Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών"

Transcript

1 Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front panel). Σχεδίαση του front panel για ένα πρόγραμμα Συλλογής & Επεξεργασίας Μετρήσεων. Δομικό Διάγραμμα (block diagram). Δομές προγραμματισμού. Η δομή Επανάληψης. Συνάρτηση δημιουργίας τυχαίων αριθμών.

2 Μέρος Α : Σκοπός και Περιγραφή της Άσκησης 9.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΑΣΚΗΣΗΣ Βασικός σκοπός αυτής της άσκησης είναι να δούμε πιο αναλυτικά το πρόγραμμα της ανάλυσης Fourier, εξετάζοντας βήμα βήμα πως μπορούμε να μετασχηματίσουμε τους μαθηματικούς τύπους της ανάλυσης Fourier, σ ένα πρόγραμμα που εφαρμόζει αυτούς τους τύπους, για να αναλύει ηχητικά σήματα. Η επιδίωξη είναι πως μέσα από την υλοποίηση των μαθηματικών τύπων της ανάλυσης Fourier, σ ένα πρόγραμμα, την ανάπτυξη δηλαδή ενός προγράμματος που θα εφαρμόζει τους μαθηματικούς τύπους, για να αναλύει και να επεξεργάζεται ηχητικά σήματα, θα μπορέσουμε: Να καταλάβουμε καλύτερα αυτούς τους τύπους, τη μαθηματική μορφή, αλλά και τη λειτουργία αυτών των τύπων και ακόμα, Να καταλάβουμε βασικές δομές της γλώσσας προγραμματισμού του LabVIEW και τη διαδικασία ανάπτυξης ενός προγράμματος, μέσα από την ανάπτύξη του προγράμματος, για μία πρακτική και σύνθετη εφαρμογή. Αφού καταλάβουμε καλύτερα το πρόγραμμα της ανάλυσης Fourier, τότε εύκολα, θα μπορέσουμε να επεκτείνουμε αυτό το πρόγραμμα, ώστε να μπορεί να εκτελεί και την αντίστροφη λειτουργία. Από τη ανάλυση Fourier και τη παράσταση ενός σήματος ηχητικού ή εικόνας στο πεδίο της συχνότητας, να μπορεί να αναπαράγει αυτό το σήμα, εκτελώντας τον αντίστροφο μετασχηματισμό Fourier. 9.2 Συνοπτική Ανάπτυξη της Θεωρίας (Ανάλυσης Fourier) Η βασική ιδέα της ανάλυσης Fourier είναι πως κάθε ηχητικό σήμα μπορεί να γραφεί σαν άθροισμα ημιτόνων και συνημιτόνων x(t) = A 0 + A 1 cos (2π f 0 t) + A 2 cos (2π 2 f 0 t) + A 3 cos(2π 3 f 0 t) + + B 1 sin (2π f 0 t) + B 2 sin (2π 2 f 0 t) + B 3 sin (2π 3 f 0 t) + Σκοπός της ανάλυσης Fourier είναι να υπολογίσουμε τη συχνότητα f k = k f 0 κάθε ημιτόνου ή συνημιτόνου στη παραπάνω εξίσωση και τον αντίστοιχο συντελεστή. Αυτή είναι η λειτουργία του προγράμματος που κάνει την ανάλυση Fourier και που εξετάζουμε παρακάτω.

3 9.3 Σχεδιάζοντας το Front Panel του Προγράμματος για την Ανάλυση Fourier Όπως με κάθε πρόγραμμα, ξεκινάμε την ανάπτυξη του προγράμματος αυτής της ε- φαρμογής, από το front panel. Γενικά, πριν ακόμα δούμε αναλυτικά κάθε ένα αντικείμενο στο front panel του προγράμματος, ένα πρόγραμμα που κάνει την ανάλυση Fourier ηχητικών σημάτων, θα πρέπει απαραίτητα να περιέχει αντικείμενα εισόδου και αντικείμενα εξόδου, δηλαδή αντικείμενα που αντίστοιχα, θα επιτρέπουν στο πρόγραμμα να διαβάζει τα δεδομένα που χρειάζεται για τη λειτουργία του και αντικείμενα μέσα από τα οποία θα εμφανίζει τα αποτελέσματα της επεξεργασίας του. Ένα πρόγραμμα που επεξεργάζεται ηχητικά σήματα, θα μπορούσε να διαβάζει τις τιμές αυτών των σημάτων, απευθείας από το μικρόφωνο, όπου ηχογραφούνται. Ε- ναλλακτικά, ένα ηχητικό σήμα, θα μπορούσε πρώτα, να αποθηκεύεται σ ένα αρχείο ήχου και μετά, το πρόγραμμα να διαβάζει το σήμα, από το αρχείο ήχου. Αυτή είναι η διαδικασία που ακολουθούμε στο πρόγραμμα αυτής της άσκησης. Επειδή αποθηκεύουμε κάθε ηχητικό σήμα που ηχογραφούμε, σ ένα αρχείο ήχου, το πρόγραμμα που επεξεργάζεται αυτά τα σήματα, θα πρέπει να μπορεί να διαβάζει τις τιμές τους, από τα αντίστοιχα αρχεία ήχου. Έτσι, το front panel ενός προγράμματος που κάνει την ανάλυση Fourier ηχητικών σημάτων, θα πρέπει να περιέχει: Ένα αντικείμενο ένα εικονικό όργανο μέσα από το οποίο θα μπορούμε να προσδιορίζουμε το όνομα και τη διεύθυνση στο σύστημα αρχείων του υπολογιστή, του αρχείου ήχου, όπου έχουμε αποθηκεύσει το ηχητικό σήμα που το πρόγραμμα θα πρέπει να αναλύσει. Το front panel του προγράμματος θα πρέπει ακόμα να περιέχει: Δύο οθόνες γραφικών, για να παριστάνει το ηχητικό σήμα στο πεδίο του χρόνου, δηλαδή τη τάση που παράγεται στην έξοδο του μικροφώνου, από την ηχογράφηση του σήματος και ακόμα μία οθόνη, για να παριστάνει το αποτέλεσμα από την ανάλυση Fourier του σήματος που θα είναι η παράσταση του σήματος, στο πεδίο της συχνότητας. Παρακάτω, περιγράφονται αναλυτικά τα βήματα, για να δημιουργήσουμε αυτά τα εικονικά όργανα, στο front panel του προγράμματος: Στo front panel, από τη κατηγορία Text Controls, επιλέγουμε το File Path Ctrl : Text Controls File Path Ctrl

4 Εικόνα 1: Το front panel του προγράμματος της ανάλυσης Fourier.

5 Θα χρησιμοποιήσουμε το File Path Ctrl, για να προσδιορίσουμε το όνομα και τη θέση του αρχείου που περιέχει το ηχητικό σήμα που θα αναλύσουμε. Πατώντας στο εικονίδιο του File Path, ανοίγει ο οδηγός εξερεύνησης των Windows, για να προσδιορίσουμε το όνομα και τη θέση του αρχείου που περιέχει το σήμα x(t) που θα αναλύσουμε, μέσα από τον οδηγό εξερεύνησης Στo front panel, από τη κατηγορία Graph Indicators, επιλέγουμε το Waveform Graph: Graph Indicators Waveform Graph Στο Waveform Graph θα παριστάνουμε το σήμα x(t), στο πεδίο του χρόνου Πάλι στo front panel, από τη κατηγορία Graph Indicators, επιλέγουμε το ΧΥ Graph: Graph Indicators XY Graph Θα χρησιμοποιήσουμε το XY Graph, για τη φασματική παράσταση του σήματος x(t). Στο XY Graph δηλαδή, θα παριστάνουμε το αποτέλεσμα της α- νάλυσης Fourier, δηλαδή το σήμα x(t) στο πεδίο της συχνότητας Δημιουργούμε μία ένδειξη, για να παριστάνουμε το διάστημα Δτ της δειγματοληψίας, δηλαδή το διάστημα Δt, ανάμεσα σε διαδοχικά δείγματα του σήματος x(t). Έτσι, από τη κατηγορία Numeric Indicators, επιλέγουμε την ένδειξη Num Ind (Numeric Indicator): Numeric Indicators Num Ind Κάνουμε διπλό κλικ στο όνομα της ένδειξης που εξορισμού, είναι Numeric και αλλάζουμε την ονομασία του, σε Δt (Εικόνα 1) Δημιουργούμε μία ακόμα ένδειξη, για να παριστάνουμε το πλήθος Ν των δειγμάτων του σήματος x(t). Πάλι, από τη κατηγορία Numeric Indicators, επιλέγουμε την ένδειξη Num Ind (Numeric Indicator): Numeric Indicators Num Ind

6 Κάνουμε διπλό κλικ στο όνομα της ένδειξης που εξορισμού, είναι Numeric και αλλάζουμε την ονομασία του, σε Ν (Εικόνα 1). 9.4 Δημιουργία του Δομικού Διαγράμματος Ολόκληρο το πρόγραμμα της ανάλυσης Fourier παριστάνεται στην Εικόνα 2. Το πρόγραμμα αναλύεται σε επιμέρους τμήματα επιμέρους λειτουργίες, όπως η α- νάγνωση των τιμών του ηχητικού σήματος, από το αρχείο ήχου, ο υπολογισμό; των συντελεστών Α k και B k των συνημιτόνων και ημιτόνων, αντίστοιχα, ο υπολογισμός της συχνότητας δειγματοληψίας, της θεμελιώδους συχνότητας f 0 και των άλλων αρμονικών. Παρακάτω, περιγράφεται η ανάπτυξη του προγράμματος,, βήμα βήμα, μέσα τις εντολές, για κάθε επιμέρους ενότητα λειτουργία του προγράμματος Από τη κατηγορία Programming Graphics & Sound Sound Files, επιλέγουμε τη συνάρτηση Simple Read: Programming Graphics & Sound Sound Files Simple Read Συνδέουμε την έξοδο του εικονιδίου του File Path, στην είσοδο Path του μπλοκ Simple Read. Έτσι, η εντολή Simple Read θα διαβάσει τις τιμές του σήματος x(t), από το αρχείο όπου έχουμε αποθηκεύσει αυτές τις τιμές και που τη θέση αυτού του αρχείου στον υπολογιστή, προσδιορίζουμε μέσα από το File Path Από τη κατηγορία Programming Array, επιλέγουμε το μπλοκ Programming Array Index Array Συνδέουμε την έξοδο data της Simple Read, στην είσοδο array της Index Array. Στην είσοδο index του μπλοκ Index Array, συνδέουμε τη σταθερά 0 (Εικόνα 3). Η εντολή Index Array θα αποσπάσει και θα δώσει στην έξοδό της το ένα το αριστερό από τα δύο κανάλια τιμών, δηλαδή τη πρώτη στήλη τιμών (στήλη 0), στη παράσταση του ηχητικού σήματος, στο αρχείο ήχου. Δύο Κανάλια Τιμών Ακούμε / αντιλαμβανόμαστε κάθε ήχο, μέσα από τα ηχητικά κύματα σε κάθε ένα από τα δύο αυτιά μας. Όπως με οπτικά σήματα / τις εικόνες που γίνονται αντιληπτές ξεχωριστά, από κάθε ένα από τα δύο μάτια μας, έτσι και κάθε

7 Εικόνα 2: Ολόκληρο το πρόγραμμα της ανάλυσης Fourier και του αντίστροφου μετασχηματισμού Fourier.

8 ήχος γίνεται αντιληπτός ξεχωριστά από κάθε μας αυτί και το ακουστικό σύστημα αναλύει και επεξεργάζεται παράλληλα και ανεξάρτητα το ένα από το άλλο, τα ακουστικά σήματα που φτάνουν ταυτόχρονα στα δύο αυτιά μας. Μετά, τα δύο ακουστικά σήματα, από το αριστερό και το δεξιό αυτί συνδυάζονται ώστε το ακουστικό σύστημα να εντοπίσει τη πηγή του ήχου. Σε αναλογία με το ακουστικό μας σύστημα που αντιλαμβάνεται και αναγνωρίζει κάθε ήχο, αναλύοντας παράλληλα τη παράσταση αυτού του ήχου στο αριστερό και στο δεξιό μας αυτί, έτσι και κάθε ηχητικό σήμα στον υπολογιστή, παριστάνεται από δύο κανάλια τιμών. Ακόμα και αν ένα ηχητικό σήμα ηχογραφείται από ένα μικρόφωνο, στον υπολογιστή θα αποθηκεύεται σαν δύο κανάλια τιμών, δηλαδή σαν δύο στήλες τιμών. Κάθε κανάλι, κάθε στήλη τιμών δηλαδή στην αποθήκευση ενός ηχητικού σήματος σ ένα αρχείο ήχου θα περιέχει τις ίδιες ακριβώς τιμές: τiς τιμές τάσης του ηχητικού σήματος σε διακριτές χρονικές στιγμές t 0, t 0 + Δt, t 0 + 2Δt, t 0 + 3Δt, t 0 + 4Δt, κοκ (Εικόνα 4). Αφού κάθε κανάλι, κάθε μία από τις δύο στήλες τιμών στη παράσταση ενός ηχητικού σήματος, σ ένα αρχείο ήχου περιέχει τις ίδιες ακριβώς τιμές τάσης, για την ανάλυση του σήματος, χρειαζόμαστε τη μία μόνον από τις δύο στήλες, έστω την αριστερή (Εικόνα 4). Αυτή ακριβώς είναι η λειτουργία της εντολής Index Array που αποσπά το ένα από τα δύο κανάλια τιμών, στη παράσταση του ηχητικού σήματος, σ ένα αρχείο ήχου Από τη κατηγορία Programming Waveform, επιλέγουμε τη συνάρτηση Get Waveform Components: Programming Waveform Get Waveform Components Η συνάρτηση Get Waveform Components αναλύει μία κυματομορφή στις X και Υ τιμές αυτής της κυματομορφής. Αυτή η συνάρτηση δηλαδή, δίνει: Τις Y τιμές της κυματομορφής, δηλαδή τις τιμές x(t 0 ), x(t 0 + Δt), x(t 0 + 2Δt), x(t 0 + 3Δt), x(t 0 + 4Δt), του ηχητικού σήματος και Το σταθερό διάστημα Δt, ανάμεσα σε δύο διαδοχικές τιμές x(t 0 + nδt) και x(t 0 + (n+1)δt), της κυματομορφής.

9 Εικόνα 3: Τα πρώτα βήματα, στο δομικό διάγραμμα του προγράμματος, όπου διαβάζουμε το ηχητικό σήμα από ένα αρχείο ήχου και παίρνουμε το ένα από τα δύο κανάλια τιμών του σήματος.

10 Εικόνα 4: Κάθε ηχητικό σήμα παριστάνεται σ ένα αρχείο ήχου, από δύο κανάλια δύο στήλες τιμών. Η εντολή Index Array, στο πρόγραμμα λειτουργεί ώστε να αποσπάσει το ένα από τα δύο κανάλια τιμών, στη παράσταση του σήματος. Σ αυτό το στάδιο, έχουμε πάρει τις τιμές x(t 0 ), x(t 0 + Δt), x(t 0 + 2Δt), x(t 0 + 3Δt), x(t 0 + 4Δt), του ηχητικού σήματος από την έξοδο Υ του μπλοκ Get Waveform Components, καθώς το διάστημα Δt α- νάμεσα σε διαδοχικά δείγματα τιμών του σήματος. Απομένει να κάνουμε την ανάλυση Fourier στις τιμές του σήματος, παρακάτω Από τη κατηγορία Signal processing Transforms, επιλέγουμε το μετασχηματισμό Fourier FFT (Fast Fourier Transform): Signal Processing Transforms FFT

11 Εικόνα 5: Χρησιμοποιώντας τη συνάρτηση FFT, για να υπολογίσουμε τους συντελεστές Ακ και Βκ των συνημιτόνων και ημιτόνων, στην ανάλυση Fourier υνδέουμε την έξοδο Υ του μπλοκ Get Waveform, στην είσοδο του FFT. H συνάρτηση FFT υπολογίζει τα πλάτη, δηλαδή τους συντελεστές A k των συνημιτόνων και B k των ημιτόνων, στη παράσταση του σήματος x(t), σαν άθροισμα ημιτόνων και συνημιτόνων. 11

12 9.4.7 Η συνάρτηση FFT υπολογίζει τους συντελεστές A k και B k, σαν τα πραγματικά και τα φανταστικά μέρη, αντίστοιχα μιγαδικών αριθμών: C k = A k + i B k Γι αυτό, χρειάζεται να χωρίσουμε το πραγματικό από το φανταστικό μέρος κάθε μιγαδικού συντελεστή C k Από τη κατηγορία Programming Numeric Complex, επιλέγουμε τη συνάρτηση Complex to Real / Im: Programming Numeric Complex Complex to Real / Im Πριν ακόμα συνδέσουμε την έξοδο του μπλοκ FFT στην είσοδο της Complex to Real / Im, διαιρούμε την έξοδο της FFT, δηλαδή κάθε μιγαδικό συντελεστή C k, όπου C k = A k + i B k δια του πλήθους Ν των δειγμάτων του σήματος x(t) Αφού διαιρέσουμε κάθε μιγαδικό συντελεστή C k που υπολογίζει η FFT δια Ν, συνδέουμε την έξοδο της διαίρεσης στην είσοδο του μπλοκ Complex to Real / Im. Η συνάρτηση Complex to Real / Im θα αποσπάσει το πραγματικό μέρος Α k από το φανταστικό B k, κάθε μιγαδικού συντελεστή C k = A k + i B k, δίνοντας τους συνετλεστές A k των συνημιτόνων και τους συντελεστές B k των ημιτόνων, στη παράσταση του σήματος x(t), σαν άθροισμα ημιτόνων και συνημιτόνων. Απομένει να υπολογίσουμε τις συχνότητες f k των συνημιτόνων και ημιτόνων που αντιστοιχούν στους συντελεστές A k και B k, για ολοκληρώσουμε την ανάλυση Fourier και να παραστήσουμε το σήμα x(t) στο πεδίο της συχνότητας, δηλαδή σαν συνάρτηση των συχνοτήτων f k από τις οποίες αποτελείται. Υπολογισμός των Συχνοτήτων Αφού υπολογίσουμε τους συντελεστές A k των συνημιτόνων και B k των ημιτόνων, υπολογίζουμε τις αντίστοιχες συχνότητες f k = k f 0 των ημιτόνων και συνημιτόνων στην ανάλυση Fourier του σήματος x(t), σαν άθροισμα συνημιτόνων και ημιτόνων,. 12

13 Η βασική ιδέα είναι πως η θεμελιώδης συχνότητα f 0 είναι το αντίστροφο της χρονικής διάρκειας του σήματος. Αν δηλαδή, το σήμα αποτελείται από Ν δείγματα που παίρνονται κάθε Δt, τότε η συνολική διάρκεια του σήματος είναι: Χρονική Διάρκεια του Σήματος = Ν Δt Άρα, η θεμελιώδης συχνότητα f 0 είναι: f 0 = 1 / N Δt Επομένως οι συχνότητες f k των συμημιτόνων και ημιτόνων, στην ανάλυση Fourier του σήματος x(t) είναι: fk = k f0 = k ( 1 / N Δt ) = k (fsampling / N) = k Δf για k = - Ν/2 + 1, -Ν/2 + 2,, -1, 0, 1, 2,, Ν/2. Γιατί αυτό? Γιατί ενώ η θεμελιώδης συχνότητα η μικρότερη δηλαδή συχνότητα στην ανάλυση Fourier του σήματος x(t) είναι 1 / N Δt, η μεγαλύτερη συχνότητα που μπορούμε νε εντοπίσουμε με περίοδο δειγματοληψίας t είναι 1 / 2 Δt Άρα, οι συχνότητες των συνημιτόνων και ημιτόνων, στην ανάλυση Fourier είναι: 1/ N Δt, 2 / N Δt, 3 / N Δt, N/2 / N Δt = 1 / 2 Δt Επειδή όμως, sinx = (e ix e -ix ) / 2i cosx = (e ix + e -ix ) / 2 επειδή δηλαδή κάθε ημίτονο (και συνημίτονο) στη μιγαδική μορφή, γράφεται σαν άθροισμα δύο όρων. Έναν όρο με πλάτος Α k / 2 και συχνότητα f k και έναν όρο με πλάτος Α k / 2 και συχνότητα f k. Οι συχνότητες 0, f 0, 2 f 0, αποθηκεύονται στους πρώτους Ν/2 όρους ενός πίνακα. Οι συχνότητες f N/2 + 1, -f N/2 + 2,, -f 1 αποθηκεύονται στα στοιχεία Ν/2 +1,, Ν-1 του πίνακα. Αυτή είναι η λειτουργία της εντολής case. 13

14 Πριν όμως υπολογίσουμε τις αρμονικές f k = k f 0, της θεμελιώδους συχνότητας f 0, για κ = 0, 1, 2,, Ν, χρειάζεται να υπολογίσουμε τη συχνότητα δειγματοληψίας f sampling, αλλά και τη θεμελιώδη συχνότητα f Από τη περίοδο Δt της δειγματοληψίας, υπολογίζουμε τη συχνότητα της δειγματοληψίας f sampling (Εικόνα 5) Από τη κατηγορία Programming Array, επιλέγουμε την εντολή Array Size, Programming Array Array Size για να υπολογίσουμε το πλήθος Ν των δειγμάτων του ηχητικού σήματος (Εικόνα 5) Διαιρούμε τη συχνότητα της δειγματοληψίας f sampling δια του πλήθους N των δειγμάτων, για να υπολογίσουμε τη θεμελιώδη συχνότητα f 0 : Τώρα που έχουμε υπολογίσει τη θεμελιώδη συχνότητα f 0, μπορούμε να υπολογίσουμε όλες τις αρμονικές f k = k f 0, της θεμελιώδους συχνότητας f 0, για κ = 0, 1, 2,, Ν. Γι αυτό, χρησιμοποιούμε την εντολή επανάληψης For, για να δημιουργήσουμε τις συχνότητες f k = k f 0, της θεμελιώδους συχνότητας f 0, για κ = 0, 1, 2,, Ν (Εικόνα 6) Από τη κατηγορία Programming Structures, επιλέγουμε την εντολή Case: Programming Structures Case H εντολή Case αποθηκεύει τις αρμονικές f k = k f 0, της θεμελιώδους συχνότητας f 0, για κ = 0, 1, 2,, Ν/2, στα πρώτα Ν/2 στοιχεία ενός πίνακα (περίπτωση true) (Εικόνα 6). 14

15 Εικόνα 6: O υπολογισμός των αρμονικών f 0, 2 f 0, 3 f 0, 4 f 0,, f 0 (N/2) - Περίπτωση True.. 15

16 Εικόνα 7: O υπολογισμός των αρνητικών αρμονικών f N/2 + 1, -f N/2 + 2,, -f 1 - Περίπτωση False.. 16

17 Η μεγαλύτερη συχνότητα που μπορούμε να εντοπίσουμε με περίοδο δειγματοληψίας Δt είναι: Γι αυτό, η εντολή Case αποθηκεύει τις αρμονικές f 0, 2 f 0, 3 f 0, 4 f 0, μέχρι τη μέγιστη αρμονική fmax = f 0 (N/2), στα πρώτα Ν/2 στοιχεία ενός πίνακα Αφού υπολογίσει τις αρμονικές f 0, 2 f 0, 3 f 0, 4 f 0,, f 0 (N/2), η εντολή Case αποθηκεύει τις αρνητικές αυτών των συχνοτήτων f N/2 + 1, -f N/2 + 2,, -f 1, στα στοιχεία Ν/2 +1,, Ν-1 του πίνακα (περίπτωση false) (Εικόνα 7) Συνδυάζουμε τιμές συχνότητας και πλάτους, χρησιμοποιώντας την εντολή Bundle (Εικόνα 8): Programming Cluster Bundle Παριστάνουμε το πλάτος σα συνάρτηση της συχνότητας, στην οθόνη XY Graph (Εικόνα 8) Μπορούμε τώρα να υπολογίσουμε τον αντίστροφο μετασχηματισμό Fourier και να δημιουργήσουμε το ηχητικό σήμα, δηλαδή τα δείγματα x(t) του σήματος, από τις συχνότητες f k = k f 0 και τους συντελεστές A k των συνημιτόνων και B k των ημιτόνων, στην ανάλυση Fourier του σήματος, χρησιμοποιώντας τον αντίστροφο μετασχηματισμό Fourier. Από τη κατηγορία Signal Processing Transforms, επιλέγουμε τη συνάρτηση Inverse FFT (Εικόνα 9): Signal Processing Transforms Inverse FFT Από τη κατηγορία Programming Waveform, επιλέγουμε τη συνάρτηση Build Waveform: Programming Waveform Build Waveform Συνδέουμε την έξοδο του Inverse FFT στην είσοδο του Build Waveform. 17

18 Εικόνα 8: Oι εντολές για τη παράσταση του σήματος, στο πεδίο της συχνότητας.. Εικόνα 9: Αντίστροφος μετασχηματισμός Fourier.. 18

19 Από τη κατηγορία Programming Graphics & Sound Sound Output, επιλέγουμε τη συνάρτηση Play Waveform: Programming Graphics & Sound Sound Output Play Waveform Συνδέουμε την έξοδο του Build Waveform στην είσοδο του Play Waveform.. 19

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

ΦΙΛΤΡΑ KALMAN ΕΞΑΜΑΗΝΙΑΙΑ Β - ΕΠΕΞΗΓΗΣΕΙΣ

ΦΙΛΤΡΑ KALMAN ΕΞΑΜΑΗΝΙΑΙΑ Β - ΕΠΕΞΗΓΗΣΕΙΣ ΕΞΑΜΑΗΝΙΑΙΑ Β - ΕΠΕΞΗΓΗΣΕΙΣ Μέρος Α : Ένα Απλό Μοντέλο Πρόβλεψης Σ αυτή την ενότητα, θα δημιουργήσουμε το απλό μοντέλο πρόβλεψης, για τη παραγωγή ενέργειας από το φωτοβολταικό πάρκο. Μέσα από αυτή την

Διαβάστε περισσότερα

Μέτρηση Θερμοκρασίας με τον αισθητήρα TMP36. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων. Βασική δομή ενός προγράμματος στο LabVIEW.

Μέτρηση Θερμοκρασίας με τον αισθητήρα TMP36. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων. Βασική δομή ενός προγράμματος στο LabVIEW. Σκοπός Μάθημα 2 Δραστηριότητα 1 Μέτρηση Θερμοκρασίας με τον αισθητήρα TMP36. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front panel). Σχεδίαση

Διαβάστε περισσότερα

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών Δημήτρης Κουτσογιάννης Τομέας Υδατικών Πόρων και Περιβάλλοντος, Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα Επανέκδοση

Διαβάστε περισσότερα

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις

Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας. Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Ο Παλμογράφος στη Διδασκαλία της Τριγωνομετρίας Εφαρμογές της Τριγωνομετρίας σε πραγματικά προβλήματα και ενδιαφέρουσες επεκτάσεις Περίληψη Τριγωνομετρικές Συναρτήσεις Κυματική Παλμογράφος STEM Εφαρμογές

Διαβάστε περισσότερα

Μέρος 2. Εισαγωγή στο Lab VIEW και τα Εικονικά Όργανα

Μέρος 2. Εισαγωγή στο Lab VIEW και τα Εικονικά Όργανα Μέρος 2 Εισαγωγή στο Lab VIEW και τα Εικονικά Όργανα Πρόλογος Η «Εισαγωγή στο LabVIEW και τα Εικονικά Όργανα» βασίζεται στο βιβλίο του Dan Nesculescu, Mechatronics, Prentice Hall Μετάφραση στα ελληνικά

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

Σκοπός. Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές. Συλλογή & Επεξεργασία Δεδομένων. Πρόγραμμα. Εντολές Επεξεργασίας Δεδομένων

Σκοπός. Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές. Συλλογή & Επεξεργασία Δεδομένων. Πρόγραμμα. Εντολές Επεξεργασίας Δεδομένων Σκοπός Συλλογή & Επεξεργασία Δεδομένων Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές Ελέγχου. Πρόγραμμα Εντολές Επεξεργασίας Δεδομένων Εντολή Εκχώρησης Εντολές Ελέγχου Λογική συνθήκη Εντολή

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5. Ρυθμίζοντας τη Φορά Περιστροφής. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5. Ρυθμίζοντας τη Φορά Περιστροφής. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 5 Ρυθμίζοντας τη Φορά Περιστροφής DC Κινητήρα. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

Περιβάλλον Ανάπτυξης LabVIEW

Περιβάλλον Ανάπτυξης LabVIEW Εφαρμογές Συστημάτων Συλλογής Δεδομένων Πρόλογος 13 Συμβολισμοί & Συμβάσεις 15 Λίστα Εικόνων 16 Κεφάλαιο 1 Περιβάλλον Ανάπτυξης LabVIEW Εισαγωγή... 31 1.1 Σκοπός και Χρήση του LabVIEW... 32 1.2 Δημιουργία

Διαβάστε περισσότερα

Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας

Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας Εισαγωγή στο Προγραμματισμό με τη PASCAL & τη Matlab Εξαμηνιαία Εργασία 2014 Μετατρέποντας AC σε DC Τάση Μέρος Β : Πορεία Εργασίας. Συναρτήσεις στη PASCAL Σκοπός Προσομοίωση ενός Συστήματος / Κυκλώματος,

Διαβάστε περισσότερα

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ

Διαβάστε περισσότερα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα

1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ 1. Κατά μήκος μιας χορδής μεγάλου μήκους, η οποία ταυτίζεται με τον άξονα x Ox, διαδίδονται ταυτόχρονα δύο αρμονικά κύματα που έχουν εξισώσεις y 1 = 0,1ημπ(5t,5x) (S.I.) και y = 0,1ημπ(5t

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας Δυναμική Μηχανών I Απόκριση Γραμμικών Συστημάτων στο 7 4 Πεδίο της Συχνότητας 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων

Περιεχόµενα ΕΠΛ 422: στα Συστήµατα Πολυµέσων. Βιβλιογραφία. ειγµατοληψία. ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Ψηφιακή Αναπαράσταση Σήµατος: ειγµατοληψία Βιβλιογραφία ηµιουργία ψηφιακής µορφής πληροφορίας στα Συστήµατα Πολυµέσων Βασικές Έννοιες Επεξεργασίας Σηµάτων Ψηφιοποίηση

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΠΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑ Το φέρον σε ένα σύστημα DSB διαμόρφωσης είναι c t A t μηνύματος είναι το m( t) sin c( t) sin c ( t) ( ) cos 4 c και το σήμα. Το διαμορφωμένο σήμα διέρχεται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών και Τεχνολογίας Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Εργαστήριο 1 ο : Εισαγωγή στο Simulink-Σήματα ημιτόνου-awgn

Διαβάστε περισσότερα

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση

17-Φεβ-2009 ΗΜΥ Ιδιότητες Συνέλιξης Συσχέτιση ΗΜΥ 429 7. Ιδιότητες Συνέλιξης Συσχέτιση 1 Μαθηματικές ιδιότητες Αντιμεταθετική: a [ * b[ = b[ * a[ παρόλο που μαθηματικά ισχύει, δεν έχει φυσικό νόημα. Προσεταιριστική: ( a [ * b[ )* c[ = a[ *( b[ * c[

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα. Η δομή Επιλογής στη PASCAL. H δομή Επανάληψης στη PASCAL. Η εντολή επανάληψης for Εργαστήριο 6 Εντολές Επανάληψης Τα Εργαστηριακά Προγράμματα Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL Η εντολή επανάληψης for Σκοπός Η εντολή επανάληψης while. 1 ΕΡΓΑΣΤΗΡΙΟ 6 Εισαγωγή στο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

Σήματα και Συστήματα. Νόκας Γιώργος

Σήματα και Συστήματα. Νόκας Γιώργος Σήματα και Συστήματα Νόκας Γιώργος Δομή του μαθήματος Βασικά σήματα συνεχούς και διακριτού χρόνου. Ιδιότητες σημάτων συνεχούς και διακριτού χρόνου. Ιδιότητες συστημάτων συνεχούς και διακριτού χρόνου. Γραμμικά,

Διαβάστε περισσότερα

Εργαστήριο 6 Μικρή Πολυκατοικία στο FINE Μέρος Α : Εισαγωγή & Ευθυγράμμιση των κατόψεων των ορόφων της Πολυκατοικίας

Εργαστήριο 6 Μικρή Πολυκατοικία στο FINE Μέρος Α : Εισαγωγή & Ευθυγράμμιση των κατόψεων των ορόφων της Πολυκατοικίας Εργαστήριο 6 Μικρή Πολυκατοικία στο FINE Μέρος Α : Εισαγωγή & Ευθυγράμμιση των κατόψεων των ορόφων της Πολυκατοικίας. Εισαγωγή αρχιτεκτονικών σχεδίων σε μία μελέτη στο FINE. Διαδικασία wblock. Σκοπός Σχεδίαση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σηµμάτων

Ψηφιακή Επεξεργασία Σηµμάτων Ψηφιακή Επεξεργασία Σηµμάτων Διάλεξη 3: DSP for Audio Δρ. Θωµμάς Ζαρούχας Επιστηµμονικός Συνεργάτης Μεταπτυχιακό Πρόγραµμµμα: Τεχνολογίες και Συστήµματα Ευρυζωνικών Εφαρµμογών και Υπηρεσιών 1 Προεπισκόπηση

Διαβάστε περισσότερα

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε

Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε Παραδείγµατα σχέσεων διασποράς Παραπάνω, φαίνεται η απόκριση ενός διηλεκτρικού µέσου σε ηλεκτροµαγνητικό κύµα κυκλ. Συχνότητας ω. Παρατηρούµε ότι η πολωσιµότητα του µέσου εξαρτάται µε την εκφραση 2.42

Διαβάστε περισσότερα

Μάθημα: Ψηφιακή Επεξεργασία Ήχου

Μάθημα: Ψηφιακή Επεξεργασία Ήχου Τμήμα Τεχνών Ήχου και Εικόνας Ιόνιο Πανεπιστήμιο Μάθημα: Ψηφιακή Επεξεργασία Ήχου Εργαστηριακή Άσκηση 1 «Διαχείριση και Δημιουργία Βασικών Σημάτων, Δειγματοληψία και Κβαντισμός» Διδάσκων: Φλώρος Ανδρέας

Διαβάστε περισσότερα

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ

1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ . ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Σκοπός του κεφαλαίου αυτού είναι να δώσει μια γενική εικόνα του τι είναι σήμα και να κατατάξει τα διάφορα σήματα σε κατηγορίες ανάλογα με τις βασικές ιδιότητες τους. Επίσης,

Διαβάστε περισσότερα

3. Στο Block Diagram αναπτύσουµε το υπολογιστικό µέρος του προγράµµατος. Σχήµα 1.1: Το Front Panel του LabVIEW.

3. Στο Block Diagram αναπτύσουµε το υπολογιστικό µέρος του προγράµµατος. Σχήµα 1.1: Το Front Panel του LabVIEW. Front Panel και Block Diagram 1. Το LAbVIEW αποτελείται από δύο καρτέλες. Το Front Panel και το Block Diagram. Εναλλασσόµαστε ανάµεσα στις δύο καρτέλες µε τη συντόµευση CTRL+E ή µε το µενού Windows / Show

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT) Εισαγωγή Μέχρι στιγμής έχουμε δει το Μετασχηματισμό Fourier Διακριτού

Διαβάστε περισσότερα

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β 1.4. Σύνθεση Ταλαντώσεων. Ομάδα Β 1.4.1. Σύνθεση ταλαντώσεων ίδιας συχνότητας Ένα σώμα εκτελεί ταυτόχρονα δύο ταλαντώσεις της ίδιας διεύθυνσης, γύρω από την ίδια θέση ισορροπίας με εξισώσεις: y 1 =0,2

Διαβάστε περισσότερα

Πτυχιακή Εργασία Οδηγώντας ένα Ρομποτικό Αυτοκίνητο με το WiFi. Η Ασύρματη Επικοινωνία, χρησιμοποιώντας

Πτυχιακή Εργασία Οδηγώντας ένα Ρομποτικό Αυτοκίνητο με το WiFi. Η Ασύρματη Επικοινωνία, χρησιμοποιώντας Βασικές Έννοιες Πτυχιακή Εργασία 2015 Οδηγώντας ένα Ρομποτικό Αυτοκίνητο με το WiFi. Σχεδίαση Συστήματος Πραγματικής Εφαρμογής (Prototyping). Η Ασύρματη Επικοινωνία, χρησιμοποιώντας το πρωτόκολλο WiFi.

Διαβάστε περισσότερα

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1

Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1 Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία

Διαβάστε περισσότερα

1. [Απ.: [Απ.: 3. [Απ.: [Απ.:

1. [Απ.: [Απ.: 3. [Απ.: [Απ.: 1. Η εξίσωση ενός αρμονικού κύματος, το οποίο διαδίδεται κατά μήκος ενός γραμμικού ελαστικού μέσου, που έχει τη διεύθυνση του άξονα x'x, είναι: γ=0,04ημπ(200t - 8x) (τα x και y είναι σε m και το t σε s).

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Θεώρημα δειγματοληψίας

Θεώρημα δειγματοληψίας Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες

Διαβάστε περισσότερα

Άσκηση 8: Παραγωγή αλλοιωμένης φωνής (Alien voices generation)

Άσκηση 8: Παραγωγή αλλοιωμένης φωνής (Alien voices generation) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Σκοπός της άσκησης Άσκηση 8: Παραγωγή αλλοιωμένης φωνής (Alien

Διαβάστε περισσότερα

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation)

Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine waves generation) ΤΕΙ ΠΕΙΡΑΙΑ / ΣΤΕΦ / ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Μάθημα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ (Εργαστήριο) Ε εξάμηνο Εξάμηνο: Χειμερινό 2014-2015 Σκοπός της άσκησης Άσκηση 4: Παραγωγή Ημιτονικών Κυμάτων (Sine

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί.

. (1) , lim να υπάρχουν και να είναι πεπερασμένα, δηλαδή πραγματικοί αριθμοί. O μετασχηματισμός Laplace αποτελεί περίπτωση ολοκληρωτικού μετασχηματισμού, κατά τον οποίο κατάλληλη συνάρτηση (χρονικό σήμα) μετατρέπεται σε συνάρτηση της «συχνότητας» μέσω της σχέσης. (1) Γενικότερα

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής 15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΤΑΞΗ: ΕΝΟΤΗΤΕΣ: ΕΙΣΗΓΗΤΗΣ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ (ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ) ΜΙΧΕΛΑΚΑΚΗΣ ΗΛΙΑΣ 1.Διδακτικός στόχοι: Να ορίζουν το στάσιμο

Διαβάστε περισσότερα

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike

Πολυπλεξία. http://diktya-epal-b.ggia.info Creative Commons License 3.0 Share-Alike Πολυπλεξία Ανάλυση σημάτων στο πεδίο χρόνου, συχνότητας, πολυπλεξία διαίρεσης συχνότητας, πολυπλεξία διαίρεσης χρόνου (1.6 ενότητα σελ 19-20, 29-30 και στοιχεία από 2.1 ενότητα σελ. 52-58). http://diktya-epal-b.ggia.info

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,

Διαβάστε περισσότερα

Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt

Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt Στάσιμα κύματα - Μέτρηση της ταχύτητας του ήχου με το σωλήνα Kundt Η χρησιμοποιούμενη διάταξη φαίνεται στο ακόλουθο σχήμα: Το μεγάφωνο του σωλήνα Kundt συνδέεται στην έξοδο SIGNAL OUT της γεννήτριας συχνοτήτων.

Διαβάστε περισσότερα

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ

ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ. υ=, υ=λ.f, υ= tτ 1 ΤΥΠΟΛΟΓΙΟ ΚΥΜΑΤΩΝ ΔΙΑΔΟΣΗ ΜΗΧΑΝΙΚΩΝ ΚΥΜΑΤΩΝ Μήκος κύματος Ταχύτητα διάδοσης Συχνότητα Εξίσωση αρμονικού κύματος Φάση αρμονικού κύματος Ταχύτητα ταλάντωσης, Επιτάχυνση Κινητική Δυναμική ενέργεια ταλάντωσης

Διαβάστε περισσότερα

GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα

GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα GreekLUG Ελεύθερο Λογισμικό & Λογισμικό Ανοικτού Κώδικα Μάθημα 6ο Σουίτα Γραφείου LibreOffice 2 Ύλη Μαθημάτων V Μαθ. 5/6 : Σουίτα Γραφείου LibreOffice LibreOffice Γενικά, Κειμενογράφος - LibreOffice Writer,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 8 η (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ-ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ- ΓΡΑΦΗΜΑΤΑ

Εργαστηριακή άσκηση 8 η (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ-ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ- ΓΡΑΦΗΜΑΤΑ Εργαστηριακή άσκηση 8 η (EXCEL) ΣΥΝΑΡΤΗΣΕΙΣ-ΣΧΗΜΑΤΑ-ΕΙΚΟΝΕΣ- ΓΡΑΦΗΜΑΤΑ 1 Συνάρτηση SUMIF() Περιγραφή Χρησιμοποιείτε τη συνάρτηση SUMIF για να αθροίσετε τις τιμές σε μια περιοχή οι οποίες πληρούν τα κριτήρια

Διαβάστε περισσότερα

Οι σειρές Fourier. Eισαγωγικές Επισημάνσεις

Οι σειρές Fourier. Eισαγωγικές Επισημάνσεις παραρτημα Α Οι σειρές Fourier Μέρος (Ι) Eισαγωγικές Επισημάνσεις Ο Γάλλος μαθηματικός Jean Baptist Fourier μελετώντας την διάδοση της θερμότητας στα στερεά σώματα και στην προσπάθειά του να δώσει σε κλειστή

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A

ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α και

Διαβάστε περισσότερα

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ

Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Κ ε φ. 1 Κ Ι Ν Η Σ Ε Ι Σ Χρήσιμες έννοιες Κίνηση (σχετική κίνηση) ενός αντικειμένου λέγεται η αλλαγή της θέσης του ως προς κάποιο σύστημα αναφοράς. Τροχιά σώματος ονομάζουμε τη νοητή γραμμή που δημιουργεί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Σκοπός του µαθήµατος Η Συστηµατική Περιγραφή: των Σηµάτων και των Συστηµάτων 2 Τι είναι Σήµα; Ένα πρότυπο

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ www.lucent.com/security ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ 2 η ΟΣΣ / ΠΛΗ22 / ΑΘΗ.4 /07.12.2014 Νίκος Δημητρίου (Σημείωση: Η παρουσίαση αυτή συμπληρώνει τα αρχεία PLH22_OSS2_diafaneies_v1.ppt, και octave_matlab_tutorial_v1.ppt

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER

ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER έκδοση DΥΝI-FAN_2016b

Διαβάστε περισσότερα

Φασµατική ανάλυση. Fast Fourier Transform

Φασµατική ανάλυση. Fast Fourier Transform Φασµατική ανάλυση Fast Fourier Transform Ανάλυση Fourier I Η ανάλυση Fourier είναι ένα εδίο των εφαρµοσµένων µαθηµατικών το ο οίο ροέκυψε α ό την ροσ άθεια ανα αράστασης µίας συνάρτησης ως αθροίσµατος

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3 Διακριτός Μετασχηματισμός Fourier (DFT) Ο διακριτός μετασχηματισμός Fourier (DFT) αποτελεί το βασικό εργαλείο της Σχετικές εντολές του Matlab: fft, abs, rand, randn,

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το

1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το Η φάση του αρμονικού κύματος 1. Πηγή αρμονικών κυμάτων συχνότητας 5 Hz εξαναγκάζει το άκρο Ο ενός γραμμικού ελαστικού μέσου, το οποίο ταυτίζεται με τον οριζόντιο ημιάξονα O, να εκτελεί απλή αρμονική ταλάντωση

Διαβάστε περισσότερα

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών

Επικοινωνίες I FM ΔΙΑΜΟΡΦΩΣΗ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ FM ΔΙΑΜΟΡΦΩΣΗ Σήμα FM Η ακόλουθη εξίσωση δίδει την ισοδύναμη για τη διαμόρφωση συχνότητας έκφραση

Διαβάστε περισσότερα

που συγχρηµατοδοτείται από την Ευρωπαϊκή Ένωση/Ευρωπαϊκό Κοινωνικό Ταµείο

που συγχρηµατοδοτείται από την Ευρωπαϊκή Ένωση/Ευρωπαϊκό Κοινωνικό Ταµείο Το παρόν εκπονήθηκε στο πλαίσιο του Υποέργου 13 «Προσαρµογή Λογισµικού-Φάση ΙΙΙ» της Πράξης «Επαγγελµατικό λογισµικό στην ΤΕΕ: επιµόρφωση και εφαρµογή» (Γ ΚΠΣ, ΕΠΕΑΕΚ, Μέτρο 2.3, Ενέργεια 2.3.2) που συγχρηµατοδοτείται

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Ο μετασχηματισμός Fourier είναι από τα διαδεδομένα εργαλεία μετατροπής δεδομένων και συναρτήσεων (μιας ή περισσοτέρων διαστάσεων) από αυτό που ονομάζεται περιοχή χρόνου (time domain) στην περιοχή συχνότητας

Διαβάστε περισσότερα

ΤΟΜΕΑΣ HΛΕΚΤΡΟΝΙΚΗΣ. Επαγγελματικό λογισμικό στην ΤΕΕ: Επιμόρφωση και Εφαρμογή ΣΕΜΙΝΑΡΙΟ 2

ΤΟΜΕΑΣ HΛΕΚΤΡΟΝΙΚΗΣ. Επαγγελματικό λογισμικό στην ΤΕΕ: Επιμόρφωση και Εφαρμογή ΣΕΜΙΝΑΡΙΟ 2 ΤΟΜΕΑΣ HΛΕΚΤΡΟΝΙΚΗΣ Επαγγελματικό λογισμικό στην ΤΕΕ: Επιμόρφωση και Εφαρμογή ΣΕΜΙΝΑΡΙΟ 2 Εκπαίδευση στα Λογισμικά Adobe Premiere Pro CS3 και Visual Basic ΕΓΧΕΙΡΙΔΙΟ ΕΠΙΜΟΡΦΩΤΗ Το παρόν εκπονήθηκε στο

Διαβάστε περισσότερα

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. 1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην

Διαβάστε περισσότερα

Ενότητα 4. Επίλυση μαθηματικών προβλημάτων με το ΒΥΟΒ

Ενότητα 4. Επίλυση μαθηματικών προβλημάτων με το ΒΥΟΒ Ενότητα 4: Επίλυση μαθηματικών προβλημάτων -1- Ενότητα 4. Επίλυση μαθηματικών προβλημάτων με το ΒΥΟΒ α. Υπολογισμός δύναμης ακεραίων Σε προηγούμενη ενότητα, είδαμε ότι το ΒΥΟΒ δεν γνωρίζει την πράξη της

Διαβάστε περισσότερα

Ασκήσεις στα κύματα. α) Να βρεθούν οι εξισώσεις των δύο κυμάτων που δημιουργούνται.

Ασκήσεις στα κύματα. α) Να βρεθούν οι εξισώσεις των δύο κυμάτων που δημιουργούνται. 1. Ασκήσεις στα κύματα 1. Κατά μήκος ενός ελαστικού μέσου διαδίδονται τρία διαφορετικά κύματα, τα δύο πρώτα προς τα δεξιά και το τρίτο προς τ αριστερά. Στο παρακάτω σχήμα δίνονται τα στιγμιότυπά τους για

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

2.1. Τρέχοντα Κύματα.

2.1. Τρέχοντα Κύματα. 2.1. Τρέχοντα Κύματα. 2.1.1. Στιγμιότυπο κύματος Στη θέση x=0 ενός γραμμικού ομογενούς ελαστικού μέσου υπάρχει πηγή κύματος η οποία αρχίζει να ταλαντώνεται σύμφωνα με την εξίσωση y= 0,2ημπt (μονάδες στο

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ )

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ ) Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ. 147 159) Για τις γλώσσες προγραμματισμού πρέπει να έχουμε υπόψη ότι: Κάθε γλώσσα προγραμματισμού σχεδιάζεται για συγκεκριμένο σκοπό, δίνοντας ιδιαίτερη

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

Β τάξη. ΕΝΟΤΗΤΑ 1 Κεφάλαιο 2: Το εσωτερικό του Υπολογιστή. Εικόνα 2.1: Η Κεντρική Μονάδα.

Β τάξη. ΕΝΟΤΗΤΑ 1 Κεφάλαιο 2: Το εσωτερικό του Υπολογιστή. Εικόνα 2.1: Η Κεντρική Μονάδα. Εικόνα 2.1: Η Κεντρική Μονάδα. Εικόνα 2.1: Η Κεντρική Μονάδα και τα κυριότερα μέρη στο εσωτερικό της. Μητρική πλακέτα (motherboard) Επεξεργαστής ή Κεντρική Μονάδα Επεξεργασίας ή Κ.Μ.Ε. (Central Processing

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες

α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ α. Σύνδεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας και ίδιας διεύθυνσης, οι οποίες εξελίσσονται γύρω από την ίδια δέση ισορροπίας Έστω ότι ένα σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ DTFT και Περιοδική/Κυκλική Συνέλιξη Διακριτός μετασχηματισμός συνημιτόνου DCT discrete cosine transform Η σχέση αποτελεί «πυρήνα»

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή

ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή Στο εργαστήριο αυτό θα μάθουμε για τη χρήση συναρτήσεων με σκοπό την κατασκευή αυτόνομων τμημάτων προγραμμάτων που υλοποιούν μία συγκεκριμένη διαδικασία, τα οποία

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα