3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2"

Transcript

1 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin cot, cos sin. sin cos sin s cos. sin sin Produce graphs of f that reveal all the important aspects 5 of the curve. In particular, ou should use graphs of f and f to 9. estimate the intervals of increase and decrease, etreme values, 0. intervals of concavit, and inflection points. 9.. s s. s 5. s s 7. s s 8. s f sin,. f 7 6 f f sin sin 7 7 Copright 0, Cengage Learning. All rights reserved.

2 SECTION. CURVE SKETCHING. ANSWERS E Click here for eercises. S Click here for solutions.. A. R B. -int. C. None D. None E. Inc. on, ; dec. on,,, F. Loc. min. f =,loc. 7 ma. f = 0 G. CU on, 5,CDon 5,,IP 5, 7 5. A. {, } B. -int. f 0 = C. None D. HA =0;VA =, = E. Inc. on,,, ;dec.on,,, F. Loc. ma. f = G. CD on, ; CUon,, 9,. A. R B. -int. 7 C. None D. None E. Inc. on,,, ; dec.on, F. Loc. ma. f = 7,loc.min.f = 7 G. CU on,, CD on,. IP, 5 6. A. { 0, } B. None C. None D. HA =0; VA =0, = E. Inc. on, 0; dec.on,,,, 0, F. Loc. min. f = G. CU on, 0, 0, ; CDon,. A. R B. -int.0; -int. 0, C. None D. None E. Inc. on,,dec.on, F. Loc. ma. f = 7 G. CU on 0, ; CDon, 0,,. IP0, 0,, 6 7. A. { ±} B.-int. C.About -ais D. HA =,VA = ± E. Inc. on 0,,, ; dec.on,,, 0 F. Loc. min. f 0 = G. CU on, ;CDon,,,. A.R B.-int., -int. C.None D.None E. Dec. on R F. None G. CU on, 0,CDon0,. IP0, 8. A. { 5} B. -int. C. None D. HA =0,VA 5 =5 E. Inc. on, 5, dec. on 5, F. None G. CU on, 5, 5, Copright 0, Cengage Learning. All rights reserved. 0 =5

3 SECTION. CURVE SKETCHING 9. A. { } B. -int., -int. C. None D. HA =, VA = E. Inc. on,,, F. None G. CU on,,cdon,. A., 5 5, B. -int. ±5 C. About the -ais D. None E. Inc. on 5,,dec.on, 5 F. None G. CD on, 5, 5, = =_ 0 0. A. { } 0, ± B. None C. About the origin D. HA =0,VA =0, = ± E. Inc. on 0, ;dec.on,,,, F. Loc. min. f f =,, 0,,, =, loc. ma.,, 0, G. CU on, 0,, ;CDon. A., ] [, B. -int. are ± C. About the origin D. None E. Inc. on,,, F. None G. CU on,, ;CDon,,,,. IP ±, ± 9 0. A. { 0} B. -int. C. None D. VA =0 E. Inc. on, 0, 0, ; dec.on, F. Loc. min. f = G. CU on, 0,, ;CDon0,. IP, 0 _ 5. A. R B. -int., -int. C. None D. HA = ± E. Inc. on,, dec.on, F. Loc. ma. f = G. CU on, 7 +, 7, ;CD on 7, IP 7, 7+ 7, 7 7, Copright 0, Cengage Learning. All rights reserved.. A. [, B. None C. None D. HA =0 E. Dec. on, F. None G. CU on, 6. A. R B.-int. 0, 7; -int. 0 C. None D. None E. Inc. on, 8, 0, ; dec.on 8, 0 F. Loc. ma. f 8 =,loc.min.f 0 = 0 G. CD on, 0, 0,

4 SECTION. CURVE SKETCHING 7. A. [, B. -int. C. None D. None E. Inc. on, F. None G. CD on,. A.R B. -int. C.About the -ais, period D. None E. Inc. on n,n,dec.onn, n +, n an integer F. Loc. ma. f n =,loc.min. f n + =, n an integer G. CU on n +, n +,CDon n, n +.IP n ±, A., B.-int.0, -int 0 C.About -ais D. VA = ± E. Inc. on 0,,dec.on, 0 F. Loc. min. f 0 = 0 G. CU on, =_ 0 =. A. R Note: f is periodic with period,so in B G we consider onl [0, ] B. -int., 7 ; -int. C. Period D. None E. Inc. on 0,, 5, ;dec.on, 5 F. Loc. ma. f =, loc. min. f 5 = G. CU on, 7 ;CDon 0,, 7,.IP, 0, 7, 0 9. A. R B. -int. n +, n an integer, -int. C. Period D. None E. Inc. on n +, n + 7,dec.on n, n +, n an integer F. Loc. ma. f n =,loc.min.f n + =, n an integer G. CU on n +, n + 5,CDon n, n +,IP n +, 0, n an integer 0 ¹ _ 0. A. 0, B.None C.None D.VA =0, = E. Inc. on, ;dec.on 0,,, F. Loc. min. f =+,loc.ma.f = G. CU on 0,,CDon,.IP,. A. R Note: f is periodic with period,so in B G we consider onl [0, ] B. -int., 5 ; -int. C. Period D. None E. Inc. on 0, 6, 7, ;dec. 6 on, F. Loc. ma. f 6 =,loc.min. f 7 6 = G. CU on, 5 ;CDon 0,, 5,.IP, 0, 5, 0 ¹ _6, 0 ¹ 5¹ Copright 0, Cengage Learning. All rights reserved., _ 7¹ 6

5 SECTION. CURVE SKETCHING 5. A. R Note: f is periodic with period,soinb Gwe consider onl [0, ] B.-int. 0,, ; -int.0 C. Period D. None E. Inc. on 0,,, ;dec.on, F. Loc. ma. f =, loc. min. f = G. CU on 0, 6, 5, ;CDon, IP, 5 6, 5, Inc. on 7, 5.,.,., 5., 7 ; dec. on 5.,.,., 5.; loc. ma. f 5.., f..9; loc.min.f..9, f 5..; CUon 7, 6.8,.0,.5, 0,.5,.0, 6.8; CDon 6.8,.0,.5, 0,.5,.0, 6.8, 7; IP 6.8,.,.0,.0,.5,., 0, 0,.5,.,.0,.0, 6.8,. 5. Inc. on., 0., 0.7, ; dec. on,., 0., 0.7; loc.ma.f ; loc.min. f..0, f ; CUon, 0.5, 0.5, ; CDon 0.5, 0.5; IP 0.5,., 0.5, Inc. on,.5,.0, ; dec. on.5,.0; loc. ma. f.5,loc.min.f 6;CUon.,,CDon,.; IP., 8. Note: Due to periodicit, we consider the function onl on [, ]. Inc. on.,.6, 0.8, 0.8,.6,.; dec. on,.,.6, 0.8, 0.8,.6,.,; loc.ma. f.6 0.7, f , f. 0.9;loc.min. f. 0.9, f , f.6 0.7; CUon,.0,., 0,., ; CDon.0,., 0,.,.0,; IP, 0,.0, 0.8,., 0.8, 0, 0,., 0.8,.0, 0.8,, 0 Copright 0, Cengage Learning. All rights reserved.

6 6 SECTION. CURVE SKETCHING. SOLUTIONS E Click here for eercises. Copright 0, Cengage Learning. All rights reserved.. = f = +5 A. D = R B. -intercept = f 0 = C. No smmetr D. No asmptote E. f = +0 = > 0 < 0 <<. f < 0 < or >. Sof is increasing on, and decreasing on, and,. F. The critical numbers occur when f = = 0 =,. The local minimum is f = 7 and the local maimum is f = 0. G. f =0 6 >0 < 5,sof is CU on, 5 and CD on 5,.IP 5, 7. = f = A. D = R B. -intercept = f 0 = 7 C. No smmetr D. No asmptote E. f =6 8=6 + > 0 + > 0 < or >. f < 0 <<. Sof is increasing on, and, and decreasing on,. F. The critical numbers are =,. The local maimum is f = 7 and the local minimum is f = 7. G. = > 0 >,sof is CU on, and CD on,. IP, 5. = f = A. D = R B. -intercept = f 0 = 0, -intercept =0 =0 =0, C. No smmetr D. No asmptote E. = = > 0 <,sof is increasing on, and decreasing on,. F. Local maimum is f = 7,nolocal minimum. G. = > 0 0 <<,so f is CU on 0, and CD on, 0 and,. IP0, 0 and, 6. = f = 9 = A. D = R B. -intercept: f 0 = ; -intercept: f =0 =B part E below, f is decreasing on its domain, so it has onl one -intercept. C. No smmetr D. No asmptote E. f = 9 8 = < 0 for all,sof is decreasing on R. F. No maimum or minimum G. f = 7 7 > 0 <0,sof is CU on, 0 andcdon0,. IPat0, 5. = f = + = + A. D = {, } =,,, B. -intercept: f 0 = ; no -intercept C. No smmetr D. ± + = / ± +/ / = 0 =0 so =0is a HA. = and =are VA. E. f = + + = + > 0 < ; f < 0 >. So f is increasing on, and,,andf is

7 SECTION. CURVE SKETCHING 7 Copright 0, Cengage Learning. All rights reserved. decreasing on, and,. F. f = is a 9 local maimum. G. f + [ + ] + + = [ + ] = + [ ] + = = = The numerator is alwas positive, so the sign of f is determined b the denominator, which is negative onl for <<. Thus, f is CD on, andcuon, and,. NoIP. 6. = f = + A. D = { 0, } =,, 0 0, B. No intercept C. No smmetr D. =0,so =0is a HA. ± = and + + =, =,so =0and = are VA. + E. f + = > 0 <<0; + f < 0 < or >0. So f is increasing on, 0 and decreasing on,,,,and 0,. F. f = is a local minimum. G. f = + + [ ] 6 + = Since +8 +9> 0 for all, f > 0 > 0, so f is CU on, 0 and 0,,andCD on,. NoIP 7. = f = + = + A. D = { ±} B. No -intercept, -intercept = f 0 = C. f =f,sof is even and the curve is smmetric about the -ais. + / D. ± = + =,so = ± / is a HA. + + =, + =, + + =, =. So = + and = are VA. E. f = > 0 >0, so f increases on 0, and,, and decreases on, and, 0. F. f 0 = is a local minimum. G. = = + > 0 < <<, sof is CU on, and CD on, and,. No IP 8. = f =/ 5 A. D = { 5} =, 5 5, B. -intercept = f 0 =,no-intercept C. No 5 smmetr D. =0,so =0is a ± 5 HA. 5 =, so =5is a VA. 5 E. f = 8/ 5 > 0 <5 and f < 0 > 5. Sof is increasing on, 5 and decreasing on 5,. F. No maimum or minimum G. f =/ 5 > 0 for 5,sof is CU on, 5 and 5,.

8 8 SECTION. CURVE SKETCHING Copright 0, Cengage Learning. All rights reserved. 0 =5 9. = f = / + A. D = { } =,, B. -intercept is, -intercept = f 0 = C. No smmetr D. ± + = / ± +/ =, so =is a HA. + = and =,so = is a VA. + + E. f = + + = 6 + f > 0 sof is increasing on, and,. F. No maimum or minimum G. f = > 0 <,sof is CU on +, and CD on,. NoIP =_ 0 = 0. = f =/ [ 9 ] A. D = { 0, ± B. No intercept C. f = f, so the curve is smmetric about the origin. D. ± 9 =0, so =0is a HA =, 0 9 =, / 9 =, / + 9 =, / + 9 =, and / 9 =,so =0and = ± are VA. E. f = 9 9 > 0 < < << and f < 0 > or <,sof is increasing on, 0 and 0,,, and decreasing on,,and,. F. f,,, = is a local } minimum, f G. f = is a local maimum. = = Since 6 +7> 0 for all, f > 0 <<0 or >,sof is CU on, 0 and, and CD on, and 0,. 0. = f = = A. D = { 0} B. -intercept, no-intercept C. No smmetr D. =,sonoha. = ± 0 + and =, so =0is a VA. 0 E. f = + = + > 0 +> 0 > 0, so f is increasing on, 0 _,. and 0, and decreasing on F. f = is a local minimum. G. f = = f > 0 > or <0,sof is CU on, 0 and, and CD on 0,. IPis, 0.. = f = A. D = { 0 and } = { } =[, B. No intercept C. No smmetr D. = + + = + =0,so =0 is a HA.

9 SECTION. CURVE SKETCHING 9 Copright 0, Cengage Learning. All rights reserved. E. f = < 0 for all >,since < <,sof is decreasing on,. F. No local maimum or minimum G. f = [ / / for >,sof is CU on,.. = f = 5 A. D = { 5 } =, 5] [5, ] f > 0 B. -intercepts are ±5,no-intercept C. f =f, so the curve is smmetric about the -ais. D. 5 =, no asmptote ± E. f = 5 / = 5 > 0 / if >5,sof is increasing on 5, and decreasing on, 5. F. No local maimum or minimum G. = 5 / 5 / 5 / = / < 0 so f is CD on, 5 and 5,. No IP. = f = 9 A. D = { 9 } =, ] [, B. -intercepts are ±, no-intercept. C. f = f, so the curve is smmetric about the origin. D. 9=, no asmptote E. f = 9+ 9=, 9 > 0 for D, sof is increasing on, and,. F. No maimum or minimum G. f = / 9 9 = 7 > and > 0 9 / or <<0,sof is CU on, andcdon, and,,. IP ±, ± 9 5. = f = + + A. D = R B. -intercept, -intercept C. No smmetr D. + + =, + and =, so horizontal asmptotes are + = ±. + E. f + = + + = > 0 <, / + so f is increasing on,, and decreasing on,. F. f = is a local maimum. G. f = + / + / + = + 5/ f =0 =0 = ± 9 = ± 7. f is CU on, 7 + and 7, andcdon 7, IP 7, , 7 7 7, = f = + / A. D = R B. = + / = / / + =0if =0or 7 -intercepts, -intercept = f 0 = 0 C. No smmetr D. + / = + / =, =, / / + no asmptote E. f =+ / = / + / / > 0 >0 or < 8,sof increases on, 8, 0, and

10 0 SECTION. CURVE SKETCHING decreases on 8, 0. F. Local maimum f 8 =, local minimum f 0 = 0 G. f = / < 0 0sof is CD on, 0 and 0,. No IP G. f / / = = + > 0 for all,sof is CU on,. 5/ 7. = f = A. D = { } = { } = { } =[, B. -intercept is. C. No smmetr D. =, no asmptote E. f = / / > 0 for all >,sof is increasing on,. F. No local maimum or minimum. G. f = / / + / / = +6 6 < 0 / since +6 < 0 negative discriminant as a quadratic in. So f is CD on,. =_ 0 = 9. = f =cos sin A. D = R B. =0 cos =sin = n +, n an integer -intercepts, -intercept = f 0 =. C. Periodic with period D. No asmptote E. f = sin cos =0 cos = sin =n + or n + 7. f > 0 cos < sin n + <<n + 7,sof is increasing on n +, n + 7 and decreasing on n, n +. F. Local maima f n =, local minima f n + =. G. f = cos +sin>0 sin >cos n +, n + 5,sof is CU on these intervals and CD on n, n +. IP n +, 0 Copright 0, Cengage Learning. All rights reserved = f = / A. D = { < } =, B. -intercept =0=-intercept C. f =f,sof is even. The curve is smmetric about the -ais. D. = =,so = ± + are VA. E. f = / = / Since > 0 and / > 0, f > 0 if 0 << and f < 0 if <<0,sof is increasing on 0, and decreasing on, 0. F. Local minimum f 0 = 0 0. = f = +cot, 0 << A. D =0,. B. No -intercept C. No smmetr D. +cot =, +cot =,so 0 + =0and = are VA. E. f = csc >0 when csc < sin > <<,so f is increasing on, and decreasing on 0, and,. F. f =+ is a local minimum, f = is a local maimum. G. f = csc csc cot =csc cot >0 cot >0 0 <<,sof is CU on 0,,CDon,. IP,

11 SECTION. CURVE SKETCHING Copright 0, Cengage Learning. All rights reserved.. = f =cos +sin A. D = R B. -intercept = f 0 = C. f =f, sothe curve is smmetric about the -ais. Periodic with period D. No asmptote E. f = sin +sin cos =sin cos > 0 sin <0 n <<n, so f is increasing on n, n and decreasing on n, n +. F. f n =is a local maimum. f n + = is a local minimum. G. f = cos +cos = cos cos =cos +cos > 0 cos < n +, n +,sof is CU on these intervals and CD on n, n +. IP n ±, 0. = f =sin +cos A. D = R Note: f is periodic with period, so in B G we consider onl [0, ]. B. -intercept = f 0 =, -intercepts occur where sin = cos tan = =, 7. C. f + =f,sof is periodic with period. D. No asmptote E. f =cos sin >0 when cos >sin 0 << or 5 <<, f < 0 << 5,sof is increasing on 0, and 5, and decreasing on, 5. F. f = is a local maimum, f 5 = is a local minimum. G. f = sin cos >0 << 7,so f is CU on, 7 and CD on 0, and 7,.IP, 0, 7, 0. 0 ¹ _. = f =sin + cos A. D = R Note: f is periodic with period, so in B G we consider onl [0, ]. B. -intercept =, -intercepts occur where sin = cos tan = =, 5. C. No smmetr other than periodicit. D. No asmptote E. f =cos sin =0when cos = tan = = 6 or 7 6. f > 0 0 << 6 or 7 6 <<, f < 0 6 << 7 6.Sof is increasing on 0, 6 and 7, and decreasing on, F. f 6 =is a local maimum, f 7 6 = is a local minimum. G. f = sin cos =0when tan = = or 5. f > 0 << 5,sof is CU on, 5 and CD on 0, and 5,.IP, 0, 5, 0. ¹ _6, 0 ¹ 5¹, _. = f =sin +sin A. D = R Note: f is periodic with period, soinb Gwe consider onl [0, ]. B. -intercept =0, -intercepts occur where sin +sin =0 sin =0 =0,,. C. No smmetr other than periodicit D. No asmptote E. f =cos+ sin cos =cos + sin > 0 cos >0 0 << or <<,sof is increasing on 0, and, and decreasing on,. F. f =is a local maimum, f = is a local minimum. G. f = sin +cos sin = sin + sin =+sin sin > 0 sin>0 sin < 0 < 6 or 5 <. Sof is CU on 0, 6 6, 5,,andCDon 6, IP, 5 6 and 5, 5 6 7¹ 6

12 SECTION. CURVE SKETCHING 5. f = f =6 + f =8 7. f = sin f = sin + cos f =sin + cos sin After finding suitable viewing rectangles b ensuring that we have located all of the -values where either f =0or f =0weestimatefromthegraphoff that f is increasing on., 0. and 0.7, and decreasing on,. and 0., 0.7,withalocalmaimumoff and minima of f..0 and f Weestimate from the graph of f that f is CU on, 0.5 and 0.5, and CD on 0.5, 0.5,andthatf has inflection points at about 0.5,. and 0.5, f = f = f = We estimate from the graph of f that f is increasing on 7, 5.,.,.,and5., 7 and decreasing on 5.,., and., 5.. Local maima: f 5.., f..9. Local minima: f..9, f 5... From the graph of f, we estimate that f is CU on 7, 6.8,.0,.5, 0,.5,and.0, 6.8,andCDon 6.8,.0,.5, 0,.5,.0,and6.8, 7. f has IP at 6.8,.,.0,.0,.5,., 0, 0,.5,.,.0,.0 and 6.8,.. 8. f =sin + sin f =cos +cos f = sin sin Copright 0, Cengage Learning. All rights reserved. After finding suitable viewing rectangles, we estimate from the graph of f that f is increasing on,.5 and.0, and decreasing on.5,.0. Maimum: f.5. Minimum: f 6. We estimate from the graph of f that f is CU on., and CD on,., and has an IP at.,. Note that f is periodic with period,soweconsideriton the interval [, ].Fromthegraphoff,weestimatethatf is increasing on.,.6, 0.8, 0.8,and.6,. and decreasing on,.,.6, 0.8, 0.8,.6 and.,. Maima: f.6 0.7, f , f Minima: f. 0.9, f , f Weestimatefromthe graph of f that f is CD on.0,., 0,. and.0, and CU on,.0,., 0 and.,. f has IP at, 0,.0, 0.8,., 0.8, 0, 0,., 0.8,.0, 0.8,and, 0.

4.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y ln x 2 x. y ln 1 x 2. y x 2 e x2. x 1 x 2. x 2 x 3. x 5 2. y x 3.

4.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y ln x 2 x. y ln 1 x 2. y x 2 e x2. x 1 x 2. x 2 x 3. x 5 2. y x 3. SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9.. 8 Use the guidelines of this section to sketch the curve. ln ln. 5. 6 8 7. ln tan. e.. 9. ln. e 5. 6.

Διαβάστε περισσότερα

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x SECTION.5 SUMMARY OF CURVE SKETCHING.5 SUMMARY OF CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. 8 Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7. cot..

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION Complete Solutions Manual for Calculus of a Single Variable, Volume Calculus ELEVENTH EDITION Cengage Learning. All rights reserved. No distribution allowed without epress authorization. Ron Larson The

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Principles of Mathematics 12 Answer Key, Contents 185

Principles of Mathematics 12 Answer Key, Contents 185 Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ 60 86 Lesson Solving Trigonometric Equations for 0 θ 60

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Θεώρηµα Μέσης Τιµής Σχήµα γραφικής παράστασης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Θεώρηµα Μέσης Τιµής Σχήµα γραφικής παράστασης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 8 η Διάλεξη Θεώρηµα Μέσης Τιµής Σχήµα γραφικής παράστασης 11 Οκτωβρίου 2016 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Finney R.L. / Weir M.D. / Giordano F.R. Πανεπιστημιακές

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers 2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x

Διαβάστε περισσότερα

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

SEN TRONIC AG 3-2 7 0 0 7 A 3 57 3 3 AB 93 :, C,! D 0 7 % 0 7 3 3 93 : 3 A 5 93 :

SEN TRONIC AG 3-2 7 0 0 7 A 3 57 3 3 AB 93 :, C,! D 0 7 % 0 7 3 3 93 : 3 A 5 93 : # 3-270 07A35733 AB93:,C,!D 07% 0733 93: 3A593:!"#$%% &%&''()*%'+,-. &%&''(/*%'+0. 1*23 '4# 54/%6%7%53 *323 %7 77# %%3#% 8908/"/*55 :1$;/ = 7?@ > 7= 7 %! "$!"#$%&#%'(%%)*#$%&#%'(%#++#,-."/-0-1222"/-0-1

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα