# 3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

## Transcript

1 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin cot, cos sin. sin cos sin s cos. sin sin Produce graphs of f that reveal all the important aspects 5 of the curve. In particular, ou should use graphs of f and f to 9. estimate the intervals of increase and decrease, etreme values, 0. intervals of concavit, and inflection points. 9.. s s. s 5. s s 7. s s 8. s f sin,. f 7 6 f f sin sin 7 7 Copright 0, Cengage Learning. All rights reserved.

2 SECTION. CURVE SKETCHING. ANSWERS E Click here for eercises. S Click here for solutions.. A. R B. -int. C. None D. None E. Inc. on, ; dec. on,,, F. Loc. min. f =,loc. 7 ma. f = 0 G. CU on, 5,CDon 5,,IP 5, 7 5. A. {, } B. -int. f 0 = C. None D. HA =0;VA =, = E. Inc. on,,, ;dec.on,,, F. Loc. ma. f = G. CD on, ; CUon,, 9,. A. R B. -int. 7 C. None D. None E. Inc. on,,, ; dec.on, F. Loc. ma. f = 7,loc.min.f = 7 G. CU on,, CD on,. IP, 5 6. A. { 0, } B. None C. None D. HA =0; VA =0, = E. Inc. on, 0; dec.on,,,, 0, F. Loc. min. f = G. CU on, 0, 0, ; CDon,. A. R B. -int.0; -int. 0, C. None D. None E. Inc. on,,dec.on, F. Loc. ma. f = 7 G. CU on 0, ; CDon, 0,,. IP0, 0,, 6 7. A. { ±} B.-int. C.About -ais D. HA =,VA = ± E. Inc. on 0,,, ; dec.on,,, 0 F. Loc. min. f 0 = G. CU on, ;CDon,,,. A.R B.-int., -int. C.None D.None E. Dec. on R F. None G. CU on, 0,CDon0,. IP0, 8. A. { 5} B. -int. C. None D. HA =0,VA 5 =5 E. Inc. on, 5, dec. on 5, F. None G. CU on, 5, 5, Copright 0, Cengage Learning. All rights reserved. 0 =5

3 SECTION. CURVE SKETCHING 9. A. { } B. -int., -int. C. None D. HA =, VA = E. Inc. on,,, F. None G. CU on,,cdon,. A., 5 5, B. -int. ±5 C. About the -ais D. None E. Inc. on 5,,dec.on, 5 F. None G. CD on, 5, 5, = =_ 0 0. A. { } 0, ± B. None C. About the origin D. HA =0,VA =0, = ± E. Inc. on 0, ;dec.on,,,, F. Loc. min. f f =,, 0,,, =, loc. ma.,, 0, G. CU on, 0,, ;CDon. A., ] [, B. -int. are ± C. About the origin D. None E. Inc. on,,, F. None G. CU on,, ;CDon,,,,. IP ±, ± 9 0. A. { 0} B. -int. C. None D. VA =0 E. Inc. on, 0, 0, ; dec.on, F. Loc. min. f = G. CU on, 0,, ;CDon0,. IP, 0 _ 5. A. R B. -int., -int. C. None D. HA = ± E. Inc. on,, dec.on, F. Loc. ma. f = G. CU on, 7 +, 7, ;CD on 7, IP 7, 7+ 7, 7 7, Copright 0, Cengage Learning. All rights reserved.. A. [, B. None C. None D. HA =0 E. Dec. on, F. None G. CU on, 6. A. R B.-int. 0, 7; -int. 0 C. None D. None E. Inc. on, 8, 0, ; dec.on 8, 0 F. Loc. ma. f 8 =,loc.min.f 0 = 0 G. CD on, 0, 0,

4 SECTION. CURVE SKETCHING 7. A. [, B. -int. C. None D. None E. Inc. on, F. None G. CD on,. A.R B. -int. C.About the -ais, period D. None E. Inc. on n,n,dec.onn, n +, n an integer F. Loc. ma. f n =,loc.min. f n + =, n an integer G. CU on n +, n +,CDon n, n +.IP n ±, A., B.-int.0, -int 0 C.About -ais D. VA = ± E. Inc. on 0,,dec.on, 0 F. Loc. min. f 0 = 0 G. CU on, =_ 0 =. A. R Note: f is periodic with period,so in B G we consider onl [0, ] B. -int., 7 ; -int. C. Period D. None E. Inc. on 0,, 5, ;dec.on, 5 F. Loc. ma. f =, loc. min. f 5 = G. CU on, 7 ;CDon 0,, 7,.IP, 0, 7, 0 9. A. R B. -int. n +, n an integer, -int. C. Period D. None E. Inc. on n +, n + 7,dec.on n, n +, n an integer F. Loc. ma. f n =,loc.min.f n + =, n an integer G. CU on n +, n + 5,CDon n, n +,IP n +, 0, n an integer 0 ¹ _ 0. A. 0, B.None C.None D.VA =0, = E. Inc. on, ;dec.on 0,,, F. Loc. min. f =+,loc.ma.f = G. CU on 0,,CDon,.IP,. A. R Note: f is periodic with period,so in B G we consider onl [0, ] B. -int., 5 ; -int. C. Period D. None E. Inc. on 0, 6, 7, ;dec. 6 on, F. Loc. ma. f 6 =,loc.min. f 7 6 = G. CU on, 5 ;CDon 0,, 5,.IP, 0, 5, 0 ¹ _6, 0 ¹ 5¹ Copright 0, Cengage Learning. All rights reserved., _ 7¹ 6

5 SECTION. CURVE SKETCHING 5. A. R Note: f is periodic with period,soinb Gwe consider onl [0, ] B.-int. 0,, ; -int.0 C. Period D. None E. Inc. on 0,,, ;dec.on, F. Loc. ma. f =, loc. min. f = G. CU on 0, 6, 5, ;CDon, IP, 5 6, 5, Inc. on 7, 5.,.,., 5., 7 ; dec. on 5.,.,., 5.; loc. ma. f 5.., f..9; loc.min.f..9, f 5..; CUon 7, 6.8,.0,.5, 0,.5,.0, 6.8; CDon 6.8,.0,.5, 0,.5,.0, 6.8, 7; IP 6.8,.,.0,.0,.5,., 0, 0,.5,.,.0,.0, 6.8,. 5. Inc. on., 0., 0.7, ; dec. on,., 0., 0.7; loc.ma.f ; loc.min. f..0, f ; CUon, 0.5, 0.5, ; CDon 0.5, 0.5; IP 0.5,., 0.5, Inc. on,.5,.0, ; dec. on.5,.0; loc. ma. f.5,loc.min.f 6;CUon.,,CDon,.; IP., 8. Note: Due to periodicit, we consider the function onl on [, ]. Inc. on.,.6, 0.8, 0.8,.6,.; dec. on,.,.6, 0.8, 0.8,.6,.,; loc.ma. f.6 0.7, f , f. 0.9;loc.min. f. 0.9, f , f.6 0.7; CUon,.0,., 0,., ; CDon.0,., 0,.,.0,; IP, 0,.0, 0.8,., 0.8, 0, 0,., 0.8,.0, 0.8,, 0 Copright 0, Cengage Learning. All rights reserved.

6 6 SECTION. CURVE SKETCHING. SOLUTIONS E Click here for eercises. Copright 0, Cengage Learning. All rights reserved.. = f = +5 A. D = R B. -intercept = f 0 = C. No smmetr D. No asmptote E. f = +0 = > 0 < 0 <<. f < 0 < or >. Sof is increasing on, and decreasing on, and,. F. The critical numbers occur when f = = 0 =,. The local minimum is f = 7 and the local maimum is f = 0. G. f =0 6 >0 < 5,sof is CU on, 5 and CD on 5,.IP 5, 7. = f = A. D = R B. -intercept = f 0 = 7 C. No smmetr D. No asmptote E. f =6 8=6 + > 0 + > 0 < or >. f < 0 <<. Sof is increasing on, and, and decreasing on,. F. The critical numbers are =,. The local maimum is f = 7 and the local minimum is f = 7. G. = > 0 >,sof is CU on, and CD on,. IP, 5. = f = A. D = R B. -intercept = f 0 = 0, -intercept =0 =0 =0, C. No smmetr D. No asmptote E. = = > 0 <,sof is increasing on, and decreasing on,. F. Local maimum is f = 7,nolocal minimum. G. = > 0 0 <<,so f is CU on 0, and CD on, 0 and,. IP0, 0 and, 6. = f = 9 = A. D = R B. -intercept: f 0 = ; -intercept: f =0 =B part E below, f is decreasing on its domain, so it has onl one -intercept. C. No smmetr D. No asmptote E. f = 9 8 = < 0 for all,sof is decreasing on R. F. No maimum or minimum G. f = 7 7 > 0 <0,sof is CU on, 0 andcdon0,. IPat0, 5. = f = + = + A. D = {, } =,,, B. -intercept: f 0 = ; no -intercept C. No smmetr D. ± + = / ± +/ / = 0 =0 so =0is a HA. = and =are VA. E. f = + + = + > 0 < ; f < 0 >. So f is increasing on, and,,andf is

7 SECTION. CURVE SKETCHING 7 Copright 0, Cengage Learning. All rights reserved. decreasing on, and,. F. f = is a 9 local maimum. G. f + [ + ] + + = [ + ] = + [ ] + = = = The numerator is alwas positive, so the sign of f is determined b the denominator, which is negative onl for <<. Thus, f is CD on, andcuon, and,. NoIP. 6. = f = + A. D = { 0, } =,, 0 0, B. No intercept C. No smmetr D. =0,so =0is a HA. ± = and + + =, =,so =0and = are VA. + E. f + = > 0 <<0; + f < 0 < or >0. So f is increasing on, 0 and decreasing on,,,,and 0,. F. f = is a local minimum. G. f = + + [ ] 6 + = Since +8 +9> 0 for all, f > 0 > 0, so f is CU on, 0 and 0,,andCD on,. NoIP 7. = f = + = + A. D = { ±} B. No -intercept, -intercept = f 0 = C. f =f,sof is even and the curve is smmetric about the -ais. + / D. ± = + =,so = ± / is a HA. + + =, + =, + + =, =. So = + and = are VA. E. f = > 0 >0, so f increases on 0, and,, and decreases on, and, 0. F. f 0 = is a local minimum. G. = = + > 0 < <<, sof is CU on, and CD on, and,. No IP 8. = f =/ 5 A. D = { 5} =, 5 5, B. -intercept = f 0 =,no-intercept C. No 5 smmetr D. =0,so =0is a ± 5 HA. 5 =, so =5is a VA. 5 E. f = 8/ 5 > 0 <5 and f < 0 > 5. Sof is increasing on, 5 and decreasing on 5,. F. No maimum or minimum G. f =/ 5 > 0 for 5,sof is CU on, 5 and 5,.

8 8 SECTION. CURVE SKETCHING Copright 0, Cengage Learning. All rights reserved. 0 =5 9. = f = / + A. D = { } =,, B. -intercept is, -intercept = f 0 = C. No smmetr D. ± + = / ± +/ =, so =is a HA. + = and =,so = is a VA. + + E. f = + + = 6 + f > 0 sof is increasing on, and,. F. No maimum or minimum G. f = > 0 <,sof is CU on +, and CD on,. NoIP =_ 0 = 0. = f =/ [ 9 ] A. D = { 0, ± B. No intercept C. f = f, so the curve is smmetric about the origin. D. ± 9 =0, so =0is a HA =, 0 9 =, / 9 =, / + 9 =, / + 9 =, and / 9 =,so =0and = ± are VA. E. f = 9 9 > 0 < < << and f < 0 > or <,sof is increasing on, 0 and 0,,, and decreasing on,,and,. F. f,,, = is a local } minimum, f G. f = is a local maimum. = = Since 6 +7> 0 for all, f > 0 <<0 or >,sof is CU on, 0 and, and CD on, and 0,. 0. = f = = A. D = { 0} B. -intercept, no-intercept C. No smmetr D. =,sonoha. = ± 0 + and =, so =0is a VA. 0 E. f = + = + > 0 +> 0 > 0, so f is increasing on, 0 _,. and 0, and decreasing on F. f = is a local minimum. G. f = = f > 0 > or <0,sof is CU on, 0 and, and CD on 0,. IPis, 0.. = f = A. D = { 0 and } = { } =[, B. No intercept C. No smmetr D. = + + = + =0,so =0 is a HA.

9 SECTION. CURVE SKETCHING 9 Copright 0, Cengage Learning. All rights reserved. E. f = < 0 for all >,since < <,sof is decreasing on,. F. No local maimum or minimum G. f = [ / / for >,sof is CU on,.. = f = 5 A. D = { 5 } =, 5] [5, ] f > 0 B. -intercepts are ±5,no-intercept C. f =f, so the curve is smmetric about the -ais. D. 5 =, no asmptote ± E. f = 5 / = 5 > 0 / if >5,sof is increasing on 5, and decreasing on, 5. F. No local maimum or minimum G. = 5 / 5 / 5 / = / < 0 so f is CD on, 5 and 5,. No IP. = f = 9 A. D = { 9 } =, ] [, B. -intercepts are ±, no-intercept. C. f = f, so the curve is smmetric about the origin. D. 9=, no asmptote E. f = 9+ 9=, 9 > 0 for D, sof is increasing on, and,. F. No maimum or minimum G. f = / 9 9 = 7 > and > 0 9 / or <<0,sof is CU on, andcdon, and,,. IP ±, ± 9 5. = f = + + A. D = R B. -intercept, -intercept C. No smmetr D. + + =, + and =, so horizontal asmptotes are + = ±. + E. f + = + + = > 0 <, / + so f is increasing on,, and decreasing on,. F. f = is a local maimum. G. f = + / + / + = + 5/ f =0 =0 = ± 9 = ± 7. f is CU on, 7 + and 7, andcdon 7, IP 7, , 7 7 7, = f = + / A. D = R B. = + / = / / + =0if =0or 7 -intercepts, -intercept = f 0 = 0 C. No smmetr D. + / = + / =, =, / / + no asmptote E. f =+ / = / + / / > 0 >0 or < 8,sof increases on, 8, 0, and

10 0 SECTION. CURVE SKETCHING decreases on 8, 0. F. Local maimum f 8 =, local minimum f 0 = 0 G. f = / < 0 0sof is CD on, 0 and 0,. No IP G. f / / = = + > 0 for all,sof is CU on,. 5/ 7. = f = A. D = { } = { } = { } =[, B. -intercept is. C. No smmetr D. =, no asmptote E. f = / / > 0 for all >,sof is increasing on,. F. No local maimum or minimum. G. f = / / + / / = +6 6 < 0 / since +6 < 0 negative discriminant as a quadratic in. So f is CD on,. =_ 0 = 9. = f =cos sin A. D = R B. =0 cos =sin = n +, n an integer -intercepts, -intercept = f 0 =. C. Periodic with period D. No asmptote E. f = sin cos =0 cos = sin =n + or n + 7. f > 0 cos < sin n + <<n + 7,sof is increasing on n +, n + 7 and decreasing on n, n +. F. Local maima f n =, local minima f n + =. G. f = cos +sin>0 sin >cos n +, n + 5,sof is CU on these intervals and CD on n, n +. IP n +, 0 Copright 0, Cengage Learning. All rights reserved = f = / A. D = { < } =, B. -intercept =0=-intercept C. f =f,sof is even. The curve is smmetric about the -ais. D. = =,so = ± + are VA. E. f = / = / Since > 0 and / > 0, f > 0 if 0 << and f < 0 if <<0,sof is increasing on 0, and decreasing on, 0. F. Local minimum f 0 = 0 0. = f = +cot, 0 << A. D =0,. B. No -intercept C. No smmetr D. +cot =, +cot =,so 0 + =0and = are VA. E. f = csc >0 when csc < sin > <<,so f is increasing on, and decreasing on 0, and,. F. f =+ is a local minimum, f = is a local maimum. G. f = csc csc cot =csc cot >0 cot >0 0 <<,sof is CU on 0,,CDon,. IP,

11 SECTION. CURVE SKETCHING Copright 0, Cengage Learning. All rights reserved.. = f =cos +sin A. D = R B. -intercept = f 0 = C. f =f, sothe curve is smmetric about the -ais. Periodic with period D. No asmptote E. f = sin +sin cos =sin cos > 0 sin <0 n <<n, so f is increasing on n, n and decreasing on n, n +. F. f n =is a local maimum. f n + = is a local minimum. G. f = cos +cos = cos cos =cos +cos > 0 cos < n +, n +,sof is CU on these intervals and CD on n, n +. IP n ±, 0. = f =sin +cos A. D = R Note: f is periodic with period, so in B G we consider onl [0, ]. B. -intercept = f 0 =, -intercepts occur where sin = cos tan = =, 7. C. f + =f,sof is periodic with period. D. No asmptote E. f =cos sin >0 when cos >sin 0 << or 5 <<, f < 0 << 5,sof is increasing on 0, and 5, and decreasing on, 5. F. f = is a local maimum, f 5 = is a local minimum. G. f = sin cos >0 << 7,so f is CU on, 7 and CD on 0, and 7,.IP, 0, 7, 0. 0 ¹ _. = f =sin + cos A. D = R Note: f is periodic with period, so in B G we consider onl [0, ]. B. -intercept =, -intercepts occur where sin = cos tan = =, 5. C. No smmetr other than periodicit. D. No asmptote E. f =cos sin =0when cos = tan = = 6 or 7 6. f > 0 0 << 6 or 7 6 <<, f < 0 6 << 7 6.Sof is increasing on 0, 6 and 7, and decreasing on, F. f 6 =is a local maimum, f 7 6 = is a local minimum. G. f = sin cos =0when tan = = or 5. f > 0 << 5,sof is CU on, 5 and CD on 0, and 5,.IP, 0, 5, 0. ¹ _6, 0 ¹ 5¹, _. = f =sin +sin A. D = R Note: f is periodic with period, soinb Gwe consider onl [0, ]. B. -intercept =0, -intercepts occur where sin +sin =0 sin =0 =0,,. C. No smmetr other than periodicit D. No asmptote E. f =cos+ sin cos =cos + sin > 0 cos >0 0 << or <<,sof is increasing on 0, and, and decreasing on,. F. f =is a local maimum, f = is a local minimum. G. f = sin +cos sin = sin + sin =+sin sin > 0 sin>0 sin < 0 < 6 or 5 <. Sof is CU on 0, 6 6, 5,,andCDon 6, IP, 5 6 and 5, 5 6 7¹ 6

12 SECTION. CURVE SKETCHING 5. f = f =6 + f =8 7. f = sin f = sin + cos f =sin + cos sin After finding suitable viewing rectangles b ensuring that we have located all of the -values where either f =0or f =0weestimatefromthegraphoff that f is increasing on., 0. and 0.7, and decreasing on,. and 0., 0.7,withalocalmaimumoff and minima of f..0 and f Weestimate from the graph of f that f is CU on, 0.5 and 0.5, and CD on 0.5, 0.5,andthatf has inflection points at about 0.5,. and 0.5, f = f = f = We estimate from the graph of f that f is increasing on 7, 5.,.,.,and5., 7 and decreasing on 5.,., and., 5.. Local maima: f 5.., f..9. Local minima: f..9, f 5... From the graph of f, we estimate that f is CU on 7, 6.8,.0,.5, 0,.5,and.0, 6.8,andCDon 6.8,.0,.5, 0,.5,.0,and6.8, 7. f has IP at 6.8,.,.0,.0,.5,., 0, 0,.5,.,.0,.0 and 6.8,.. 8. f =sin + sin f =cos +cos f = sin sin Copright 0, Cengage Learning. All rights reserved. After finding suitable viewing rectangles, we estimate from the graph of f that f is increasing on,.5 and.0, and decreasing on.5,.0. Maimum: f.5. Minimum: f 6. We estimate from the graph of f that f is CU on., and CD on,., and has an IP at.,. Note that f is periodic with period,soweconsideriton the interval [, ].Fromthegraphoff,weestimatethatf is increasing on.,.6, 0.8, 0.8,and.6,. and decreasing on,.,.6, 0.8, 0.8,.6 and.,. Maima: f.6 0.7, f , f Minima: f. 0.9, f , f Weestimatefromthe graph of f that f is CD on.0,., 0,. and.0, and CU on,.0,., 0 and.,. f has IP at, 0,.0, 0.8,., 0.8, 0, 0,., 0.8,.0, 0.8,and, 0.

### 4.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y ln x 2 x. y ln 1 x 2. y x 2 e x2. x 1 x 2. x 2 x 3. x 5 2. y x 3.

SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9.. 8 Use the guidelines of this section to sketch the curve. ln ln. 5. 6 8 7. ln tan. e.. 9. ln. e 5. 6.

Διαβάστε περισσότερα

### Section 8.3 Trigonometric Equations

99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

### Solution to Review Problems for Midterm III

Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

### Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

### AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

### 16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

### Section 9.2 Polar Equations and Graphs

180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

### Section 8.2 Graphs of Polar Equations

Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

### Homework 3 Solutions

Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

### Second Order RLC Filters

ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

### Trigonometric Formula Sheet

Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

### Areas and Lengths in Polar Coordinates

Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

### If we restrict the domain of y = sin x to [ π 2, π 2

Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

### Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

### Finite Field Problems: Solutions

Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

### Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

### Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

### C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

### 9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

### EE512: Error Control Coding

EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

### Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

### Homework 8 Model Solution Section

MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

### 4.6 Autoregressive Moving Average Model ARMA(1,1)

84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

### w o = R 1 p. (1) R = p =. = 1

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

### wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

### 2 Composition. Invertible Mappings

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

### 2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

### Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

### Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

### Strain gauge and rosettes

Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

### Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

### Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

### Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

### SEN TRONIC AG 3-2 7 0 0 7 A 3 57 3 3 AB 93 :, C,! D 0 7 % 0 7 3 3 93 : 3 A 5 93 :

# 3-270 07A35733 AB93:,C,!D 07% 0733 93: 3A593:!"#\$%% &%&''()*%'+,-. &%&''(/*%'+0. 1*23 '4# 54/%6%7%53 *323 %7 77# %%3#% 8908/"/*55 :1\$;/ = 7?@ > 7= 7 %! "\$!"#\$%&#%'(%%)*#\$%&#%'(%#++#,-."/-0-1222"/-0-1

Διαβάστε περισσότερα

### 6.3 Forecasting ARMA processes

122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

### Durbin-Levinson recursive method

Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

### SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

### Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

### Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

### Second Order Partial Differential Equations

Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

### EE101: Resonance in RLC circuits

EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

### ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

### 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

### Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

### Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

### Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

### 1. For each of the following power series, find the interval of convergence and the radius of convergence:

Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

### ( ) 2 and compare to M.

Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

### Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

### Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

### 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

### Solution Series 9. i=1 x i and i=1 x i.

Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

### ω = radians per sec, t = 3 sec

Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

### CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα

### 1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

### Επιβλέπουσα καθηγήτρια: Ιμπριξή Ελένη. Μαυροπάνου Σοφία (Α.Μ. 13858) Μπαλόπητας Βασίλειος (Α.Μ. 13890)

Η ΕΠΙΡΡΟΗ ΤΗΣ ΟΙΚΟΝΟΜΙΚΗΣ ΚΡΙΣΗΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΗΣ ΕΛΛΑΔΑΣ ΚΑΤΑ ΤΗ ΧΡΟΝΙΚΗ ΠΕΡΙΟΔΟ 2008 2012 THE INFLUENCE OF ECONOMIC CRISIS ON GREEK ENTERPRISES DURING THE TIME PERIOD OF 2008 2012 Επιβλέπουσα καθηγήτρια:

Διαβάστε περισσότερα

### ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη και Τεχνολογία Τροφίμων και Διατροφή του Ανθρώπου» Κατεύθυνση: «Διατροφή, Δημόσια

Διαβάστε περισσότερα

### APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

### Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ [Μαρία Μαρκουλλή] Λεμεσός 2015 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ

Διαβάστε περισσότερα

### Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

### CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

### ΚΙΝ ΥΝΟΙ ΛΟΙΜΩΞΕΩΝ ΧΕΙΡΟΥΡΓΙΚΗΣ ΘΕΣΗΣ ΓΥΝΑΙΚΩΝ ΠΟΥ ΥΠΟΒΑΛΛΟΝΤΑΙ ΣΕ ΚΑΙΣΑΡΙΚΗ ΤΟΜΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή Εργασία ΚΙΝ ΥΝΟΙ ΛΟΙΜΩΞΕΩΝ ΧΕΙΡΟΥΡΓΙΚΗΣ ΘΕΣΗΣ ΓΥΝΑΙΚΩΝ ΠΟΥ ΥΠΟΒΑΛΛΟΝΤΑΙ ΣΕ ΚΑΙΣΑΡΙΚΗ ΤΟΜΗ Παναγιώτα Κουρίδου Επιβλέπουσα

Διαβάστε περισσότερα

### CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

### Μηχανική Μάθηση Hypothesis Testing

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

### Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

### Risk! " #\$%&'() *!'+,'''## -. / # \$

Risk! " #\$%&'(!'+,'''## -. / 0! " # \$ +/ #%&''&(+(( &'',\$ #-&''&\$ #(./0&'',\$( ( (! #( &''/\$ #\$ 3 #4&'',\$ #- &'',\$ #5&''6(&''&7&'',\$ / ( /8 9 :&' " 4; < # \$ 3 " ( #\$ = = #\$ #\$ ( 3 - > # \$ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.

Διαβάστε περισσότερα

### ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Η ΕΞΕΛΙΞΗ ΤΗΣ ΠΟΛΗΣ ΤΗΣ ΚΑΛΑΜΑΤΑΣ ΜΕ ΕΠΙΚΕΝΤΡΟ ΤΟ ΙΣΤΟΡΙΚΟ ΤΗΣ ΚΕΝΤΡΟ»

Διαβάστε περισσότερα

### A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

### ( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

### Lecture 6 Mohr s Circle for Plane Stress

P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

### 10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.

Electric Forces and Fields Section Review, p. 633 Givens Chapter 17 3. q 10.0 C q 10.0 C N 6.5 10 19 electrons 1.60 10 19 C/electron 1.60 10 19 C/electron Practice 17A, p. 636 1. q 1 8.0 C q 8.0 C r 5.0

Διαβάστε περισσότερα

### Probability and Random Processes (Part II)

Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

### On a four-dimensional hyperbolic manifold with finite volume

BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

### Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα

### Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) "ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ" 2 η ΚΑΤΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

### Η ΑΥΛΗ ΤΟΥ ΣΧΟΛΕΙΟΥ ΠΑΙΧΝΙΔΙΑ ΣΤΗΝ ΑΥΛΗ ΤΟΥ ΣΧΟΛΕΙΟΥ

Η ΑΥΛΗ ΤΟΥ ΣΧΟΛΕΙΟΥ ΠΑΙΧΝΙΔΙΑ ΣΤΗΝ ΑΥΛΗ ΤΟΥ ΣΧΟΛΕΙΟΥ ΑΘΑΝΑΣΟΠΟΥΛΟΥ Κ. 6ο Δμοτικό Σχολείο Κηφησιας Πηνελόπη Δέλτα, Β Δ/νση Εκπ/σης Αθήνας ΠΕΡΙΛΗΨΗ Πρόθεσή μας είναι να παρουσιάσουμε ένα συνδυασμό των προγραμμάτων

Διαβάστε περισσότερα

### Πτυχιακή εργασία. Παραγωγή Βιοντίζελ από Χρησιμοποιημένα Έλαια

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία Παραγωγή Βιοντίζελ από Χρησιμοποιημένα Έλαια Ελένη Χριστοδούλου Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

60 61 62 63 64 65 Ο Δ Η Γ Ι Ε Σ Σ Υ Ν Τ Η Ρ Η Σ Η Σ Τ Ω Ν Κ Ο Υ Φ Ω Μ Α Τ Ω Ν Ι Ν S T R U C T I N O N S C O N C E R N I N G Τ Η Ε C A S E M E N T S M A I N T E N A N C E Ο τακτικός καθαρισμός των βαμμένων

Διαβάστε περισσότερα

### Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

### ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

### Nuclear Physics 5. Name: Date: 8 (1)

Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

### VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!

VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία ΕΠΙΠΤΩΣΕΙΣ ΤΗΣ ΚΑΚΗΣ ΔΙΑΤΡΟΦΗΣ ΣΤΗ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΜΕ ΑΠΟΤΕΛΕΣΜΑ ΤΗ ΠΑΧΥΣΑΡΚΙΑ Έλλη Φωτίου 2010364426 Επιβλέπουσα

Διαβάστε περισσότερα

### ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

### ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ Πτυχιακή εργασία ΜΕΛΕΤΗ ΠΟΛΥΦΑΙΝΟΛΩΝ ΚΑΙ ΑΝΤΙΟΞΕΙΔΩΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΣΟΚΟΛΑΤΑΣ Αναστασία Σιάντωνα Λεμεσός

Διαβάστε περισσότερα

### ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία "Η ΣΗΜΑΝΤΙΚΟΤΗΤΑ ΤΟΥ ΜΗΤΡΙΚΟΥ ΘΗΛΑΣΜΟΥ ΣΤΗ ΠΡΟΛΗΨΗ ΤΗΣ ΠΑΙΔΙΚΗΣ ΠΑΧΥΣΑΡΚΙΑΣ" Ειρήνη Σωτηρίου Λεμεσός 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα