Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων."

Transcript

1 Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών συστατικών που δεν αλληλεπιδρούν, η κινητική θεωρία των αερίων ήταν μια από τις πρώτες θεωρίες που κατόρθωσε να ερμηνεύσει τις ιδιότητες των ιδανικών αερίων και, ειδικά, την καταστατική εξίσωση PV=NkT. Τίθεται, ωστόσο, η ερώτηση: θα μπορούσε μια μακροσκοπική θεωρία να ερμηνεύσει τη φαινομενολογία των ιδανικών αερίων; Θα προσπαθήσουμε να δώσουμε θετική απάντηση στην παραπάνω ερώτηση. Η βασική υπόθεση της κινητικής θεωρίας είναι ότι ένα ιδανικό αέριο αποτελείται από μόρια που κινούνται σε όλες τις δυνατές κατευθύνσεις με όλες τις δυνατές ενέργειες. Ας θεωρήσουμε ένα μόριο που κινείται σε μια συγκεκριμένη κατεύθυνση με μια συγκεκριμένη ενέργεια. Υπάρχει ένας τεράστιος αριθμός μορίων που κινούνται στην ίδια περίπου κατεύθυνση με την ίδια περίπου ενέργεια. Τα μόρια αυτά αποτελούν μια ροή. Τώρα ας κάνουμε μια αφαίρεση: Ας θεωρήσουμε μια ροή που δεν αποτελείται από σωματίδια. Ας θεωρήσουμε, δηλαδή, μια ροή ενός συνεχούς ρευστού. Δεν μας ενδιαφέρει αν αυτή η ροή αποτελείται από μικροσκοπικά μέρη. Απλά θα τη θεωρήσουμε συνεχή ροή. Η ροή αυτή μεταφέρει μάζα, ενέργεια και ορμή. Έστω ρ m η πυκνότητα μάζας της ροής, ρ Ε η πυκνότητα ενέργειας και η ταχύτητά της. Η ροή μάζας είναι: = (1) Έτσι ώστε, μέσω μιας επιφάνειας Α με μοναδιαίο κάθετο ο ρυθμός μεταφοράς μάζας είναι. Η ροή ενέργειας είναι: = (2) Έτσι ώστε, μέσω μιας επιφάνειας Α με μοναδιαίο κάθετο ο ρυθμός μεταφοράς ενέργειας είναι. και, αν η ροή περνά μέσω μιας επιφάνειας με μοναδιαίο κάθετο διάνυσμα το, η ροή ορμής μέσω αυτής της επιφάνειας είναι: = (3) Η σημασία της σχέσης (3) είναι η ακόλουθη: αν η επιφάνεια της οποίας το μοναδιαίο κάθετο είναι έχει εμβαδόν Α, μια ομοιόμορφη ροή μέσω αυτής με ταχύτητα μεταφέρει ορμή ανά μονάδα χρόνου. Ας θεωρήσουμε τώρα ένα αέριο μέσα σ ένα δοχείο και ας υποθέσουμε ότι υπάρχει ένας μεγάλος αριθμός τέτοιων ροών σ αυτό το αέριο. Η υπόθεση αυτή δε μας οδηγεί σε ένα ρέον αέριο, δεδομένου ότι η ολική ροή μάζας και ενέργειας είναι μηδέν. Ειδικά, θα υποθέσουμε ότι μέσω οποιουδήποτε σημείου στο αέριο περνάει άπειρος αριθμός ροών σε

2 κάθε κατεύθυνση του 3-Δ χώρου και κάθε τέτοια ροή αποτελείται από έναν άπειρο αριθμό ροών με ενέργεια από 0 έως άπειρο. Ας υποθέσουμε ότι το δοχείο έχει ένα τοίχωμα κάθετο στον z-άξονα. Ας υποθέσουμε επίσης μια υποθετική επιφάνεια στο εσωτερικό του δοχείου επίσης κάθετη στον z-άξονα. Ας υπολογίσουμε τώρα τη μεταφορά ορμής μέσω αυτών των επιφανειών. Ας σημειώσουμε, κατ αρχήν, ότι το μοναδιαίο κάθετο αυτών των επιφανειών είναι το μοναδιαίο διάνυσμα. Επομένως οι συνιστώσες του είναι: = (4) = (5) 2 = (6) Μία απ αυτές τις ροές, της οποίας η κατεύθυνση ορίζεται από ένα αζιμούθιο θ και μια πολική γωνία φ, παρουσιάζεται στην εικόνα 1. Εικ. 1. Μια ροή κατευθυνόμενη προς μια υποθετική επιφάνεια κάθετη στον άξονα z. Αξίζει να σημειώσουμε το ακόλουθο: δύο ροές με αντίθετα, έχουν το ίδιο πρόσημο στη z-συνιστώσα της ροής. Ας εξηγήσουμε γιατί θάπρεπε να είναι έτσι: Ας υποθέσουμε μια ροή μάζας μέσω μιας επιφάνειας A προς την +z κατεύθυνση. Καθώς αυτή η ροή φέρνει θετική ορμή, αυξάνει το περιεχόμενο σε ορμή του επάνω ημιχώρου. Ας υποθέσουμε μια ροή μάζας μέσω της επιφάνειας A προς την -z κατεύθυνση. Η ροή αυτή έχει αρνητική ορμή. Όμως η ορμή αυτή αφαιρείται από τον επάνω ημίχωρο. Το τελικό αποτέλεσμα είναι, πάλι, αύξηση της περιεχομένου ορμής του επάνω ημιχώρου. Η πυκνότητα ενέργειας μιας ροής είναι: = 1 2. Οι 3 συνιστώσες του μπορούν να γραφούν σε σφαιρικοπολικές συντεταγμένες ως εξής: = () (7) = () (8) = 2 Ας υποθέσουμε τώρα πως το ιδανικό αέριο αποτελείται από ένα σύστημα ροών με τις ακόλουθες ιδιότητες: (9) Η κάθε ροή δεν αλληλεπιδρά με τις υπόλοιπες (δηλ. δεν υπάρχει ιξώδες) Προς κάθε κατεύθυνση του χώρου υπάρχουν ροές με κάθε δυνατή πυκνότητα ενέργειας.

3 Οι ροές είναι ισοτροπικά κατανεμημένες γύρω από κάθε σημείο στον χώρο του ιδανικού αερίου. Σκοπός μας είναι να υπολογίσουμε την ολική ροή ορμής. Για το σκοπό αυτό θα ολοκληρώσουμε τις x-, y- και z- συνιστώσες του για την E, καθώς και τις και. Ας συμβολίσουμε με Ω και μια απειροστή στερεά γωνία και μια απειροστή ενεργειακή κλίμακα. Αν =,η απειροστή πυκνότητα ενέργειας για ένα ενεργειακό διάστημα de γύρω απ την ενέργεια E και μια απειροστή στερεά γωνία Ω γύρω απ την κατεύθυνση που ορίζουν οι και, θα είναι: = (, Ω)Ω (10) όπου η (, Ω) είναι η συνάρτηση κατανομής. Η συνάρτηση αυτή είναι κανονικοποιημένη, δηλαδή: (, Ω)Ω = 1 (11) Η συνάρτηση f είναι το γινόμενο μιας συνάρτησης της ενέργειας, της f(e), και μιας συνάρτησης της κατεύθυνσης. Περιμένουμε η συνάρτηση της κατεύθυνσης να είναι σταθερά λόγω ισοτροπίας. Επειδή πρέπει να είναι και κανονικοποιημένη θα είναι η σταθερά 1/4π. Η (10) επομένως παίρνει τη μορφή: = ()Ω/4 (12) όπου η f(e) υποτίθεται κανονικοποιημένη (ολοκληρώνεται στη μονάδα). Τα διαφορικά των,, παίρνουν, επομένως, τις μορφές: = ()(2) (13) = ()(2) (14) = 2() (15) στις οποίες αντικαταστήσαμε το για Ω και το E/V για. Ολοκληρώνοντας επί των,, τις τρεις εξισώσεις παίρνουμε: = 0 (16) = 0 (17) = 2 (18) 3 Οι τελευταίες εξισώσεις μας οδηγούν στην εξής διατύπωση: η καθαρή ροή ορμής μέσω μιας επιφάνειας στο εσωτερικό ενός ιδανικού αερίου είναι κάθετη στην επιφάνεια και η τιμή της είναι τα 2/3 της ενεργειακής πυκνότητας του αερίου. Αυτό το αποτέλεσμα είναι ανεξάρτητο του προσανατολισμού της επιφάνειας. Η κάθετη συνιστώσα του, έχει, επομένως, παρόμοιες ιδιότητες με την πίεση αφού η πίεση σε μια επιφάνεια στο εσωτερικό ενός ρευστού δεν εξαρτάται από τον προσανατολισμό της επιφάνειας. Όπως θα δείξουμε, πρόκειται όντως για την πίεση. Η αρχική μας υπόθεση ήταν πως το ιδανικό αέριο έχει ένα τοίχωμα κάθετο στον z- άξονα και ήδη θεωρήσαμε τη ροή ορμής μέσω μιας υποθετικής επιφάνειας στο εσωτερικό του αερίου και επίσης κάθετη στον z-άξονα. Ας εξετάσουμε τώρα τη ροή ορμής μέσω του τοιχώματος. Στην Εικόνα 2 δείχνουμε την υποθετική επιφάνεια με τα βέλη να δηλώνουν 2 ροές μέσω αυτής της επιφάνειας από τον κάτω και τον πάνω ημίχωρο αντίστοιχα. Επίσης δείχνουμε το τοίχωμα, μια ροή προς αυτό από τον κάτω ημιχώρο και την ανακλώμενη ροή από το τοίχωμα. Για το τοίχωμα δεν υπάρχουν βέβαια ροές προερχόμενες από τον επάνω

4 ημιχώρο. Ωστόσο, μπορούμε να θεωρήσουμε την ανακλώμενη ροή σαν τη συνέχιση μιας υποθετικής ροής από τον πάνω ημιχώρο. Αυτή η υποθετική ροή απεικονίζεται με το διακεκομμένο βέλος της εικόνας. Εικ. 2. Ροές προς την υποθετική επιφάνεια και ροές προς το τοίχωμα. Οι υποθετικές ροές έχουν το ίδιο αποτέλεσμα με τις πραγματικές ροές: συνεισφέρουν στην ολική μεταφορά ορμής. Επομένως, το σύστημα των ροών μέσω του τοιχώματος είναι το ίδιο με αυτό της υποθετικής επιφάνειας στο εσωτερικού του ιδανικού αερίου όσον αφορά τη ροή ορμής. Οι συνιστώσες της υποθετικής επιφάνειας, Εξ (16), (17), (18), είναι επίσης αυτές του τοιχώματος. Η ιδιότητα αυτή είναι παρόμοια μ αυτή της πίεσης, αφού η πίεση στο εσωτερικό του αερίου είναι ίση μ αυτή στο τοίχωμα. Τέλος ας δούμε πως συνδέεται η ροή ορμής με την πίεση. Ως γνωστόν, όταν ασκείται μια δύναμη σ ένα σώμα, ο δεύτερος Νόμος του Νεύτωνα είναι: = Θα ήταν χρήσιμο να μετατρέψουμε κάπως αυτή την εξίσωση. Γιατί αν, εκτός απ τη δύναμη που ασκείται στο σώμα, υπάρχει και ορμή που με κάποιο τρόπο ρέει προς αυτό, μπορούμε να θεωρήσουμε ότι: Ο ολικός ρυθμός μεταβολής της ορμής ενός σώματος είναι το άθροισμα της δύναμης που ασκείται στο σώμα και του ρυθμού μεταφοράς ορμής στο σώμα. Αν η ροή ορμής είναι, ο ρυθμός μεταφοράς ορμής είναι Α, όπου Α είναι η επιφάνεια μέσω της οποίας η ορμή ρέει προς το σώμα. Δηλαδή: = + (19) Κίνηση με σταθερή ορμή σημαίνει ισορροπία. Η συνθήκη ισορροπίας, επομένως, είναι: + = 0 (20) Αν είναι η ροή ορμής μέσω του τοιχώματος του ιδανικού αερίου και το τοίχωμα έχει εμβαδόν Α, είναι η δύναμη που πρέπει να ασκείται σ αυτό το τοίχωμα για να το κρατά σε ισορροπία. Ας σημειωθεί ότι αυτή η συνθήκη ισορροπίας δεν είναι σαν αυτές που έχουμε μάθει. Η ισορροπία δεν είναι το αποτέλεσμα δύο αντίθετων δυνάμεων. Ωστόσο, αν κάποιος προτιμάει να βλέπει την ισορροπία σαν αποτέλεσμα δράσης δύο αντίθετων δυνάμεων, τότε πρέπει να θεωρήσει τη μεταφορά ορμής σαν δύναμη που ασκείται στο τοίχωμα από το αέριο. Συμβολίζοντας αυτή τη δύναμη με : = (21)

5 Εξ ορισμού =. Επομένως =. Σύμφωνα με τις Εξ. (16), (17), (18) = =. Επομένως = δηλαδή συνδέσαμε την κάθετη στην επιφάνεια συνιστώσα του με την πίεση. Έτσι, σύμφωνα με την (18). = 2 3 (22) Δηλαδή: η πίεση σ ένα αέριο, θεωρούμενο σαν σύστημα ροών, είναι τα 2/3 της ενεργειακής του πυκνότητας. Αν χρησιμοποιήσουμε το Ε για να συμβολίσουμε την ολική ενέργεια του αερίου, έχουμε: = 2 3 (23) Το τελευταίο αποτέλεσμα συμφωνεί με την κινητική θεωρία των ιδανικών αερίων. Σύμφωνα μ αυτή τη θεωρία, για ένα ιδανικό αέριο αποτελούμενο από Ν άτομα η ολική μεταφορική του ενέργεια είναι: = 3 (24) 2 Αντικαθιστώντας το στην (23) παίρνουμε: = (25) που είναι η καταστατική εξίσωση των ιδανικών αερίων. Στην ανάπτυξη όμως που κάναμε παραπάνω, δεν χρησιμοποιήσαμε καθόλου την έννοια του μορίου και της θερμοκρασίας. Δεν θα μπορούσαμε, επομένως, να καταλήξουμε στην καταστατική εξίσωση των αερίων αφού αυτή η εξίσωση κάνει χρήση αυτών των εννοιών. Ωστόσο, η έννοια της θερμοκρασίας είχε εισαχθεί στη θερμοδυναμική έτσι ώστε να είναι ανάλογη με την ενέργεια του ιδανικού αερίου. Έτσι, γράφοντας στην (23) την ενέργεια στη μορφή: = 3 2 (26) παίρνουμε: = (27) όπου a είναι μια ποσότητα ανάλογη της μάζας του αερίου. Καταλήγουμε δηλαδή σε μια εξίσωση παρόμοια με την καταστατική εξίσωση. Το τελικό συμπέρασμά μας επομένως είναι: μπορούμε να καταλήξουμε στην καταστατική εξίσωση των ιδανικών αερίων, θεωρώντας το αέριο σαν ένα συνεχές σύστημα. Ένα από τα προφανή πλεονεκτήματα της μεθόδου που χρησιμοποιήσαμε είναι ότι μπορεί εύκολα να προσαρμοστεί και σε άλλα συστήματα, όπως πχ η φωτεινή ακτινοβολία στο εσωτερικό μιας κοιλότητας, εφόσον βέβαια η ακτινοβολία θεωρηθεί σαν ροή φωτονίων. Υπάρχουν όμως και άλλα πλεονεκτήματα, όπως: Ερμηνεύει την έννοια της πίεσης στο εσωτερικό του αερίου. Θεωρώντας μια στοιχειώδη επιφάνεια στο εσωτερικό του αερίου, η κάθετη στην επιφάνεια

6 συνιστώσα της ροής ορμής του αερίου μέσω της επιφάνειας αυτής, είναι η πίεση. Σύμφωνα με την κλασική αντιμετώπιση του προβλήματος, τα μόρια καθώς προσκρούουν στα τοιχώματα, ασκούν επάνω τους δύναμη. Αυτή, αντί να είναι μια συνεχής δύναμη, είναι μια σειρά μικροσκοπικών κτυπημάτων που το καθένα απ αυτά αντιστοιχεί σε μια άγνωστη δύναμη. Αντίθετα, εμείς αντιμετωπίζουμε το πρόβλημα με χρήση συνεχών μέσων και έτσι καταλήγουμε σε συνεχή δύναμη. Δεν υπάρχει λόγος να υιοθετήσουμε την ιδέα ότι μια συνεχής δύναμη είναι το όριο άγνωστων διακριτών δυνάμεων που συμβαίνουν με μεγάλη συχνότητα.

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

Μακροσκοπική ανάλυση ροής

Μακροσκοπική ανάλυση ροής Μακροσκοπική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Μακροσκοπική ανάλυση Όγκος ελέγχου και νόμοι της ρευστομηχανικής Θεώρημα μεταφοράς Εξίσωση συνέχειας Εξίσωση ορμής

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Διαφορική ανάλυση ροής

Διαφορική ανάλυση ροής Διαφορική ανάλυση ροής Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών ΜΕ και ΔΕ ροής: Διαφορές Οριακές και αρχικές συνθήκες Οριακές συνθήκες: Φυσική σημασία αλληλεπίδραση του όγκου ελέγχου με το περιβάλλον

Διαβάστε περισσότερα

Υδροδυναμικές Ροές και Ωστικά Κύματα

Υδροδυναμικές Ροές και Ωστικά Κύματα Υδροδυναμικές Ροές και Ωστικά Κύματα 7 7.1 Εισαγωγή Οι διαδικασίες υψηλών ενεργειών που περιγράφηκαν στα προηγούμενα κεφάλαια, καθώς και η επιτάχυνση σωματιδίων σε υψηλές ενέργειες η οποία θα περιγραφεί

Διαβάστε περισσότερα

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε.

L 1 L 2 L 3. y 1. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 Μαρούσι 06-0-0 ΘΕΜΑ ο (βαθμοί ) ΟΜΑΔΑ Α Μια οριζόντια ράβδος που έχει μάζα είναι στερεωμένη σε κατακόρυφο τοίχο. Να αποδείξετε

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES

ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ- ΕΞΙΣΩΣΕΙΣ NAVIER STOKES ΙΣΟΡΡΟΠΙΑ ΔΥΝΑΜΕΩΝ ΣΕ ΕΝΑΝ ΑΠΕΙΡΟΣΤΟ ΟΓΚΟ ΡΕΥΣΤΟΥ Στο κεφάλαιο αυτό θα εξετάσουμε την ισορροπία των δυνάμεων οι οποίες ασκούνται σε ένα τυχόν σωματίδιο ρευστού.

Διαβάστε περισσότερα

Ορμή. Απλούστερη περίπτωση: σύστημα δυο σωματίων, μάζας m 1 και m 2 σε αποστάσεις x 1 και x 2, αντίστοιχα, από την αρχή ενός συστήματος συντεταγμένων

Ορμή. Απλούστερη περίπτωση: σύστημα δυο σωματίων, μάζας m 1 και m 2 σε αποστάσεις x 1 και x 2, αντίστοιχα, από την αρχή ενός συστήματος συντεταγμένων Y Ορμή ΚΕΝΤΡΟ ΜΑΖΑΣ Όταν ένα σώμα περιστρέφεται ή ταλαντεύεται κατά την κίνησή του, υπάρχει ένα σημείο του σώματος που λέγεται Κέντρο Μάζας, το οποίο κινείται με τον ίδιο τρόπο με τον οποίο θα κινιόταν

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Θερμοδυναμική Ορισμοί. Έργο 3. Θερμότητα 4. Εσωτερική ενέργεια 5. Ο Πρώτος Θερμοδυναμικός Νόμος 6. Αντιστρεπτή

Διαβάστε περισσότερα

Πρόβλημα 4.9.

Πρόβλημα 4.9. Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάσαµε την κίνηση ενός υλικού σηµείου υπό την επίδραση µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού σηµείου έχοµε ένα στερεό σώµα.

Διαβάστε περισσότερα

ΑΚΤΙΝΟΒΟΛΙΑ. Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ. Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα

ΑΚΤΙΝΟΒΟΛΙΑ. Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ. Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα ΑΚΤΙΝΟΒΟΛΙΑ Μεταφορά ενέργειας (με φωτόνια ή ηλεκτρομαγνητικά κύματα) Εκπέμπεται από σώματα που έχουν θερμοκρασία Τ > 0 Κ Χαρακτηρίζεται από το μήκος κύματος η τη συχνότητα Φασματικές περιοχές στο σύστημα

Διαβάστε περισσότερα

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών Φυσική- Κεφάλαιο Μηχανικής των Ρευστών 1 Νοεµβρίου 2013 Το κεφάλαιο αυτό είναι επηρεασµένο από τους [3], [4], [2], [1]. Στερεά Υγρά Αέρια Καταστάσεις Υλης Βασική δοµική µονάδα: το Μόριο. καθορίζει χηµικές

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Εισαγωγή Στην Α Λυκείου είχαμε μελετήσει τη δύναμη προκειμένου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Στις ερωτήσεις Α1-Α4, να γράψετε στην κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. Στις ερωτήσεις Α1-Α4, να γράψετε στην κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Α & Β ΑΡΣΑΚΕΙΩΝ ΤΟΣΙΤΣΕΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ ΑΠΡΙΛΙΟΥ 07 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗΣ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Στις ερωτήσεις

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 1 9713934 & 1 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΑΕΡΙΩΝ Η εξίσωση που συνδέει την πίεση τον όγκο και την θερμοκρασία ενός ιδανικού αερίου που βρίσκεται σε κατάσταση ισορροπίας ονομάζεται καταστατική εξίσωση αερίου και δίνεται όπως

Διαβάστε περισσότερα

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KATANOMEΣ- ΚΑΤΑΝΟΜΗ MAXWELL ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα 1. Στατιστικές Συλλογές. Κατανομή Gibbs 3. Από την Κατανομή Gibbs στις Κατανομές Maxwell

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα.

Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΕΡΕΟΎ ΣΏΜΑΤΟΣ Τα σώματα τα έχουμε αντιμετωπίσει μέχρι τώρα σαν υλικά σημεία. Το υλικό σημείο δεν έχει διαστάσεις. Έχει μόνο μάζα. Ένα υλικό σημείο μπορεί να κάνει μόνο μεταφορική

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος)

Στην πράξη βρίσκουμε το Ν Α [το P (A)] όχι με παρατηρήσεις, αλλά με τη χρήση της λογικής (π.χ. ζάρι) ή της Φυσικής (π.χ. όγκος) Αν σε σύστημα που διατηρείται σε σταθερές συνθήκες κάνουμε Ν παρατηρήσεις και από αυτές στις Ν Α παρατηρήθηκε το γεγονός Α, τότε λέμε ότι η πιθανότητα να συμβεί αυτό το γεγονός δίνεται από τη σχέση: P

Διαβάστε περισσότερα

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε

Διαβάστε περισσότερα

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Κεφάλαιο 1 ο :ΝΟΜΟΙ ΑΕΡΙΩΝ ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Επιμέλεια ύλης: Γ.Φ.ΣΙΩΡΗΣ- Φυσικός - 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. 1. Να διατυπώσετε το νόμο του Robert Boyle και να κάνετε το αντίστοιχο

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1 2 2.1 Εισαγωγή ΘΕΡΜΟΔΥΝΑΜΙΚΗ Σύστημα: Ένα σύνολο σωματιδίων που τα ξεχωρίζουμε από τα υπόλοιπα για να τα μελετήσουμε ονομάζεται σύστημα. Οτιδήποτε δεν ανήκει στο σύστημα

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις

Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις Σχέσεις Σύνθεση Ισορροπία Ίσες Δυνάμεις Δυο δυνάμεις F 1 και F 2 είναι ίσες αν και μόνο αν έχουν την ίδια διεύθυνση, την ίδια φορά και το ίδιο μέτρο. F = F Στην περίπτωση

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΟΙ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ - ΤΡΙΒΗ 1ος νόμος του Νεύτωνα ή νόμος της αδράνειας της ύλης. «Σε κάθε σώμα στο οποίο δεν ενεργούν δυνάμεις ή αν ενεργούν έχουν συνισταμένη μηδέν δεν μεταβάλλεται η κινητική του κατάσταση.

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1 ΙΟΥΝΙΟΥ 017 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την

Διαβάστε περισσότερα

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ

d dx ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ α) Η παράγωγος μιας συνάρτησης = f() σε ένα σημείο 0 εκφράζει το ρυθμό μεταβολής της συνάρτησης (ή τον παράγωγο αριθμό) στο σημείο 0. β) Γραφικά, η παράγωγος της συνάρτησης στο σημείο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ Κινητική Θεωρία Αερίων Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Νόμος του Boyle: με τον όγκο. Η πίεση ορισμένης ποσότητας αερίου του οποίου η θερμοκρασία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 24 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 24 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 24 ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 10 Μηχανική των ρευστών ΦΥΣ102 1 Πυκνότητα Πυκνότητα είναι η μάζα ανά μονάδα όγκου,

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος.

Κρούσεις. 5. Σε μια ελαστική κρούση δεν διατηρείται α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος. ο ΘΕΜΑ Κρούσεις Α Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σε κάθε κρούση ισχύει α η

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Διατήρηση Ορμής Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός htt://hyiccore.wordre.co/ Βασικές Έννοιες Μέχρι τώρα έχουμε ασχοληθεί με την μελέτη ενός σώματος και μόνο. Πλέον

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23 Ροή (γενικά): Ηλεκτρική Ροή Η ποσότητα ενός μεγέθους που διέρχεται από μία επιφάνεια. Ε Ε dα dα θ Ε Ε θ Ηλεκτρική ροή dφ Ε μέσω στοιχειώδους επιφάνειας da (αφού da στοιχειώδης

Διαβάστε περισσότερα

Ακτίνες επιτρεπόμενων τροχιών (2.6)

Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας το r με r n, έχουμε: Ακτίνες επιτρεπόμενων τροχιών (2.6) Αντικαθιστώντας n=1, βρίσκουμε την τροχιά με τη μικρότερη ακτίνα n: Αντικαθιστώντας την τελευταία εξίσωση στη 2.6, παίρνουμε: Αν

Διαβάστε περισσότερα

1. Εισαγωγή στην Κινητική

1. Εισαγωγή στην Κινητική 1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται

Διαβάστε περισσότερα

Καλή Επιτυχία! ΘΕΜΑ A

Καλή Επιτυχία! ΘΕΜΑ A ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (ΟΜΑΔΑ Α) 016 Καλή Επιτυχία! ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

Από τι αποτελείται το Φως (1873)

Από τι αποτελείται το Φως (1873) Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός

Διαβάστε περισσότερα

Κίνηση στερεών σωμάτων - περιστροφική

Κίνηση στερεών σωμάτων - περιστροφική Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων

Διαβάστε περισσότερα

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ ΔΙΩΝΙΣΜ: Μ Θ Η Μ : www.paideia-agrinio.gr ΤΞΗΣ ΛΥΕΙΟΥ Φ Υ ΣΙ Η ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ :...... Σ Μ Η Μ :..... Η Μ Ε Ρ Ο Μ Η Ν Ι : 23 / 0 3 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Θ ΕΜ Σ Ω Ν : ΥΡΜΗ

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ΕΠΑΝΑΛΗΠΤΙΚΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ o ΕΠΑΝΑΛΗΠΤΙΚΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Θέμα ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ) Σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U A A N A B P Y T A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σωλήνας U Γ U= B Θ.Ι. B Κατακόρυφος ισοπαχής σωλήνας σχήματος U περιέχει ιδανικό υγρό, δηλαδή, υγρό που σε κάθε επιφάνεια ασκεί δυνάμεις κάθετες στην

Διαβάστε περισσότερα

2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι

2. Στο ηλιακό στέµµα η ϑερµότητα διαδίδεται µε αγωγιµότητα και η ϱοή ϑερµικής ενέργειας (heat flux)είναι 4.6 Ασκήσεις 51 4.6 Ασκήσεις 1. Μελετήστε τον στάσιµο ( t = 0) ισόθερµο άνεµο σε επίπεδο, χρησιµοποιώντας πολικές συντεταγµένες και (α) Βρείτε τη χαρακτηριστική απόσταση από τον αστέρα r στην οποία γίνεται

Διαβάστε περισσότερα

Σφαιρικές συντεταγμένες (r, θ, φ).

Σφαιρικές συντεταγμένες (r, θ, φ). T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ Αγαπητοί μαθητές Η λύση των ασκήσεων της Φυσικής είναι ένα εύκολο παιχνίδι για σας. Μπορείτε να λύσετε οποιαδήποτε άσκηση σας δοθεί αρκεί να ακολουθήσετε τα βήματα που αναφέρονται

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Σεπτέμβριος 004 Τμήμα Π Ιωάννου & Θ Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα

Διαβάστε περισσότερα

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ

ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ ΔΥΝΑΜΕΙΣ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΗ ΡΕΥΣΤΩΝ Α. Παϊπέτης 6 ο Εξάμηνο Μηχανικών Επιστήμης Υλικών Εισαγωγή Φύση και μορφή δυνάμεων/ ρυθμός παραμόρφωσης Σωματικές δυνάμεις: δυνάμεις σε όγκο ελέγχου που είναι πλήρης ρευστού

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ Από τη Φυσική της Α' Λυκείου Δεύτερος νόμος Νεύτωνα, και Αποδεικνύεται πειραματικά ότι: Η επιτάχυνση ενός σώματος (όταν αυτό θεωρείται

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

Υπόγεια ροή. Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού. Περιεχόμενα

Υπόγεια ροή. Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού. Περιεχόμενα Υπόγεια ροή Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού Περιεχόμενα 1) Εισαγωγή (κίνητρο μελέτης υπόγειας ροής) 2) Αναζήτηση απάντησης στην ερώτηση «προς τα πού κινείται το υπόγειο νερό» 1 Βασικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας

Διαβάστε περισσότερα

ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ

ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΛΟΚΑΙΡΙ 2015 2 ο ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ΩΡΕΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΘΕΜΑ Α Στις Ερωτήσεις πολλαπλής επιλογής 1 έως 4 να γράψετε

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Κεφάλαιο 3 ο. Χημική Κινητική. Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών. 35 panagiotisathanasopoulos.gr

Κεφάλαιο 3 ο. Χημική Κινητική. Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών. 35 panagiotisathanasopoulos.gr . Κεφάλαιο 3 ο Χημική Κινητική Χημικός, 35 Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 36 Γενικα για τη χημικη κινητικη και τη χημικη Τι μελετά η Χημική Κινητική; Πως αντλεί τα δεδομένα

Διαβάστε περισσότερα

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2

β. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2 Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος

Διαβάστε περισσότερα