών φαίνονται στο σχήμα. Δείξτε τις συνδέσεις που πρέπει να γίνουν σ' αυτά τα chips προκειμένου να υλοποιήστε έναν ημιαθροιστή, και στη συνέχεια ένα πλήρη αθροιστή. Ακολουθήστε το μοντέλο του σχήματος της 4.10 γιά το σχεδιάγραμμα του κυκλώματός σας. Κατασκευάστε τα κυκλώματα αυτά, αφήνοντας χώρο στην πλακέτα συνδέσεων 8

9 γιά ακόμα ένα chip 7408 και ένα chip 7486, καθώς και ένα ακόμα chip προς την πλευρά των εξόδων γιά το πείραμα 5.8. Θυμηθείτε τις οδηγίες κατασκευής και αποσφαλμάτωσης της Ελέγξτε τη σωστή λειτουργία, πρώτα του ημιαθροιστή και μετά του πλήρη αθροιστή, τροφοδοτώντας τις εισόδους τους από τους διακόπτες Q, M, N, και παρακολουθώντας τις εξόδους τους στις LED 0 και 1. Όταν τελειώσετε μην χαλάσετε το κύκλωμά σας, διότι θα το χρειαστείτε στο πείραμα Πείραμα 5.8: Chip Αποκωδικοποίησης Οθόνης 7 Τμημάτων Τα κυκλώματα αποκωδικοποίησης τεσσάρων bits γιά να οδηγήσουν τον ενδείκτη 7 τμημάτων που είδαμε στην άσκηση 4.5 ήταν πολύ πολύπλοκα γιά να τα φτιάξουμε στην πλακέτα μας, ξεκινόντας με απλές πύλες AND, OR, και NOT. Γι' αυτό θα τα πάρουμε έτοιμα! Το chip MC14511B κάνει περίπου τη δουλειά του κυκλώματος της άσκησης 4.5 συν μερικές ακόμα. Πρόκειται γιά έναν αποκωδικοποιητή από "BCD" (binary-coded decimal - δεκαδικό σε δυαδική κωδικοποίηση) σε οθόνη 7 τμημάτων ( 2.10). Ο κώδικας BCD αποτελείται από 4 bits τα οποία παίρνουν μόνο τις τιμές από 0000 έως 1001 που είδαμε στην άσκηση 4.4. Το chip MC14511B έχει 7 εξόδους, οι οποίες οδηγούν κατ' ευθείαν τις LED's a, b, c, d, e, f και g της οθόνης 7 τμημάτων, με τον τρόπο που έδειχνε η άσκηση 4.5 (μόνο που το "7" δεν έχει αριστερή κατακόρυφη γραμμή). Επιπλέον, το chip MC14511B σβήνει εντελώς την οθόνη όταν στην είσοδό του δοθεί ένας από τους υπόλοιπους 6 κώδικες, από 1010 έως 1111 (δηλαδή δεν έχει "συνθήκες αδιαφορίας" - 4.4). Μερικές ακόμα δυνατότητές του θα αναφερθούν παρακάτω, αλλά δεν θα τις χρησιμοποιήσουμε εμείς. Λεπτομερείς πληροφορίες γιά το chip αυτό μπορείτε να βρείτε στη διεύθυνση που ανέφερε η 3.7 ή π.χ. στη διεύθυνση D.PDF Οι ακροδέκτες του chip MC14511B φαίνονται στο σχήμα. Η ηλεκτρική τροφοδοσία του chip γίνεται από το κάτω δεξιά ποδαράκι (αριθμός 8) γιά τον αρνητικό πόλο (γείωση) και από το πάνω αριστερό (αριθμός 16) γιά το θετικό πόλο. Τα ποδαράκια 9 έως και 15 του MC14511B είναι οι 7 έξοδοί του, που προορίζονται να οδηγούν κατ' ευθείαν τις 7 LED's συνδέστε τα στις επαφές a, b, c, d, e, f και g της καλωδιοταινίας, προσέχοντας τη διαφορετική σειρά. Το ποδαράκι 3 είναι είσοδος, και είναι το αρνητικό (συμπλήρωμα) του σήματος LT - lamp test, που προορίζεται γιά τον έλεγχο μήπως κάποια λυχνία έχει καεί: όταν ενεργοποιείται πρέπει να ανάβουν όλες οι λυχνίες --όποια δεν ανάβει έχει καεί. Εμείς δεν θα το χρησιμοποιήσουμε, δηλαδή LT=0, δηλαδή LT'=1, άρα πρέπει να τροφοδοτήσετε το ποδαράκι 3 με ψηλή τάση, δηλαδή να το συνδέσετε στο θετικό πόλο του τροφοδοτικού. Το ποδαράκι 4 είναι είσοδος, και είναι το αρνητικό του σήματος BI - blanking input, που προορίζεται γιά να σβήνει την οθόνη όποτε θέλουμε να τη σβήνουμε (ανεξαρτήτως κώδικα εισόδου) εμείς δεν θα το χρησιμοποιήσουμε, δηλαδή BI=0, δηλαδή BI'=1, άρα και το ποδαράκι 4 πρέπει να το συνδέσετε στη θετική τροφοδοσία. Το ποδαράκι 5 είναι η είσοδος LE - latch enable, που προορίζεται γιά να αποθηκεύεται ο κώδικας εισόδου σε 4 εσωτερικά flip-flops, ούτως ώστε να παραμένει η οθόνη στεθερή στην ένδειξη που είχε επιλεγεί παλαιότερα μέσω των εισόδων, ανεξάρτητα αν οι είσοδοι αυτές τώρα έχουν αλλάξει εμείς δεν θα το χρησιμοποιήσουμε, δηλαδή LE=0, άρα και το ποδαράκι 5 πρέπει να το συνδέσετε στην αρνητική τροφοδοσία, δηλαδή στη γείωση. Τέλος, τα ποδαράκια 1, 2, 6, και 7 είναι οι είσοδοι του κώδικα BCD που δίνουμε γιά 9

10 να ελέγχουμε τον αριθμό στην οθόνη. Το MC14511B χρησιμοποιεί το συμβολισμό DCBA γιά τα 4 αυτά bits, δηλαδή "D" (ποδαράκι 6) είναι το περισσότερο σημαντικό (MS) bit, και "A" (ποδαράκι 7) είναι το λιγότερο σημαντικό (LS) bit. Τροφοδοτήστε αυτούς τους 4 ακροδέκτες από τους διακόπτες Q (MS bit), M, N, και A (LS bit), και ελέξγτε τι αποτέλεσμα φέρνουν οι 16 συνδυασμοί των 4 αυτών εισόδων στην ένδειξη 7 τμημάτων. Άσκηση 5.9: Ταχύτητα Δυαδικής Πρόσθεσης [Άσκηση στο χαρτί παράδοση μέσα στην αναφορά του εργαστηρίου]. Θεωρήστε ότι η κάθε λογική πύλη έχει καθυστέρηση 75 ps, δηλαδή η έξοδός της παίρνει τη σωστή καινούργια τιμή 75 ps μετά την αλλαγή μιάς εισόδου σε μιά νέα "σωστή" τιμή. Στην πράξη, η καθυστέρηση μιάς πύλης κυμαίνεται σε μιά ευρεία περιοχή τιμών, εξαρτώμενη από πολλούς παράγοντες πάντως, η τιμή που υποθέτουμε --λιγότερο από ένα δέκατο του δισεκατομμυριοστού του δευτερολέπτου-- είναι αντιπροσωπευτική του τι συμβαίνει μέσα σ' ένα σύγχρονο (2004) επεξεργαστή με ρολόϊ 1 GHz ή λίγο παραπάνω. Προσοχή: η τιμή που υποθέτουμε είναι πολύ μικρότερη από την καθυστέρηση των πυλών των chips 7408, 7432, και 7486, πρώτ' απ' όλα επειδή εκείνες οι καθυστερήσεις αφορούν σήματα που είναι έξω από το chip, ενώ εδώ μιλάμε γιά σήματα μέσα στο ίδιο chip, και δεύτερον επειδή εδώ υποθέτουμε πιό σύγχρονη τεχνολογία κατασκευής. Υπενθύμιση: τα υποπολλαπλάσια της μονάδας είναι: m - milli - χιλιοστό μ - micro - εκατομμυριοστό n - nano - δισεκατομμυριοστό p - pico - τρισεκατομμυριοστό f - femto - τετράκις εκατομμυριοστό a - atto - πεντάκις εκατομμυριοστό (α) Πόσες πύλες μεσολαβούν από την είσοδο κρατουμένου του πλήρη αθροιστή της άσκησης 5.6 μέχρι την έξοδο κρατουμένου του; Πολλαπλασιάστε τον αριθμό αυτό επί 75 ps γιά να βρείτε την κατά προσέγγιση καθυστέρηση ενός bit της πρόσθεσης. [Γιά όσους θέλουν να προσέξουν τις λεπτομέρειες, ο αριθμός αυτός πυλών είναι διαφορετικός από τον αριθμό πυλών που μεσολαβούν από τις εισόδους a i και b i μέχρι την έξοδο κρατουμένου. Αν το σκεφτείτε κατά βάθος, γιά όλα τα bits του αθροιστή πλην των ακραίων μας ενδιαφέρει ο πρώτος αριθμός. Ο δεύτερος αριθμός μας ενδιαφέρει μόνο γιά το λιγότερο σημαντικό bit, ενώ γιά το περισσότερο σημαντικό μας ενδιαφέρει ο αριθμός πυλών που μεσολαβούν από την είσοδο κρατουμένου μέχρι τις δύο εξόδους του αθροιστή]. (β) Θεωρήστε έναν αθροιστή λέξεων των 64 bits, όπως αυτοί που υπάρχουν στους σύγχρονους 64-μπιτους επεξεργαστές. Τι καθυστέρηση θα είχε ένας τέτοιος αθροιστής αν ήταν κατασκευασμένος από μιάν αλυσίδα 64 πλήρων αθροιστών σαν αυτούς του (α), όπως έδειχνε το σχήμα της σελίδας 3; Γιά απλότητα, θεωρήστε ότι ο ημιαθροιστής του δεξιού bit έχει κι αυτός την ίδια καθυστέρηση. (γ) Αν η περίοδος του ρολογιού του επεξεργαστή ήταν περίπου ίση με την καθυστέρηση του αθροιστή (όπως συχνά είναι), τι συχνότητα ρολογιού θα είχε αυτός ο επεξεργαστής; Πώς συγκρίνεται αυτή με τις συχνότητες ρολογιών των σύγχρονων επεξεργαστών; [Ευτυχώς, υπάρχουν τρόποι να γίνονται πολύ γρηγορότερα οι προσθέσεις, γι' αυτό και οι επεξεργαστές είναι τόσο γρήγοροι όσο είναι!...] 10

11 5.10 Πρόσθεση πολλών Αριθμών Όταν θέλουμε να βρούμε το άθροισμα πολλών αριθμών, μπορούμε είτε να χρησιμοποιήσουμε έναν αθροιστή κατ' επανάληψη, όπως θα δούμε αργότερα, όταν θα μιλάμε γιά "ακολουθιακά" --δηλ. όχι συνδυαστικά-- κυκλώματα, ή να χρησιμοποιήσουμε πολλούς αθροιστές, όπως δείχνει το σχήμα. Στο παράδειγμα του σχήματος εδώ, ζητάμε το άθροισμα S των τεσσάρων αριθμών K, L, M, και N, άρα πρέπει να κάνουμε τρείς προσθέσεις. Με την πάνω αριστερά διάταξη (σε σχήμα καταρράκτη - cascade), ο πρώτος αθροιστής προσθέτει τους K και L, ο δεύτερος προσθέτει το άθροισμα K+L με τον M, και ο τρίτος βρίσκει το άθροισμα του K+L+M με τον N. Με την πάνω δεξιά διάταξη (σε σχήμα δένδρου - tree), βρίσκουμε πρώτα τα αθροίσματα K+L και M+N, και στη συνέχεια τα προσθέτουμε. Εάν θεωρήσουμε, π.χ., ότι οι αριθμοί K, L, M, N είναι οκτάμπιτοι, δηλαδή μεταξύ 0 και 255 καθένας, τότε το άθροισμά τους μπορεί να κυμαίνεται από 0 έως 1020, άρα χρειάζονται 10 bits γιά να παρασταθεί. Παρ' ότι και οι δύο διατάξεις χρησιμοποιούν το ίδιο πλήθος αθροιστών, η δενδροειδής είναι γενικά προτιμότερη, διότι συνήθως δίνει μικρότερη συνολική καθυστέρηση (αν και, όπως δείχνει το κάτω μέρος του σχήματος, η συνολική καθυστέρηση, όταν χρησιμοποιήσουμε αθροιστές του τύπου της παραγράφου 5.4, δεν είναι τόσο άσχημη όσο δείχνει το πάνω μέρος του σχήματος). Στο κάτω μέρος του σχήματος φαίνεται η δενδροειδής διάταξη των τριών αθροιστών, όπου έχουμε αναλύσει τον κάθε αθροιστή σε κυκλώματα του ενός bit, όπως κάναμε παραπάνω στην παράγραφο 5.4 γιά να χωράει το σχήμα, περιοριστήκαμε σε τρίμπιτους αριθμούς, αντί 8 bits που είχαν στο επάνω μέρος του σχήματος. Προσέξτε ότι όλα τα bits της ίδιας "σημαντικότητας" (δηλαδή που είναι συντελεστές της ίδιας δύναμης του 2) --π.χ. τα k 1, l 1, m 1, n 1 -- προστίθενται μεταξύ τους με πλήρεις αθροιστές (FA) αυτής της "σημαντικότητας", δηλαδή τα ενδιάμεσα αθροίσματα που παράγουν αυτά τα κυκλώματα FA έχουν την ίδια αυτή σημαντικότητα 1, και προστίθενται μεταξύ τους (ή θα μπορούσαν να προστεθούν και με τα bits ίδιας σημαντικότητας άλλων αριθμών, π.χ. p 1 ) γιά να παράγουν το bit s 1 του αθροίσματος που έχει κι αυτό την ίδια σημαντικότητα 1. Όμως, τα κρατούμενα εξόδου όλων αυτών των κυκλωμάτων FA έχουν σημαντικότητα κατά ένα μεγαλύτερη, διότι αποτελούν συντελεστές της επόμενης προς τα αριστερά δύναμης του 2, άρα πρέπει να αθροιστούν με τα bits εισόδου της αντίστοιχης σημαντικότητας 2, εδώ, δηλαδή με τα k 2, l 2, m 2, και n 2. Οι προσθέσεις αυτών των 7 bits σημαντικότητας 2 (4 bits εισόδου και 3 κρατούμενα) πρέπει να γίνουν σε κυκλώματα FA (ή HA) σημαντικότητας 2, με οιαδήποτε σειρά ή σε οιοδήποτε μίγμα προτιμάμε. Πείραμα 5.11: Μετρητής Πλήθους πατημένων Διακοπτών Σχεδιάστε και κατασκευάστε ένα κύκλωμα με έξι (6) εισόδους που να μετράει πόσες από αυτές ισούνται με 1, και να δείχνει το πλήθος αυτό, σαν δεκαδικό αριθμό, στην οθόνη 7 τμημάτων. Μας ενδιαφέρει μόνο το πλήθος των "αναμένων" εισόδων και όχι 11

12 το ποιές από αυτές είναι αναμένες (ισούνται με 1). Άρα, το αποτέλεσμα θα είναι ένας αριθμός από 0 έως 6, τον οποίο το κύκλωμά σας πρέπει κατ' αρχάς να υπολογίσει σαν τρίμπιτο δυαδικό αριθμό, μεταξύ 000 και 110 στη συνέχεια, με τον αριθμό αυτό θα οδηγήστε τον αποκωδικοποιητή BCD σε ενδείκτη 7 τμημάτων του πειράματος 5.8 παραπάνω. Εάν όταν φτάσετε σε αυτό το πείραμα, στο εργαστήριο, είναι η ώρα περασμένη και κινδυνεύετε να μην προλάβετε να κατασκευάσετε το πλήρες κύκλωμα με τις 6 εισόδους, ξεκινήστε με ένα υποσύνολό του που να μετράει τους άσσους μεταξύ τεσσάρων (4) μόνο εισόδων, και στη συνέχεια, αν αυτό δουλεύει σωστά και έχετε χρόνο, συμπληρώστε το σε 6 εισόδους. Ακολουθήστε την εξής στρατηγική: θεωρήστε ότι κάθε είσοδος είναι ένας (μονόμπιτος!) δυαδικός αριθμός άρα, πρέπει να προσθέσετε έξι (6) δυαδικούς αριθμούς του 1 bit καθένας, και να βγάλετε ένα άθροισμα των 3 bits (το οποίο ποτέ δεν θα υπερβαίνει το 110). Μπορείτε να χρησιμοποιήστε το κύκλωμα της προηγουμένης παραγράφου 5.10 κατάλληλα προσαρμοσμένο. Στη βαθμίδα σημαντικότητας 0 του κυκλώματος, μπορείτε να προσθέσετε τους έξι αριθμούς είτε ανά δύο μέσω τριών ημιαθροιστών, είτε ανά τρείς μέσω δύο πλήρων αθροιστών στη συνέχεια, τα τρία ή δύο αθροίσματα σημαντικότητας 0 πρέπει να προστεθούν μεταξύ τους, κατάλληλα. Τα κρατούμενα εξόδου από τους αθροιστές σημαντικότητας 0 θα αποτελούν εισόδους στη βαθμίδα σημαντικότητας 1. Πόσα είναι αυτά; Με τι κύκλωμα θα τα προσθέσετε; Μήπως ισχύει κάποια ιδιότητα όπως π.χ. ότι αποκλείεται να είναι ποτέ όλα τους ταυτόχρονα 1; Βάσει αυτής της ιδιότητας προκύπτει κάποια απλοποίηση του κυκλώματος; Ποιό από όλα τα κυκλώματα είναι φτηνότερο στην κατασκευή; Εξετάστε τις εναλλακτικές λύσεις πρίν φτάστε στο εργαστήριο, γράψτε τα συμπεράσματά σας στην αναφορά σας, καταλήξτε σε μία λύση και σχεδιάστε την, πρώτα με ημιαθροιστές ή/και πλήρεις αθροιστές και πύλες, μετά μόνο με ημιαθροιστές και πύλες, και στη συνέχεια με σκέτες πύλες. Στο τελευταίο στάδιο, ακολουθήστε το μοντέλο του σχήματος της 4.10 γιά το σχεδιάγραμμα του κυκλώματός σας μπορείτε να χρησιμοποιήσετε το φύλλο εργασίας που θα βρείτε στην ενότητα. Στο εργαστήριο, κατασκευάστε το κύκλωμά σας και τροφοδοτήστε το από τους διακόπτες Q, M, N, A, B, και C. Συνδέστε τη δυαδική έξοδο (3 bits) του κυκλώματος πρόσθεσης π.χ. στις LED 5, 6, και 7, και αν θέλετε συνδέστε και άλλες ενδιάμεσες εξόδους σε άλλες LED γιά σκοπούς παρακολούθησης - αποσφαλμάτωσης (βλ. και οδηγίες 4.11). Επίσης, συνδέστε τη δυαδική έξοδο (3 bits) του κυκλώματος πρόσθεσης στις τρείς LS εισόδους "CBA" του αποκωδικοποιητή του πειράματος 5.8, και τροφοδοτήστε την είσοδο D (4ο, MS bit) με 0 (δηλαδή συνδέστε την στη γείωση). Ελέξτε αν η ένδειξη 7 τμημάτων δείχνει πάντα το σωστό πλήθος πατημένων διακοπτών, γιά όλους τους συνδυασμούς κατάστασης των διακοπτών (64 συνδυασμοί!). Εν συνεχεία, συνδέστε τη δυαδική έξοδο (3 bits) του κυκλώματος πρόσθεσης στις εισόδους DCB (3 MS bits) αυτή τη φορά, και τροφοδοτήστε την είσοδο A με 0. Αυτή η "ολίσθηση" προς τα αριστερά του πλήθους αναμένων εισόδων ισοδυναμεί με πολλαπλασιασμό επί 2. Ελέξτε αν η ένδειξη 7 τμημάτων ισούται πάντα με το διπλάσιο του πλήθους αναμένων εισόδων, εκτός όταν το πλήθος αυτό είναι 5 ή 6, οπότε το διπλάσιό τους δεν παριστάνεται με ένα μόνο δεκαδικό ψηφίο. Μετά, αλλάξτε την είσοδο A σε 1 (σύνδεση στη θετική τροφοδοσία). Ελέξτε αν η ένδειξη 7 τμημάτων ισούται πάντα με το διπλάσιο συν ένα του πλήθους αναμένων εισόδων (εκτός όταν ο αριθμός αυτός υπερβαίνει το 9) γιατί ισχύει αυτό; 12

Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές

Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές 24/10/2005 1:32 µµ 1 of 8 ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2005 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές 31 Οκτωβρίου - 4 Νοεµβρίου 2005 ιαγωνισµός Προόδου: Σάββατο

Διαβάστε περισσότερα

Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές

Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές 1 of 7 13/11/2003 12:02 µµ ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 5: υαδική Αρίθµηση, Αθροιστές 18-22 Νοεµβρίου 2003 [Τα τµήµατα της ευτέρας 17/11 µεταφέρονται

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Lab 6: Signed Add/Subtract, FF (U.Crete, CS-120) 14-10-28 17:28 διαίρεσης, δηλαδή αριστερά 28-24 = 4 bits της διεύθυνσης) μετατρέποντας στο δεκαδικό, βλέπουμε ότι όντως πρόκειται γιά τη θέση 256+128+16

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Υπολογιστές και Πληροφορία 1

Υπολογιστές και Πληροφορία 1 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 6: Προσημασμένοι Ακέραιοι, Προσθαφαιρέτες, Flip- Flops

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 6: Προσημασμένοι Ακέραιοι, Προσθαφαιρέτες, Flip- Flops ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 6: Προσημασμένοι Ακέραιοι, Προσθαφαιρέτες, Flip- Flops Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6

ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. 6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ Θεωρητικό Μέρος Οι σειριακές λειτουργίες είναι πιο

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).

Διαβάστε περισσότερα

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ.   url: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση

Διαβάστε περισσότερα

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ

Ενότητα 8 Η ΠΥΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Ενότητα 8 Η ΠΛΗ XOR ΚΑΙ ΟΙ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΩΔΙΚΟΠΟΙΗΣΗ Γενικές Γραμμές Πύλες XOR και XNOR λοποιήσεις με AND-OR-INV Κώδικας Ισοτιμίας (Parity) Άρτια και Περιττή Συνάρτηση Κυκλώματα ανίχνευσης λαθών Συγκριτές

Διαβάστε περισσότερα

Αριθµητική υπολογιστών

Αριθµητική υπολογιστών Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές

Διαβάστε περισσότερα

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΙΑ 1: Ονοματεπώνυμο: Εξάμηνο: Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Α.Μ: Έτος: 1. Το δεκαδικό σύστημα Είναι φανερό ότι οι χιλιάδες, εκατοντάδες, δεκάδες, μονάδες και τα δεκαδικά ψηφία είναι δυνάμεις

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης

Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης ΤΛ2002 Ψηφιακά Κυκλώματα Ι Μάθημα 1: Δυαδικά συστήματα - Κώδικες Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ-2002: L1 Slide 1 Ψηφιακά Συστήματα ΤΛ-2002:

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό

Διαβάστε περισσότερα

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI. Μανόλης Γ.Η. Κατεβαίνης

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI. Μανόλης Γ.Η. Κατεβαίνης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική αρ χή Εισαγωγή στην Πληροφορική Σημειώσεις Παράρτημα 1 Οδηγός μελέτης για τις εξετάσεις 12/1/2017 μπορεί να συμπληρωθεί τις επόμενες μέρες Μάριος Μάντακας Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής

Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Επανάληψη Βασικών Στοιχείων Ψηφιακής Λογικής Αριθµοί Διαφόρων Βάσεων Δυαδικά Συστήµατα 2 Υπολογιστική Ακρίβεια Ο αριθµός των δυαδικών ψηφίων αναπαράστασης αριθµών καθορίζει την ακρίβεια των αριθµών σε

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 8: Κβάντιση και παλμοκωδική διαμόρφωση - Πειραματική μελέτη Δρ.

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας

ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Λογικές πράξεις, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλικρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα που αφορούν

Διαβάστε περισσότερα

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί Ημιαθροιστής - Ημιαφαιρέτης Πλήρης Αθροιστής - Πλήρης Αφαιρέτης Αθροιστής Διάδοσης Κρατούμενου Επαναληπτικές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα