2-3. Πόλωση του Φωτός Ι & ΙΙ Σελίδα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2-3. Πόλωση του Φωτός Ι & ΙΙ Σελίδα"

Transcript

1 2-3. Πόλωση του Φωτός Ι & ΙΙ Σελίδα 1. Σκοπός των ασκήσεων Στοιχεία θεωρίας Είδη Πόλωσης Γραμμική Πόλωση Κυκλική Πόλωση Ελλειπτική Πόλωση Φυσικό Φως & Μη-πολωμένο Φως Πολωτές Διχροϊκοί Γραμμικοί Πολωτές Διπλοθλαστικότητα & πλακίδια καθυστέρησης φάσης Στροφική Ικανότητα Χαρακτηρισμός της Πόλωσης Πειραματική διάταξη (& Λογισμικό) Πειραματική διαδικασία & ανάλυση μετρήσεων Δύο Γραμμικοί Πολωτές Τρεις Γραμμικοί Πολωτές Στροφική ικανότητα διαλύματος ζάχαρης Σύστημα πολωτή-πλακιδίου καθυστέρησης φάσης Προσδιορισμός Καθυστέρησης Φάσης Διπλοθλαστικού Πλακιδίου ~λ/ Διπλοθλαστικό Πλακίδιο λ/ Βιβλιογραφία... 18

2 1. Σκοπός των ασκήσεων. Πόλωση του Φωτός Ι & ΙΙ Οι δύο αυτές ασκήσεις είναι αφιερωμένες στην εξοικείωση με τα διάφορα είδη πόλωσης και τα κυριότερα οπτικά στοιχεία που την διαφοροποιούν ή την επηρεάζουν. Συγκεκριμένα θα παρατηρήσετε τη δράση των γραμμικών πολωτών, διαφόρων πλακιδίων καθυστέρησης φάσης και ουσιών με στροφική ικανότητα. Όλα τα πειράματα πραγματοποιούνται σύμφωνα με το βασικό σχήμα χαρακτηρισμού της πόλωσης. 2. Στοιχεία θεωρίας. 2.1 Είδη Πόλωσης Γραμμική Πόλωση. Η πόλωση είναι ιδιότητα που χαρακτηρίζει μόνο τα εγκάρσια κύματα ενώ δεν έχει έννοια για τα διαμήκη. Τα ηλεκτρομαγνητικά (ΗΜ) κύματα είναι εγκάρσια εφόσον τόσο το ηλεκτρικό όσο και το μαγνητικό πεδίο τους πάλλονται κάθετα στη διεύθυνση διάδοσης. Μια και για τη συντριπτική πλειοψηφία των φαινομένων της οπτικής υπεύθυνο είναι το ηλεκτρικό πεδίο, εδώ δε θα ασχοληθούμε με το μαγνητικό πεδίο και δε θα το σχεδιάσουμε στα σχήματα που ακολουθούν. Για να α- πλοποιήσουμε δε ακόμη περισσότερο τη συζήτησή μας θα ασχοληθούμε μόνο με αρμονικά κύματα, δηλαδή κύματα της μορφής E z, t Emax cos k z t (1) όπου k=2πn/λ κενού, το μέτρο του κυματανύσματος του οποίου η κατεύθυνση είναι αυτή της διάδοσης του κύματος (στη περίπτωση της σχέσης (1) ο θετικός άξονας z). Με n συμβολίζουμε το δείκτη διάθλασης του υλικού εντός του οποίου διαδίδεται το κύμα και το μήκος κύματος αναφέρεται στο κενό, ισχύει δηλαδή λ κενού f = c o με f = ω/(2π) τη συχνότητα του κύματος και c o τη ταχύτητα του φωτός στο κενό. Ένα τέτοιο κύμα φαίνεται στο σχήμα 1, όπου δίδεται και ο ορισμός του επιπέδου πόλωσης που είναι το επίπεδο ταλάντωσης του ηλεκτρικού πεδίου. Επίπεδο Πόλωσης Επίπεδο Ταλάντωσης του Ηλεκτρικού Πεδίου Σχήμα 1. Ezt (, ) Για να ακριβολογούμε, μέχρι τώρα ορίσαμε μόνο τη γραμμική πόλωση, αυτή δηλαδή όπου το διάνυσμα του ηλεκτρικού πεδίου βρίσκεται συνεχώς στο ίδιο επίπεδο. Αυτό δε σημαίνει ότι το επίπεδο αυτό είναι αναγκαστικά το κατακόρυφο, όπως υπονοεί του σχήμα 1, αλλά μπορεί να έχει οποιαδήποτε διεύθυνση, αρκεί βέβαια να περιλαμβάνει και τη διεύθυνση διάδοσης. Μια τέτοια περίπτωση φαίνεται στο σχήμα 2, όπου μάλιστα το διάνυσμα του ηλεκτρικού πεδίου έχει αναλυθεί σε δύο κάθετες μεταξύ τους συνιστώσες (1). Η ανάλυση σε δύο γραμμικά πολωμένα κύματα με κάθετα επίπεδα πόλωσης είναι ένας βολικός (αν και όχι ο μόνος) τρόπος περιγραφής της κατάστασης της πόλωσης (γραμμικής ή άλλης). Θεωρήστε τώρα ένα παρατηρητή που βλέπει το κύμα να πλησιάζει (όπως στο σχήμα 2). Υποθέτοντας ότι μπορεί να διακρίνει τη γρήγορη ταλάντωση του πεδίου ή των συνιστωσών του θα παρατηρήσει την εικόνα του σχήματος 3(α). E max E max k z (1) Λόγω της καθετότητας των ηλεκτρικών πεδίων τα δύο αυτά κύματα δεν μπορούν προφανώς να συμβάλλουν. Πόλωση του Φωτός Ι & ΙΙ 1/18

3 Ezt (, ) Σχήμα 2. k z Ισχύει συνεπώς ότι, E z, t E z, ti E z tj x y, όπου i και j τα κάθετα μεταξύ τους μοναδιαία διανύσματα των δύο διευθύνσεων ανάλυσης που έ- χουμε επιλέξει και E z, t Emax, cos k z t (3α) x x z t E cosk z t E y, max, y. (3β) Για τα πλάτη ισχύει προφανώς ότι Ε max,x,y 0 ενώ η διαφορά φάσης Δφ είναι ακέραιο πολλαπλάσιο του π. Δηλαδή, για γραμμικά πολωμένο φως θα έχουμε Τυχαίος αλλά δεδομένος λόγος πλατών Ε max,y /Ε max,x (4α) και Δφ = mπ, m = 0, ±1, ±2,. (4β) Εάν ο ακέραιος m είναι άρτιος οι δύο συνιστώσες είναι συμφασικές (λαμβάνουν ταυτόχρονα τις μέγιστες και ελάχιστες τιμές τους σχήμα 3(α)). Αντίθετα, εάν είναι περιττός οι δύο συνιστώσες είναι εκτός φάσης κατά π (όταν η μία λαμβάνει τη μέγιστη τιμή της η άλλη λαμβάνει την ελάχιστη και αντίστροφα σχήμα 3(β)). Δφ = 0 E max,y Δφ = π (2) E max,x j E max,x i -E max,y (α) Σχήμα 3. (β) Είναι φανερό ότι για να οριστεί πλήρως η γραμμική πόλωση του κύματος απαιτείται τόσο η γνώση της διαφοράς φάσης Δφ, όσο και ο λόγος των πλατών Ε max,y /Ε max,x (που καθορίζει τη γωνία του συνιστάμενου κύματος E z, t ως προς τη διεύθυνση π.χ. του διανύσματος i). Πόλωση του Φωτός Ι & ΙΙ 2/18

4 2.1.2 Κυκλική Πόλωση. Χρησιμοποιώντας την ανάλυση σε δύο κάθετες μεταξύ τους συνιστώσες (σχέσεις (3α,β)) μπορούμε να ορίσουμε και άλλα είδη πόλωσης. Η κυκλική πόλωση ορίζεται από τις συνθήκες Ε max,y = Ε max,x = Ε max (5α) και Δφ = ± π/2 + kπ, k =0, ±1, ±2,. (5β) Ezt (, ) 2 k z z Σχήμα 4. (α) (β) Ένα παράδειγμα δύο συνιστωσών με διαφορά φάσης π/2 φαίνεται στο σχήμα 4(α) όπου βλέπουμε ότι όταν η μία συνιστώσα μηδενίζεται ή άλλη λαμβάνει είτε τη μέγιστη j είτε την ελάχιστη τιμή της. Ακόμη, επειδή cos[kz-ωt±π/2] = sin[kz-ωt] για 2 2 το συνιστάμενο κύμα έχουμε E z, t = [ E x z, t+ E y z, t] 1/2 = i Ε max [cos 2 [kz-ωt]+sin 2 [kz-ωt]] 1/2 ω E max = Ε max. Συνεπώς, το διάνυσμα του συνολικού ηλεκτρικού πεδίου έχει σταθερό μέτρο Ε max και λόγω της συγκεκριμένης διαφοράς φάσης Δφ διαγράφει ελικοειδή τροχιά (σχήμα 4(β)). E y Ε Παρατηρητής που παρακολουθεί τη προβολή της τροχιάς σε επίπεδο κάθετο στη διεύθυνση διάδοσης (z) βλέπει ένα κύκλο που διαγράφεται με x συχνότητα ω (σχήμα 5). Σημειώστε ότι η μόνη διαφορά μεταξύ των περιπτώσεων Δφ = + π/2 και Δφ = π/2 είναι η φορά περιστροφής του διανύσματος η οποία τις περισσότερες φορές δεν ενδιαφέρει. Σχήμα Ελλειπτική Πόλωση. Η ελλειπτική πόλωση ορίζεται από τις συνθήκες, Τυχαίος αλλά δεδομένος λόγος πλατών Ε max,y /Ε max,x και Τυχαία αλλά (χρονικά και χωρικά) σταθερή διαφορά φάσης Δφ. j Στη γενικότερη αυτή περίπτωση το διάνυσμα του συνολικού ηλεκτρικού i πεδίου διαγράφει πάλι ελικοειδή τροχιά αλλά αυτή τη φορά με μέτρο που E max,y μεταβάλλεται μεταξύ μιας μέγιστης και μιας ελάχιστης τιμής. Η προβολή ω της τροχιάς σε επίπεδο κάθετο στη διεύθυνση διάδοσης (z) είναι έλλειψη α (σχήμα 6). Η ελλειπτική πόλωση προφανώς περιλαμβάνει (με τις κατάλληλες επιλογές της διαφοράς φάσης Δφ και του λόγου πλατών Ε max,y /Ε max,x ) τόσο τη γραμμική όσο και τη κυκλική πόλωση ως ειδικές περιπτώσεις. Σχήμα Φυσικό Φως & Μη-πολωμένο Φως. (6α) (6β) Ε max,x Το φως του Ήλιου αλλά και των συνηθισμένων φωτεινών πηγών (π.χ. λαμπτήρες πυρακτώσεως) χαρακτηρίζεται ως φυσικό φως. Οι πηγές φυσικού φωτός αποτελούνται από άτομα ή μόρια Πόλωση του Φωτός Ι & ΙΙ 3/18

5 που ακτινοβολούν σύμφωνα (δηλαδή με σταθερή διαφορά φάσης) μόνο εντός περιορισμένων χρονικών διαστημάτων τυπικής διάρκειας Δt~10-8 s. Επιπλέον, το επίπεδο πόλωσης της ακτινοβολίας κάθε ατόμου ή μορίου μπορεί να έχει οποιαδήποτε διεύθυνση η οποία μάλιστα μπορεί να αλλάζει μετά από χρόνο Δt. Συνεπώς και το είδος της πόλωσης αλλάζει κατά απρόβλεπτο τρόπο. Μια πρόχειρη απεικόνιση του φυσικού φωτός είναι αυτή του σχήματος 7(α) που υπονοεί την ύπαρξη επιπέδων γραμμικής πόλωσης σε οποιαδήποτε διεύθυνση, με διαφορετικά, εν γένει, πλάτη και φάσεις που μεταβάλλονται με το χρόνο. Η απεικόνιση αυτή όμως δεν είναι και η καλύτερη και για αυτό χρησιμοποιούμε συνήθως εναλλακτικούς τρόπους περιγραφής. Ένας από αυτούς φαίνεται στο σχήμα 7(β) όπου πάλι αναλύουμε όλα τα επιμέρους κύματα σε δύο κάθετες μεταξύ τους γραμμικά πολωμένες συνιστώσες. Η επιλογή των διευθύνσεων των συνιστωσών είναι αυθαίρετη (αρκεί βέβαια να είναι κάθετες μεταξύ τους). Αθροίζοντας όλες τις συνεισφορές βρίσκουμε ότι οι συνιστώσες του συνιστάμενου κύματος έχουν Ίσα πλάτη, Ε max,y = Ε max,x = Ε max (7α) και Χρονικά μεταβαλλόμενη διαφορά φάσης Δφ(t). (7β) Η διαφορά φάσης μεταβάλλεται με άλματα που απέχουν χρονικά κατά Δt (σχήμα 7(β)). Στο σημείο αυτό καλό είναι να αναφερθούμε και στον όρο μη-πολωμένο φως που είναι γενικότερος και χρησιμοποιείται ακόμη και για πηγές laser των οποίων η ακτινοβολία παρουσιάζει ι- διότητες που δεν συναντώνται στο φυσικό φως (συμφωνία, κατευθυντικότητα κλπ). Η ιδιότητα που ενδιαφέρει εδώ είναι η πολύ μεγαλύτερη συμφωνία των πηγών laser σε σχέση με τις συνήθεις φωτεινές πηγές. Συνεπώς, συνεχίζουμε να περιγράφουμε το φως των πηγών laser μέσω των σχέσεων (7) με την υπενθύμιση όμως ότι η χρονική διάρκεια Δt είναι κατά περίπου τρεις τάξεις μεγέθους μεγαλύτερη από αυτή που Σχήμα 7. προαναφέραμε για το φυσικό φως. Πέραν αυτού η συμπεριφορά του φυσικού ή μη-πολωμένου φωτός κατά τη πρόσπτωσή του σε γραμμικό πολωτή (βλέπε παρακάτω), τουλάχιστον σε ότι θα μας απασχολήσει εδώ, δεν παρουσιάζει διαφορές. 2.2 Πολωτές. (α) (t) Ε max,x E max,y t~10-8 s Ο πλέον συνήθης ορισμός των πολωτών είναι ότι πρόκειται για οπτικές διατάξεις στις οποίες όταν προσπέσει στην είσοδό τους φυσικό φως λαμβάνεται στην έξοδό τους πολωμένο φως κάποιου είδους. Στη πράξη, στο παραπάνω ορισμό μπορούμε να συμπεριλάβουμε τόσο το μη-πολωμένο όσο και το πολωμένο φως. Συνεπώς ένας καλύτερος ίσως ορισμός των πολωτών είναι ότι πρόκειται για οπτικές διατάξεις που μπορούν να μεταβάλουν το είδος της πόλωσης του προσπίπτοντος σε αυτούς φωτός. Η αρχή λειτουργίας των πολωτών βασίζεται στην ανισοτροπία που εμφανίζουν οι οπτικές ιδιότητες ορισμένων υλικών ως προς το είδος της πόλωσης. Πιο συγκεκριμένα, υπάρχουν τέσσερις κατηγορίες φαινομένων που εκμεταλλευόμαστε κατά τη κατασκευή των πολωτών: Ανισοτροπία απορρόφησης (επιλεκτική απορρόφηση που εξαρτάται από τη πόλωση). Η ιδιότητα αυτή αποδίδεται με τον όρο Διχροϊσμός. Ανισοτροπία του δείκτη διάθλασης (που εξαρτάται από τη διεύθυνση διάδοσης στο υλικό και τη πόλωση του φωτός). Η ιδιότητα αυτή αποδίδεται με τον όρο Διπλοθλαστικότητα. Πόλωση του Φωτός Ι & ΙΙ 4/18 (β) t j i

6 Ανισοτροπία ανάκλασης (συντελεστής ανάκλασης που εξαρτάται από τη πόλωση). Ανισοτροπία σκέδασης (επιλεκτική σκέδαση διαφορετικών πολώσεων σε διαφορετικές διευθύνσεις). Στην άσκηση της Ανάκλασης & Διάθλασης θα δούμε ένα παράδειγμα της τρίτης κατηγορίας (γωνία Brewster). Στις ασκήσεις Πόλωση του φωτός Ι & ΙΙ θα δούμε παραδείγματα των δύο πρώτων κατηγοριών. Επίσης θα ασχοληθούμε με υλικά που παρουσιάζουν στροφική ικανότητα τα ο- ποία, αν και αυστηρά μιλώντας δεν εμπίπτουν στη κατηγορία των πολωτών, επηρεάζουν εν τούτοις την πόλωση του προσπίπτοντος σε αυτά φωτός Διχροϊκοί Γραμμικοί Πολωτές. Οι διχροϊκοί γραμμικοί πολωτές παρουσιάζουν μια χαρακτηριστική διεύθυνση που ονομάζουμε άξονα διέλευσης τέτοια ώστε φως γραμμικά πολωμένο παράλληλα σε αυτή διαδίδεται με λίγες ή καθόλου απώλειες ενώ φως γραμμικά πολωμένο κάθετα σε αυτήν απορροφάται σχεδόν πλήρως. Τα γνωστότερα και πλέον χρησιμοποιούμενα σε συνήθεις εφαρμογές υλικά που εμφανίζουν διχροϊσμό είναι τα πολωτικά φύλλα Polaroid που αποτελούνται από παράλληλες αλυσίδες πολυμερών. Δε θα εξηγήσουμε εδώ τα αίτια εμφάνισης διχροϊσμού σε τέτοιες δομές. Αναφέρουμε απλώς ότι στις ασκήσεις των μικροκυμάτων χρησιμοποιείται μια παρόμοια (αν και μεταλλική) διάταξη. Οι διαστάσεις της τελευταίας μάλιστα είναι πολύ μεγαλύτερες από αυτές που απαιτούνται για το ορατό φως, λόγω του πολύ μεγαλύτερου μήκους κύματος των μικροκυμάτων. Εάν μη-πολωμένο φως φωτεινής έντασης Ι ο προσπέσει σε γραμμικό πολωτή η εξερχόμενη ακτινοβολία είναι πλέον γραμμικά πολωμένη κατά τον άξονα διέλευσης του πολωτή (σχήμα 8) και η έντασή της δίνεται από τη σχέση I o Ι = T (8) 2 όπου T ο συντελεστής διαπερατότητας του πολωτή που λαμβάνει υπ όψη τις απώλειες έντασης τόσο λόγω ανάκλασης όσο και μικρής α- πορρόφησης. Εάν T =1 ο πολωτής ονομάζεται ιδανικός. Θεωρήστε τώρα τη περίπτωση όπου ακτινοβολία έντασης Ι ο, ήδη γραμμικά πολωμένη, προσπίπτει σε γραμμικό πολωτή. Τότε η ένταση της διερχομένης ακτινοβολίας δίδεται από τη σχέση Ι(θ) = Ι(θ=0)cos 2 (θ) (9) που είναι ο γνωστός Νόμος του Malus. Στην (9) θ είναι η γωνία μεταξύ του επιπέδου πόλωσης του προσπίπτοντος φωτός και του άξονα διέλευσης του πολωτή (σχήμα 9). Για θ=0, π, 2π, το επίπεδο πόλωσης παραμένει ανεπηρέαστο και η ένταση της διερχόμενης ακτινοβολίας είναι μέγιστη και ίση Πόλωση του Φωτός Ι & ΙΙ 5/18

7 με Ι(θ=0)=T Ι ο. Για θ 0, π, 2π κ.λ.π. το διερχόμενο κύμα θα έχει μειωμένη (ή και μηδενική) ένταση και το νέο επίπεδο πόλωσης θα έχει τη διεύθυνση του άξονα διέλευσης Διπλοθλαστικότητα & πλακίδια καθυστέρησης φάσης. οπτικός άξονας Σχήμα 10. Έκτακτη ακτίνα (e-wave) Δεν υπακούει στο νόμο του Snell Τακτική ακτίνα (o-wave) Υπακούει στο νόμο του Snell Υπάρχουν υλικά (φυσικοί κρύσταλλοι ή άλλα) όπου η ταχύτητα διάδοσης του φωτός μέσα σε αυτά (και συνεπώς και ο δείκτης διάθλασης) εξαρτάται, εν γένει, από τη διεύθυνση διάδοσης και το προσανατολισμό του επιπέδου της γραμμικής πόλωσης. Εάν λοιπόν φυσικό φως προσπέσει σε ένα τέτοιο διπλοθλαστικό υλικό, κατά κανόνα διαχωρίζεται σε δύο κύματα με επίπεδα πόλωσης κάθετα μεταξύ τους και διαφορετικές ταχύτητες διάδοσης (σχήμα 10). Το κύμα με επίπεδο πόλωσης κάθετο στο επίπεδο πρόσπτωσης υπακούει στο νόμο του Snell (στο σχήμα 10 λόγω της κάθετης πρόσπτωσης συνεχίζει τη πορεία του στο υλικό χωρίς αλλαγή διεύθυνσης) και ονομάζεται τακτικό κύμα (ordinary wave). Το άλλο κύμα δεν υπακούει στο νόμο του Snell και ονομάζεται οπτικός άξονας έκτακτο κύμα (extraordinary wave). Υπάρχει όμως μια διεύθυνση για την οποία τα δύο αυτά κύματα έχουν την ίδια ταχύτητα διάδοσης. Η διεύθυνση αυτή ονομάζεται οπτικός άξονας. Δε θα ασχοληθούμε με τις αιτίες εμφάνισης του φαινομένου. Για τη καλύτερη κατανόηση των παραπάνω όμως θεωρήστε φωτεινή πηγή φυσικού ή μη-πολωμένου φωτός που βρίσκεται εμβαπτισμένη στο διπλοθλαστικό υλικό, όπως στο σχήμα 11. Το τακτικό o-wave e-wave κύμα διαδίδεται με την ίδια ταχύτητα προς όλες τις διευθύνσεις (κυκλικό μέτωπο κύματος στο σχήμα 11) με ταχύτητα υ o και αντίστοιχο δείκτη διάθλασης n o =c o /υ o. Το έκτακτο κύμα από την άλλη μεριά διαδίδεται με ταχύτητα που εξαρτάται από τη διεύθυνση διάδοσης (ελλειπτικό μέτωπο κύματος στο σχήμα 11). Κατά τη διεύθυνση o e no ne του οπτικού άξονα η ταχύτητα διάδοσης είναι ίση ο-wave με αυτή του τακτικού κύματος ενώ η μεγαλύτερη διαφορά ταχυτήτων παρατηρείται για διάδοση κάθετα στο e-wave άξονα. Η ταχύτητα κατά τη διεύθυνση αυτή είναι υ e και ο αντίστοιχος δείκτης διάθλασης n e =c o /υ e. Ανάλογα με το υλικό μπορεί να ισχύει n o >n e ή n o <n e (δηλαδή το έ- κτακτο κύμα να διαδίδεται πιο γρήγορα ή πιο αργά α- ντίστοιχα από το τακτικό, κάθετα στον οπτικό άξονασχήμα 11). Είναι σημαντικό τέλος να θυμόμαστε ότι o e no Σχήμα 11. ne αυτό που διαφοροποιεί τα δύο κύματα είναι η διαφορετική γραμμική πόλωσή τους (κάθετη στον οπτικό άξονα για το τακτικό κύμα και παράλληλη σε αυτόν για το έκτακτο). Ας θεωρήσουμε τώρα τη πρόσπτωση γραμμικά πολωμένου φωτός σε ένα διπλοθλαστικό πλακίδιο πάχους d το οποίο έχει κοπεί όπως φαίνεται στο σχήμα 12(β). Το επίπεδο πόλωσης του προσπίπτοντος κύματος σχηματίζει γωνία θ με τον οπτικό άξονα (σχήματα 12(α 1,2 )). Αναλύουμε σε δύο συνιστώσες, τη μία παράλληλη (έκτακτο κύμα) και την άλλη κάθετη (τακτικό κύμα) στον οπτικό άξονα. Χωρίς απώλεια γενικότητας θα υποθέσουμε επίσης ότι οι δύο συνιστώσες είναι καταρχήν συμφασικές, Δφ=0. Μετά τη διέλευση από το πλακίδιο τα δύο κύματα θα έχουν αποκτήσει διαφορετικές καθυστερήσεις φάσης, φ e και φ ο. Αυτό σημαίνει ότι εάν χωρίς τη παρουσία του πλακιδίου οι δύο συνιστώσες θα ελάμβαναν ταυτόχρονα τη μέγιστη τιμή τους στο σημείο π.χ. Α του σχήματος 12(β), με τη παρουσία του πλακιδίου θα τις λαμβάνουν σε διαφορετικές χρονικές στιγμές Πόλωση του Φωτός Ι & ΙΙ 6/18

8 και διαφορετικά σημεία η κάθε μια, τα Β και Γ αντίστοιχα. Αυτό όμως που έχει σημασία είναι η σχετική καθυστέρηση φάσης Δφ = φ ο φ e η οποία δίνεται από τη σχέση, 2 ne no d (10) λ κενού (χρησιμοποιήσαμε την απόλυτη τιμή διότι το πρόσημο της Δφ δε ενδιαφέρει εδώ). Η διαφορά φάσης σε συνδυασμό με την επιλογή της γωνίας θ (λόγος πλατών Ε max,y /Ε max,x ), μπορεί να δώσει το επιθυμητό είδος πόλωσης στην έξοδο του πλακιδίου. οπτικός άξονας E max,y (e-wave) (α 1 ) θ Ε max,x (o-wave) j i (α 2 ) οπτικός άξονας E max,y θ Ε max,x d Δφ = φ o - φ e (β) z Δφ = 0 Γ Β A φ e φ o Σχήμα 12. d Για κάποιο συγκεκριμένο μήκος κύματος (συγκεκριμένοι δείκτες διάθλασης n o και n e ) μπορούμε να έχουμε την επιθυμητή διαφορά φάσης με κατάλληλη επιλογή του πάχους d. Παραδείγματος χάριν για Δφ=2π η διαφορά οπτικών δρόμων n e n o d =λ κενού (πλακίδιο λ), για Δφ=π, n e n o d =λ κενού /2 (πλακίδιο λ/2) και για Δφ=π/2, n e n o d =λ κενού /4 (πλακίδιο λ/4). Βέβαια, (οπτικά ή φυσικά) πάχη της τάξης του μήκους κύματος στο ορατό είναι πρακτικά δύσκολο να κατασκευαστούν. Έτσι επιλέγουμε τα πάχη να είναι της τάξης του ~1 mm. Τότε π.χ. για πλακίδιο λ/4 η διαφορά φάσης Δφ = 2mπ + π/2, όπου m ακέραιος που καθορίζει το πάχος. Είναι αξιοσημείωτο ότι κατά τη κατασκευή του πλακιδίου πρέπει να λαμβάνεται υπόψη και το μήκος κύματος της ακτινοβολίας τόσο λόγω της σχέσης (10) όσο και λόγω της πιθανής μεταβολής των δεικτών διάθλασης με αυτό. Συνεπώς, ένα πλακίδιο που έχει κατασκευαστεί ώστε να λειτουργεί ως πλακίδιο λ/4 στα 633 nm, σε κάποιο άλλο μήκος κύματος (π.χ. 650 nm) θα λειτουργεί ως πλακίδιο λ/x όπου x 4. Κλείνουμε αυτή τη παρουσίαση των πλακιδίων καθυστέρησης φάσης με μερικά παραδείγματα: (Ι) Υποθέστε πρώτα ότι το αρχικό επίπεδο πόλωσης είναι είτε παράλληλο είτε κάθετο στον οπτικό άξονα, ισχύει δηλαδή θ = 0 ο, 90 ο, 180 ο ή 270 ο. Τότε η μία από τις δύο συνιστώσες (είτε η Ε x είτε η Πόλωση του Φωτός Ι & ΙΙ 7/18

9 Ε y ) είναι μηδενική και η γραμμική πόλωση παραμένει ανεπηρέαστη μετά το πλακίδιο και ανεξάρτητα από το είδος του. (ΙΙ) Έστω τώρα ότι θέλουμε να μετατρέψουμε το προσπίπτον στο πλακίδιο γραμμικά πολωμένο φως σε κυκλικά πολωμένο. Τότε θα πρέπει να επιλέξουμε το οπτικό πάχος να αντιστοιχεί σε πλακίδιο λ/4 (Δφ=π/2) και, ταυτόχρονα, τη γωνία θ=45 ο (ή 135 ο ) έτσι ώστε να εξασφαλιστεί ότι Ε max,y = Ε max,x (σχέσεις (5α,β)). Εάν θ 45 ο το φως μετά το πλακίδιο θα είναι ελλειπτικά πολωμένο, αφού τα δύο κύματα Ε y και Ε x θα έχουν μεν διαφορά φάσης π/2 αλλά άνισα πλάτη. (ΙΙΙ) Ας δούμε τέλος τη δράση ενός πλακιδίου λ/2 (Δφ=π) σε γραμμικά πολωμένο E max,y E max,y προσπίπτον φως που φαίνεται στο σχήμα 13 Δφ = π και όπου έχουμε υποθέσει ότι μετά το πλακίδιο είναι η συνιστώσα Ε x που έχει υποστεί θ 2θ καθυστέρηση φάσης κατά π σε σχέση με την Ε (2) y. Συνεπώς ενώ πριν από το πλακίδιο οι Ε max,x Ε max,x δύο συνιστώσες ελάμβαναν ταυτόχρονα τη μέγιστη τιμή τους (σχήμα 13α), μετά το πλακίδιο όταν η Ε y λαμβάνει τη μέγιστη τιμή της η Ε x λαμβάνει την ελάχιστη (σχήμα οπτικός άξονας 13β). Συνθέτοντας τις νέες συνιστώσες παρατηρούμε ότι η πόλωση μετά το πλακίδιο (α) Σχήμα 13. (β) παραμένει γραμμική αλλά το επίπεδο πόλωσης έχει στραφεί κατά γωνία 2θ σε σχέση με την αρχική. Γενικά, αξίζει να θυμόμαστε ότι το είδος της πόλωσης καθορίζεται από δύο συνθήκες: (ι) τη σχέση πλατών και (ιι) τη σχετική φάση των δύο συνιστωσών. Τα πλακίδια καθυστέρησης φάσης επηρεάζουν τη σχετική φάση μέσω της διαφοράς οπτικού πάχους n e n o d ενώ η σχέση πλατών επηρεάζεται μέσω της επιλογής της γωνίας θ (σχήμα 12(α 2 )) Στροφική Ικανότητα. Υπάρχουν υλικά όπου όταν γραμμικά πολωμένο φως διαδίδεται εντός αυτών συνεχίζει να είναι γραμμικά πολωμένο αλλά υφίσταται στροφή του επιπέδου πόλωσής του. Τα υλικά αυτά ονομάζονται οπτικώς ενεργά και μπορεί να είναι στερεά, υγρά, διαλύματα ή, σπανιότερα, αέρια. Η αρχή στην οποία βασίζεται η δράση τους απαιτεί κβαντομηχανική περιγραφή και δεν θα αναπτυχθεί λεπτομερώς εδώ αλλά μπορείτε να συμβουλευτείτε τις βιβλιογραφικές αναφορές που παρατίθενται στο τέλος των σημειώσεων. Αναφέρουμε όμως μερικά ενδιαφέροντα χαρακτηριστικά του φαινομένου. Κατ αρχήν σε αυτό παίζει μερικές φορές ρόλο και το μαγνητικό πεδίο του Η/Μ κύματος. Επίσης, τα μόρια ή οι κρύσταλλοι (ή και τα δύο) των οπτικώς ενεργών υλικών έχουν ελικοειδή δομή και εμφανίζουν στερεοϊσομέρεια. Συγκεκριμένα υπάρχουν σε δύο μορφές, μία όπου η έλικα είναι δεξιόστροφη και μία όπου είναι αριστερόστροφη. Η μία μορφή είναι το είδωλο της άλλης όπως θα το παρατηρούσαμε από επίπεδο κάτοπτρο (συμμετρία χειρός-chirality). Και οι δύο μορφές στρέφουν το επίπεδο πόλωσης αλλά το πρόσημο της γωνίας στροφής είναι αντίθετο. Η μορφή που στρέφει δεξιόστροφα (φορά περιστροφής δεικτών του ρολογιού και όπως παρατηρητής βλέπει το φως να τον πλησιάζει) ονομάζεται d(extro)- rotatory, ενώ η αριστερόστροφη μορφή l(evo)-rotatory. Στερεοϊσομερή ελικοειδή μόρια που παράγονται στη φύση ή στο εργαστήριο σε δείγματα ίσων ποσοτήτων d και l δεν παρουσιάζουν στροφική ικανότητα. Στη Φύση όμως πολλές ουσίες (π.χ. ζάχαρη, τα περισσότερα αμινοξέα κ.λ.π.) εμφανίζονται σε μία μόνο στερεοϊσομερή μορφή και τα διαλύματά τους είναι οπτικώς ενεργά. Εάν η οπτική ενεργότητα οφείλεται στην κρυσταλλική ελικοειδή δομή (χαλαζίας) η στροφική ικανότητα χάνεται με τη καταστροφή της (τήξη). Εάν οφείλεται στην μοριακή ελικοειδή δομή (ζάχαρη) παραμένει ακόμη και στα διαλύματα των οπτικά ενεργών ουσιών. (2) Όπως μπορείτε να ελέγξετε και μόνοι σας δεν υπάρχει πρακτική διαφορά εάν είναι η συνιστώσα Ε y που υφίσταται καθυστέρηση φάσης κατά π σε σχέση με την Ε x. Πόλωση του Φωτός Ι & ΙΙ 8/18

10 Η σχέση που συνδέει τη γωνία στροφής του επιπέδου πόλωσης, β, με τα χαρακτηριστικά του υλικού (διαλύματος στη προκειμένη περίπτωση) δίνεται από το νόμο του Biot που γράφεται: β = α L [C] (11) όπου [C], η συγκέντρωση της οπτικά ενεργού ουσίας σε gr/cm 3, L το μήκος της διαδρομής του φωτός στο διάλυμα σε cm και α η λεγόμενη ειδική στροφική ικανότητα της ουσίας σε degrees cm 2 /gr (το γινόμενο α[c] ονομάζεται απλώς στροφική ικανότητα). Η ειδική στροφική ικανότητα εξαρτάται από το μήκος κύματος (α λ -2 ), τη θερμοκρασία και σε ορισμένες περιπτώσεις τόσο από το διαλύτη όσο και από τη συγκέντρωση του διαλύματος. 2.3 Χαρακτηρισμός της Πόλωσης. Η τυπική πειραματική διάταξη είτε για το χαρακτηρισμό της πόλωσης είτε για το χαρακτηρισμό ενός πολωτικού συστήματος φαίνεται στο σχήμα 14. Σε αυτή, φως είτε πολωμένο είτε μηπολωμένο προσπίπτει πρώτα στο γραμμικό πολωτή Π 1 του οποίου η διεύθυνση του άξονα διέλευσης χρησιμοποιείται ως διεύθυνση αναφοράς. Το φως μετά το Π 1 είναι γραμμικά πολωμένο σε αυτή τη διεύθυνση. Τότε προσπίπτει στο υπό μελέτη πολωτικό σύστημα Σ 2. Σκοπός μας είναι να χαρακτηρίσουμε το είδος της πόλωσης μετά το σύστημα αυτό, κάτι που επιτυγχάνεται με ένα δεύτερο γραμμικό πολωτή Π 3, που ονομάζεται αναλυτής. Το φως μετά το Π 3 είναι γραμμικά πολωμένο κατά τη διεύθυνση του άξονα διέλευσής του. Συνήθως, η γωνία θ 13 μεταξύ του πολωτή και του α- ναλυτή μεταβάλλεται και καταγράφεται η ένταση Ι της ακτινοβολίας. Η καμπύλη Ι(θ 13 ) μας δίνει πληροφορίες για το είδος της πόλωσης πριν από τον αναλυτή. 3. Πειραματική διάταξη (& Λογισμικό). Τα πειράματα των εργαστηριακών ασκήσεων Πόλωση φωτός I & ΙΙ θα πραγματοποιηθούν μέσω της διάταξης τους σχήματος 15 που περιλαμβάνει laser διόδου (λ650 nm), φωτοανιχνευτή και σύνολο γραμμικών πολωτών και πλακιδίων λ/4. Τα παραπάνω στοιχεία τοποθετούνται σε κατάλληλες βάσεις στήριξης που μπορούν να Laser Σχήμα 15. Πολωτής Π 1 στη βάση του Επιλογέας σχισμών περιορισμού φωτεινής έντασης Αναλυτής συνδεδεμένος με γωνιακό αισθητήρα μέσω λαστιχένιου ιμάντα Φωτοανιχνευτής Συσκευή διασύνδεσης με Η/Υ Πόλωση του Φωτός Ι & ΙΙ 9/18

11 μετακινηθούν κατά μήκος μιας οπτικής τράπεζας (ράγας) ή και να αφαιρεθούν από αυτή. Το laser είναι γραμμικά πολωμένο αλλά παρ όλα αυτά μετά από αυτό τοποθετείται γραμμικός πολωτής (Π 1 ). Ο άξονας διέλευσης του τελευταίου ε- πιλέγεται κατά προτίμηση κατακόρυφος και παραμένει σε αυτή τη διεύθυνση σε όλα από τα πειράματα. Ο αναλυτής είναι τοποθετημένος σε ειδική βάση στήριξης, συνδεδεμένη με γωνιακό αισθητήρα μέσω ενός λαστιχένιου ιμάντα. Η περιστροφή του αναλυτή γίνεται χειροκίνητα (σχήμα 16). Ο Σχήμα 16. αισθητήρας καθώς και ο φωτοανιχνευτής είναι συνδεδεμένοι με ειδική συσκευή που επικοινωνεί καλωδιακά με ηλεκτρονικό υπολογιστή (Η/Υ). Στο φωτοανιχνευτή υπάρχει διακόπτης μεταβολής της ενίσχυσης του σήματός του με κλίμακες 1, 10 και 100 ενώ μπροστά του είναι τοποθετημένος ένας επιλογέας σχισμών ή οπών (σχήμα 17) για τον περιορισμό της προσπίπτουσας φωτεινής έντασης. Η τελευταία είναι ανάλογη της τάσης εξόδου του φωτοανιχνευτή. Εάν όμως η τάση είναι 4.5 Volts ο ανιχνευτής είναι κορεσμένος. Από την άλλη για άνετη παρατήρηση μεταβολής της έντασης φροντίστε η τάση να είναι μεγαλύτερη των 0.5 Volts. Πριν ξεκινήσετε την εκτέλεση των ασκήσεων, φροντίστε για τη σωστή ευθυγράμμιση laserσχισμής. Αυτό επιτυγχάνεται με δύο βίδες οριζόντιας και κατακόρυφης μετατόπισης της φωτεινής δέσμης που είναι ενσωματωμένες στη πηγή laser. Δε θα ασχοληθείτε με τη συναρμολόγηση των κύριων μερών της διάταξης και τις απαραίτητες συνδέσεις τις οποίες θα βρείτε έτοιμες. Πριν όμως ξεκινήσει η οποιαδήποτε πειραματική διαδικασία πρέπει να γίνει (την πρώτη φορά) η σύνδεση με τον Η/Υ και η αναγνώριση των συσκευών από ειδικό λογισμικό. Για το σκοπό αυτό ακολουθήστε τα παρακάτω βήματα: Θέστε σε λειτουργία το laser διόδου μέσω ενός διακόπτη στη πίσω πλευρά του. Θέστε σε λειτουργία τον Η/Υ. Θέστε σε λειτουργία τη συσκευή διασύνδεσης με τον Η/Υ, μέσω ενός πλευρικού διακόπτη. Ανοίξτε το αρχείο Πόλωση_I&ΙΙ (με διπλό αριστερό κλικ στο εικονίδιό του) που θα βρείτε στην επιφάνεια εργασίας (οθόνη του Η/Υ). Εάν όλες οι συνδέσεις είναι σωστές η σύνδεση και αναγνώριση θα έχει επιτευχθεί (διαφορετικά ζητήστε βοήθεια από το διδάσκοντα). Στην οθόνη εμφανίζεται χώρος εργασίας με τρία «παράθυρα». Το ένα αφορά τη σύνδεση των συσκευών και δεν θα σας απασχολήσει κατά τη διάρκεια της άσκησης. Το δεύτερο είναι ένα διάγραμμα ηλεκτρικής τάσης χρόνου (Διάγραμμα Ι). Το γράφημα [τάσης χρόνου] είναι βοηθητικό. Το τρίτο «παράθυρο» είναι ένα διάγραμμα τάσης γωνίας στροφής του αναλυτή (Διάγραμμα ΙΙ) και είναι αυτό που ενδιαφέρει περισσότερο. Η λήψη δεδομένων ξεκινά με το πάτημα του «διακόπτη» Start στo επάνω μέρος της οθόνης και σταματά με το πάτημα του ιδίου διακόπτη (που εν τω μεταξύ έχει μετονομαστεί σε Stop). Κατά τη διάρκεια των πειραμάτων θα χρειαστεί να εκκινήσετε και να διακόψετε τη λήψη δεδομένων πολλές φορές. Το λογισμικό κρατά όλες τις καμπύλες και τις ονομάζει με αύξοντα αριθμό. Επειδή είναι ενοχλητικό να υπάρχει μεγάλος αριθμός καμπυλών στο ίδιο διάγραμμα, μπορείτε να σβήσετε μερικές (με επιλογή τους με το ποντίκι και πάτημα των πλήκτρων Delete Enter από το πληκτρολόγιο). Αφήνετε τουλάχιστον μία καμπύλη στο διάγραμμα πριν κάνετε νέες μετρήσεις διότι διαφορετικά το γράφημα καθίσταται ανενεργό. Καμπύλες της επιλογής σας μπορούν να εγγραφούν σε αρχεία γραφικών τύπου *.bmp (μενού Display Export Picture) ώστε να μεταφερθούν σε δισκέττα ή άλλο αποθηκευτικό μέσο το οποίο θα πάρετε μαζί σας για να τις παρουσιάσετε στην εργασία σας. Τα αριθμητικά δεδομένα των γραφημάτων μπορούν επίσης να αποθηκευτούν σε αρχεία κειμένου *.txt για περαιτέρω ανάλυση. Για το σκοπό αυτό πρέπει να ανατρέξετε στα μενού File Export Data και να επιλέξετε τη συγκεκριμένη καμπύλη ([τάσηγωνία] και αύξοντα αριθμό). Εξοικειωθείτε με τις δυνατότητες μεταβολής των κλιμάκων του γραφήματος (με το ποντίκι πλησιάστε το κέρσορα στους άξονες και ειδικά τις αριθμητικές ενδείξεις σε αυτούς). Επίσης, θα χρειαστείτε και πρέπει να εξοικειωθείτε με τη δυνατότητα παρεμβολής θεωρητικά αναμενό- Σχήμα 17. Πόλωση του Φωτός Ι & ΙΙ 10/18

12 μενων καμπυλών στα πειραματικά δεδομένα (μέσω της μεθόδου των ελαχίστων τετραγώνων). Για το σκοπό αυτό υπάρχουν δύο κουμπιά, ένα στο παράθυρο του γραφήματος ( Fit ) και ένα στο επάνω μέρος της οθόνης ( Curve Fit ). Τα κουμπιά πρέπει να πατηθούν με τη παραπάνω σειρά. Πατώντας το πρώτο ( Fit ) και επιλέγοντας User-Defined Fit η θεωρητική καμπύλη εμφανίζεται στο γράφημα. Στην αρχή, εφόσον δεν έχει οριστεί συνάρτηση, εμφανίζεται μόνο μια οριζόντια ευθεία. Πατώντας στη συνέχεια το δεύτερο κουμπί ( Curve Fit ) και επιλέγοντας πάλι User-Defined Fit ορίζουμε την συνάρτηση που θέλουμε να παρεμβάλουμε στα πειραματικά δεδομένα. Γράψτε την κατάλληλη εξίσωση (π.χ. A*cos(x)^2), επιλέξτε κατάλληλες μονάδες (π.χ. DEG), επιλέξτε τον αύξοντα αριθμό της πειραματικής καμπύλης που σας ενδιαφέρει ( Input ) και τέλος πατήστε το κουμπί Accept. Η καμπύλη και οι παράμετροι που θα προκύψουν από τη μέθοδο των ελαχίστων τετραγώνων (στη παραπάνω εξίσωση η παράμετρος Α) θα εμφανιστούν στην οθόνη. Ειδικό θέμα Πρέπει να σημειωθεί ότι το λογισμικό θέτει πάντα ως μηδενική γωνία τη γωνία εκκίνησής του, ανεξάρτητα εάν αυτή αντιστοιχεί σε πραγματική γωνία θ 13 =0 o μεταξύ των αξόνων διέλευσης του πολωτή και του αναλυτή. Από την άλλη είναι δύσκολο να βρεθεί η πραγματική γωνία μηδέν. Για το λόγο αυτό έχει οριστεί με το όνομα θ 13 μία ακόμη γωνία ως θ 13 = x + 90 ο όπου x η ένδειξη του γωνιακού αισθητήρα. Είναι αυτή η γωνία θ 13 που χρησιμοποιείται στον οριζόντιο άξονα του διαγράμματος τάσης γωνίας. Για να είναι όμως οι τιμές της θ 13 σωστές θα πρέπει οι άξονες διέλευσης του πολωτή και του αναλυτή να είναι κάθετοι μεταξύ τους κατά την εκκίνηση της εκάστοτε μέτρησης. Για να το επιτύχετε θα πρέπει πριν από κάθε κύρια μέτρηση να προηγείται μία προκαταρκτική όπου θα έχετε αφαιρέσει όλα τα οπτικά στοιχεία εκτός των πολωτή και αναλυτή. Για τη προκαταρκτική μέτρηση τοποθετήστε μικρό λευκό χαρτί μεταξύ του αναλυτή και του φωτοανιχνευτή και παρατηρήστε τη φωτεινή δέσμη. Περιστρέψτε τον αναλυτή μέχρις ότου η ένταση της δέσμης να μηδενιστεί ή τουλάχιστον ελαχιστοποιηθεί. Τότε εισάγετε και τα υπόλοιπα οπτικά στοιχεία και προχωρήστε στη κύρια μέτρηση. 4. Πειραματική διαδικασία & ανάλυση μετρήσεων. Από τα πειράματα που ακολουθούν οι παράγραφοι 4.1, 4.2 και 4.3 αναφέρονται στις εργαστηριακές ασκήσεις της Πόλωσης Ι και οι 4.4., 4.5, και 4.6 της Πόλωσης ΙΙ. 4.1 Δύο Γραμμικοί Πολωτές. Θα βρείτε το άξονα του πολωτή Π 1 ήδη τοποθετημένο σε σχεδόν κατακόρυφη θέση. Προχωρήστε στη προκαταρκτική μέτρηση (κοιτάξτε το ειδικό θέμα στη παράγραφο 3) ως εξής: Τοποθετήστε μικρό λευκό χαρτί μεταξύ του α- ναλυτή και του φωτοανιχνευτή και περιστρέψτε τον αναλυτή (που για ευνόητους λόγους θα ονομάσουμε Π 2 ) μέχρις ότου η ένταση της δέσμης να μηδενιστεί ή τουλάχιστον ελαχιστοποιηθεί. Στη θέση αυτή οι άξονες διέλευσης των πολωτών είναι κάθετοι. Ξεκινήστε τώρα από τη θέση αυτή τη δεύτερη, κύρια, μέτρηση πατώντας το Start και περιστρέφοντας τον αναλυτή Π 2. Η περιστροφή του πρέπει να είναι αρκετά αργή (παρατηρείτε τις μετρήσεις στην οθόνη Διάγραμμα ΙΙ) ώστε να διαγράφεται καθαρά η καμπύλη. Πειραματιστείτε με διάφορες συνθήκες (καταγράφοντας μία καμπύλη κάθε φορά Start-Stop κ.λ.π.) καθώς και με Πόλωση του Φωτός Ι & ΙΙ 11/18

13 τη φορά περιστροφής που δίνει την καλύτερη καμπύλη (τα διάφορα μέγιστα να είναι ίσου ύψους και μη-κορεσμένα αντίστοιχα για τα ελάχιστα). Από τις καμπύλες που θα καταγράψετε κρατήστε την καμπύλη που σας ικανοποιεί και σβήστε τις υπόλοιπες. Σώστε τη καμπύλη αυτή σε αρχείο *.txt σε δισκέτα και στην επιφάνεια εργασίας, ονομάζοντάς το κατάλληλα ώστε να γίνεται αντιληπτό σε ποια ομάδα ανήκει και σε τι αναφέρεται. Χρησιμοποιήστε τη μέθοδο των ελαχίστων τετραγώνων για να σχεδιάσετε θεωρητική καμπύλη της μορφής A*cos(x +Β)^2, με Α=V max I max, x=θ 12 (θ 13 στο πρόγραμμα) σε deg και Β μια σταθερά που λαμβάνει υπ όψη το γεγονός ότι πιθανόν οι άξονες διέλευσης των δύο πολωτών να μην ήταν ακριβώς κάθετοι όταν ξεκίνησε η μέτρηση. Καταγράψτε τις παραμέτρους που προκύπτουν από τη μέθοδο ελαχίστων τετραγώνων. Σώστε το γράφημα ως αρχείο *.bmp στη δισκέττα σας και στην επιφάνεια εργασίας με κατάλληλο όνομα. Ενσωματώστε το γράφημα στην εργασία που θα παραδώσετε. Με τα πειραματικά δεδομένα που έχετε φυλάξει στο αρχείο *.txt, σχεδιάστε κατά την επεξεργασία της άσκησης στο σπίτι σε χαρτί millimetré τις καμπύλες Ι 12 /A = F(cos 2 (θ 12 +B)) και Ι 12 /A = F(cos 2 (θ 12 )) καθώς και τη θεωρητικά αναμενόμενη καμπύλη ((η οποία, θέτοντας x=cos 2 (θ 12 ), παριστάνει την ευθεία y=i/i max =x η οποία περνά από τα σημεία (x,y)=(0,0) & (1,1)). Χρησιμοποιήστε τις παραμέτρους Α και Β που προσδιορίσατε με τη μέθοδο των ελαχίστων τετραγώνων. Εάν τα σημεία του αρχείου είναι πάρα πολλά χρησιμοποιήστε λιγότερα (π.χ. ένα κάθε πέντε ή δέκα), αρκεί να αποτυπώνουν πιστά τη πειραματική καμπύλη. Σχολιάστε τις πιθανές διαφορές και ομοιότητες μεταξύ των καμπυλών. 4.2 Τρεις Γραμμικοί Πολωτές. Στο πείραμα αυτό θα τοποθετήσετε ένα ακόμη πολωτή (Π 2 ) μεταξύ του Π 1 και του αναλυτή (Π 3 ). Η γωνία του άξονα του Π 2 πρέπει να είναι 45 ο (ή -45 ο ) σε σχέση με τον άξονα του Π 1 (σχήμα 19). Επειδή δεν υπάρχει στον Π 2 αξιόπιστη γωνιομετρική κλίμακα η τοποθέτηση στη γωνία αυτή πρέπει να γίνει πειραματικά με την εξής διαδικασία: o Πριν τοποθετήσετε τον Π 2, τοποθετήστε μικρό λευκό χαρτί μεταξύ του αναλυτή και του φωτοανιχνευτή και περιστρέψτε τον Π 3 μέχρις ότου η ένταση της δέσμης να μηδενιστεί ή τουλάχιστον ελαχιστοποιηθεί (άξονες Π 1 Π 3 κάθετοι, θ 13 =90 ο ). o Σε αυτή τη θέση, παρεμβάλετε το Π 2. Πατήστε το Start και παρατηρήστε την ένταση του φωτός στο Διάγραμμα Ι ([τάση-χρόνος]). Περιστρέψτε τον Π 2 μέχρι να μεγιστοποιήσετε την ένταση. Στη θέση του μεγίστου η γωνία θ 12 = 45 ο. Αποδείξτε το στην εργασία που θα παραδώσετε με τη βοήθεια της σχέσης Ι 123 (θ 13 ) = T 2 Ι 1 cos 2 (θ 12 ) cos 2 (θ 13 θ 12 ). (12) που ισχύει για το σύστημα τριών πολωτών και προκύπτει από τη διπλή εφαρμογή του νόμου του Malus (σχέση (9)). Πόλωση του Φωτός Ι & ΙΙ 12/18

14 Χωρίς να μετακινήσετε από εδώ και πέρα τους Π 1 και Π 2 και εκκινώντας με τους άξονες διέλευσης των Π 1 και Π 3 ήδη καθετοποιημένους από τη προηγούμενη διαδικασία καταγράψτε την καμπύλη της τάσης (έντασης Ι 123 ) ως συνάρτηση της θ 13 (Διάγραμμα ΙΙ), περιστρέφοντας τον αναλυτή Π 3. Φυλάξτε την καμπύλη αυτή σε αρχείο *.txt στη δισκέτα σας και στην επιφάνεια εργασίας με κατάλληλο όνομα. Χρησιμοποιήστε τη μέθοδο των ελαχίστων τετραγώνων για να παρεμβάλετε στα πειραματικά δεδομένα, θεωρητική καμπύλη της μορφής A*cos(θ 13 + Β)^2. Καταγράψτε τις παραμέτρους A και B που προκύπτουν από τη μέθοδο ελαχίστων τετραγώνων. Φυλάξτε το γράφημα θεωρητικής και πειραματικής καμπύλης σε αρχείο *.bmp στη δισκέττα σας και στην ε- πιφάνεια εργασίας με κατάλληλο όνομα. Ενσωματώστε το γράφημα στην εργασία που θα παραδώσετε. Με τα δεδομένα του αρχείου *.txt σχεδιάστε κατά την επεξεργασία της άσκησης στο σπίτι σε χαρτί millimetré την καμπύλη Ι 123 /A = f(sin(2 θ 13 )). Με τη βοήθεια της σχέσης (12) αποδείξτε ότι η θεωρητική, αναγμένη στη μονάδα, σχέση της έντασης με τη γωνία θ 13 (για θ 12 = 45 ο ) γράφεται I/I max = (1sin[2 θ 13 ])/2. Σχεδιάστε αυτή τη θεωρητική καμπύλη (η οποία, θέτοντας x=sin[2 θ 13 ], παριστάνει την ευθεία y=i/i max =(1x)/2 η οποία, π.χ. για το θετικό πρόσημο, περνά από τα σημεία (x,y)=(-1,0),(0,0.5) &(1,1)) στο ίδιο διάγραμμα και σχολιάστε τα αποτελέσματα. 4.3 Στροφική ικανότητα διαλύματος ζάχαρης. Κατά το πείραμα αυτό θα εισάγετε μεταξύ του πολωτή και του αναλυτή τρεις σωλήνες με διαλύματα ζάχαρης διαφορετικών συγκεντρώσεων [C 1 ], [C 2 ] και [C 3 ]. Στόχος του πειράματος είναι ο προσδιορισμός των συγκεντρώσεων αυτών. Ακολουθήστε τα παρακάτω βήματα: Πριν από τη τοποθέτηση των διαλυμάτων καταγράψτε μία καμπύλη τάσης-γωνίας μόνο με το πολωτή και τον αναλυτή, ακολουθώντας τα ίδια Σχήμα 20. βήματα όπως αυτά του πειράματος 4.1. Μη ξεχάσετε να καθετοποιήσετε τους άξονες διέλευσης των πολωτή-αναλυτή πριν από τη μέτρηση. Η καμπύλη αυτή είναι η καμπύλη αναφοράς σας. Θα τη σώσετε σε αρχείο *.txt και θα τη κρατήσετε σε κοινό διάγραμμα μαζί με αυτές που θα ακολουθήσουν. β 1.0 β Με Διάλυμα I/I max 0.5 Χωρίς Διάλυμα (β) β θ 13 (deg) Καθετοποιήστε ξανά τους άξονες διέλευσης των πολωτή-αναλυτή και στη συνέχεια τοποθετήστε ένα διάλυμα (έστω το [C 1 ]) στη βάση του (σχήμα 20) και στην οπτική ράγα. Φροντίστε η δέσμη laser να περνά από το σωλήνα. Λόγω του ότι η διεύθυνση διάδοσης της δέσμης μπορεί να αλλάζει με και χωρίς το διάλυμα (λόγω διάθλασης) προτείνεται να χρησιμοποιή- Πόλωση του Φωτός Ι & ΙΙ 13/18

15 σετε είτε την μεγάλη ανοιχτή οπή του επιλογέα σχισμών και χαμηλή ευαισθησία (1), είτε την ημιδιαφανή (λευκή) οπή με μεγαλύτερη ευαισθησία εάν το σήμα είναι αρκετό (αλλά όχι κορεσμένο). Τότε καταγράψτε μία μέτρηση τάσης γωνίας υπό τη παρουσία του διαλύματος (σχήμα 21(α)). Φροντίστε ώστε η περιοχή γωνιών να περιλαμβάνει την αντίστοιχη περιοχή της πρώτης μέτρησης χωρίς διάλυμα. Σώστε την καμπύλη σε αρχείο *.txt. Επαναλάβατε το προηγούμενο βήμα για τα διαλύματα ζάχαρης συγκεντρώσεων [C 2 ] και [C 3 ]. Σώστε τις αντίστοιχες καμπύλες σε αρχεία *.txt και το γράφημα με τις τέσσερις καμπύλες ως αρχείο *.bmp στη δισκέτα σας και στην επιφάνεια εργασίας με κατάλληλο όνομα. Ενσωματώστε το γράφημα στην εργασία που θα παραδώσετε. Μετρήστε τα μήκη L i, i=1-3 των σωλήνων που περιέχουν τα τρία διαλύματα. Κατά την εργασία στο σπίτι, υπολογίστε τις γωνίες στροφής β i για κάθε διάλυμα από τη διαφορά γωνιών εμφάνισης διαδοχικών μεγίστων (αλλά και ελαχίστων) μεταξύ της καμπύλης i και της καμπύλης αναφοράς (σχήμα 21(β)). Χρησιμοποιήστε είτε το γράφημα είτε τα δεδομένα των αρχείων *.txt (όποιο δίνει ακριβέστερα αποτελέσματα). Εκτιμήστε και τα σφάλματα των γωνιών στροφής. Υποθέστε ότι η ειδική στροφική ικανότητα για τα υδατικά διαλύματα της ζάχαρης α=6.645 degrees cm 2 /gr είναι ανεξάρτητη της συγκέντρωσης. Μέσω της σχέσης (11) υπολογίστε τη συγκέντρωση κάθε διαλύματος και το σφάλμα της (εάν β i <0 χρησιμοποιήστε απόλυτες τιμές). Συγκεντρώστε τα μεγέθη β i, L i και [C i ] σε πίνακα και σχολιάστε τα αποτελέσματά σας. 4.4 Σύστημα πολωτή-πλακιδίου καθυστέρησης φάσης. Στην άσκηση αυτή θα αποδείξουμε πειραματικά ότι σε ένα σύστημα χαρακτηρισμού ενός πολωτικού συστήματος και ιδιαίτερα των διπλοθλαστικών πλακιδίων η ύπαρξη του αναλυτή είναι α- ναγκαία. Πράγματι, ας θεωρήσουμε μόνο τον πολωτή Π 1 και ένα πλακίδιο R 2, άγνωστης καθυστέρησης φάσης Δφ, του οποίου ο οπτικός άξονας σχηματίζει γωνία θ 12 με τον άξονα διέλευσης του Π 1. Αναλύουμε το πεδίο Ε 1 μετά το πολωτή σε δύο συνιστώσες, μία παράλληλη και μία κάθετη στον οπτικό άξονα. Υποθέτουμε για απλούστευση ότι μετά το πλακίδιο η κάθετη συνιστώσα δεν έχει υποστεί καθυστέρηση φάσης ενώ η παράλληλη συνιστώσα έχει υποστεί καθυστέρησης φάσης κατά Δφ. Τότε στη γενικότερη περίπτωση το φως είναι ελλειπτικά πολωμένο και οι δύο συνιστώσες του γράφονται E x z, t E1 sin 12 cosk z t και E y z t E cos cosk z t, 12 1 Το μάτι και οι ανιχνευτές φωτός δεν μπορούν να παρακολουθήσουν τις πολύ γρήγορες χρονικές μεταβολές του πεδίου. Αντιλαμβάνονται μόνο τη μέση χρονική τιμή της έντασής του Ι που είναι ανάλογη της μέσης χρονικής τιμής του μεγέθους E z, t 2. Η εύρεση της μέσης χρονικής τιμής α- παιτεί ολοκλήρωση σε μία περίοδο του κύματος Τ=1/f και στις περιπτώσεις που ενδιαφέρουν εδώ έχει ως αποτέλεσμα την αντικατάσταση των όρων της μορφής cos 2 (kz-ωt+δφ) και sin 2 (kz-ωt+δφ) με 1/2. Συνεπώς η ένταση της ακτινοβολίας μετά το πλακίδιο γράφεται, που καταλήγει στη σχέση Ι 12 < E z, t > Τ = < > Τ + < > Τ = E x E y = E1 sin 12 cos k z t E T 1 cos 12 cos k z t T 2 / 2 / Ι 12 E cos E sin E1. (13) Η (13) μας λέει ότι η ένταση που καταγράφουμε μετά το πλακίδιο είναι ανεξάρτητη τόσο της διαφοράς φάσης Δφ όσο και τη γωνίας στροφής θ 12. Συνεπώς είναι αδύνατον να συμπεράνουμε το είδος του πλακιδίου με αυτή τη πειραματική διάταξη (σχήμα 22). Για το αποδείξετε πειραματικά α- κολουθήστε τα παρακάτω βήματα: Τοποθετήστε ένα πλακίδιο καθυστέρησης φάσης (επάνω του αναγράφεται η λέξη Πόλωση του Φωτός Ι & ΙΙ 14/18

16 Επαναλάβατε το προηγούμενο βήμα με δύο πλακίδια καθυστέρησης φάσης όπου θα περιστρέφετε το ένα από αυτά. Σώστε και αυτό το γράφημα ως αρχείο *.bmp. Ενσωματώστε το γράφημα στην εργασία που θα παραδώσετε. Κατά την ανάλυση των μετρήσεων στο σπίτι σχολιάστε τις παρατηρήσεις σας. 4.5 Προσδιορισμός Καθυστέρησης Φάσης Διπλοθλαστικού Πλακιδίου ~λ/4. Σε αυτή την άσκηση θα παρεμβάλετε μεταξύ Π 1 και Π 3 ένα πλακίδιο καθυστέρησης φάσης R 2 το οποίο ονομαστικά λειτουργεί ως πλακίδιο λ/4. Το μήκος κύματος του laser διόδου όμως (~650 nm) διαφέρει από αυτό για το οποίο το πλακίδιο κατασκευάστηκε ως λ/4. Συνεπώς έχουμε να κάνουμε με ένα πλακίδιο λ/x. Η τιμή του αριθμού x είναι κοντά στο 4 αλλά όχι ακριβώς 4. Ο κύριος σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του x (ή ισοδύναμα της πραγματικής διαφοράς φάσης Δφ σχέση (10)). Επιπλέον, στο πλακίδιο δεν υπάρχει γωνιομετρική κλίμακα και δεν γνωρίζουμε τη διεύθυνση του οπτικού του άξονα. Συνεπώς και αυτό το στοιχείο πρέπει να προσδιοριστεί πειραματικά. Θα εργαστούμε και εδώ με γωνία θ 12 = 45 ο. Για να το επιτύχουμε α- κολουθούμε τα ίδια βήματα όπως και στο προηγούμενο πείραμα των τριών πολωτών δηλαδή: o Πριν τοποθετήσετε το R 2 τοποθετήστε μικρό λευκό χαρτί μεταξύ του αναλυτή και του φωτοανιχνευτή και περιστρέψτε τον Π 3 μέχρις ότου η ένταση της δέσμης να μηδενιστεί ή τουλάχιστον ελαχιστοποιηθεί (άξονες Π 1 Π 3 κάθετοι, θ 13 =90 ο ). o Σε αυτή τη θέση, παρεμβάλετε το R 2 και περιστρέψτε το μέχρι να μεγιστοποιήσετε την ένταση στο βοηθητικό Διάγραμμα Ι. Στη θέση του μεγίστου η γωνία θ 12 = 45 ο και για οποιοδήποτε πλακίδιο, ανεξάρτητα της διαφοράς φάσης Δφ. Χρησιμοποιήστε τη γενική σχέση Ι 123 = C {cos 2 [θ 13 ] + sin[2θ 12 ] sin[2(θ 13 θ 12 )] sin 2 [Δφ/2]} (14) (C σταθερά) που ισχύει για σύστημα γραμμικός πολωτής διπλοθλαστικό πλακίδιο γραμμικός πολωτής για να το αποδείξετε. Όπως μπορεί να επιβεβαιωθεί από την (14) στη θέση αυτή (θ 12 = 45 ο ), εάν το πλακίδιο ήταν ακρι- Πόλωση του Φωτός Ι & ΙΙ 15/18

17 βώς πλακίδιο λ/4 (Δφ=π/2), η περιστροφή του αναλυτή Π 3 θα έπρεπε να δίνει σταθερή ένταση Ι 123 (κυκλικά πολωμένο φως σχήμα 23(α)). Στη πράξη θα παρατηρήσετε αυξομειώσεις της έντασης Ι 123 μεταξύ μιας μέγιστης και μιας ελάχιστης, μη-μηδενικής, τιμής (σχήμα 23(β)). Το γεγονός ότι η ελάχιστη τιμή είναι μη-μηδενική μας λέει ότι έχουμε να κάνουμε με ελλειπτικά πολωμένο (και όχι γραμμικά πολωμένο) φως πριν από τον Π 3. Για να προσδιορίσετε τη πραγματική διαφορά φάσης Δφ εργαστείτε ως εξής: Χωρίς να μετακινήσετε τους Π 1 και R 2 καταγράψτε την καμπύλη της τάσης (έντασης Ι 123 ) ως συνάρτηση της θ 13 (Διάγραμμα ΙΙ), περιστρέφοντας τον αναλυτή Π 3. Επιλέξτε τη φορά περιστροφής που δίνει μέγιστα ίσης έντασης (αντίστοιχα και για τα ελάχιστα). Καταγράψτε αρκετά μέγιστα και ελάχιστα (τουλάχιστον τέσσερα + τέσσερα). Φυλάξτε την καμπύλη σε αρχεία *.txt και *.bmp στη δισκέτα σας και στην επιφάνεια εργασίας με κατάλληλο όνομα. Από το γράφημα στην οθόνη και με τη βοήθεια του κέρσορα καταγράψτε στις σημειώσεις σας τις τιμές των μεγίστων και ελαχίστων της έντασης. Μέσω της σχέσης (14) και για άγνωστη Δφ αποδείξτε στην εργασία που θα παραδώσετε ότι για θ 12 =45 ο ισχύει, I max I min I I cos. (15) max min Από τα μέγιστα και ελάχιστα που έχετε καταγράψει βρείτε μια μέση τιμή (και το σφάλμα της) για τα Ι max και Ι min αντίστοιχα και χρησιμοποιώντας τη σχέση (15) βρείτε τη διαφορά φάσης Δφ (και το σφάλμα της). Τέλος, μέσω της σχέσης (10) βρείτε και το x. Σχολιάστε τα αποτελέσματά σας. Πόλωση του Φωτός Ι & ΙΙ 16/18

18 4.6 Διπλοθλαστικό Πλακιδίο λ/2. Στη τελευταία άσκηση θα παρεμβάλετε μεταξύ Π 1 και Π 3 ένα πλακίδιο καθυστέρησης φάσης R 2 το οποίο ονομαστικά λειτουργεί ως πλακίδιο λ/2. Στη πράξη θα παρεμβάλετε δύο πλακίδια ~λ/4 από αυτά που χρησιμοποιήσατε στο προηγούμενο πείραμα. Κάθε πλακίδιο θα πρέπει να έχει τη δική του βάση στήριξης. Θα εργαστείτε και πάλι με γωνία θ 12 =45 ο. Η πειραματική διαδικασία εύρεσης της γωνίας αυτής είναι η ίδια όπως και προηγουμένως αλλά θα πρέπει να την εκτελέσετε για κάθε πλακίδιο ξεχωριστά και χωρίς τη παρουσία του άλλου. Όπως είδαμε η διαδικασία αυτή θέτει τον οπτικό άξονα σε γωνία θ 12 = 45 ο και δεν δίνει πληροφορίες για το πρόσημο. Παρ όλα αυτά ένα πλακίδιο που έχει τεθεί σε γωνία π.χ. θ 12 = -45 ο μπορεί να τεθεί σε γωνία θ 12 = +45 ο εάν το αντιστρέψουμε (δηλαδή εάν εναλλάξουμε τις επιφάνειες εισόδου και εξόδου του φωτός). Σκοπός της άσκησης είναι να παρατηρήσετε και να εξηγήσετε τις διαφορές των καμπυλών όταν (ι) και τα δύο πλακίδια έχουν στραφεί κατά τη ίδια φορά, έστω θ 12 = +45 ο (σχήμα 24(α)). (ιι) τα πλακίδια έχουν στραφεί κατά φορά αντίθετη (το ένα κατά θ 12 = +45 ο και το άλλο κατά θ 12 = -45 ο σχήμα 24(β)). Αφού λοιπόν προηγηθεί η εύρεση της θ 12 = 45 ο για κάθε πλακίδιο, παρεμβάλετέ τα το ένα μετά το άλλο μεταξύ του Π 1 και του αναλυτή Π 3 και στη συνέχεια Χωρίς να μετακινήσετε τους Π 1 και R 2 (λ/4 + λ/4) καταγράψτε την καμπύλη της τάσης (έντασης Ι 123 ) ως συνάρτηση της θ 13 (Διάγραμμα ΙΙ), περιστρέφοντας τον αναλυτή Π 3. Επιλέξτε τη φορά περιστροφής που δίνει μέγιστα ίσης έντασης. Φυλάξτε την καμπύλη αυτή σε αρχείο *.bmp στη δισκέτα σας και στην επιφάνεια εργασίας με κατάλληλο όνομα. Αντιστρέψτε τη βάση του ενός πλακιδίου (χωρίς να το βγάλετε από αυτή για να μη χαθεί η Πόλωση του Φωτός Ι & ΙΙ 17/18

19 Στην εργασία σας εξηγήστε λεπτομερώς τη μορφή των δύο καμπυλών σε σχέση με την αναμενόμενη συμπεριφορά (παράδειγμα (ΙΙΙ) της παραγράφου 2.2.2). 5. Βιβλιογραφία. [1] D. Halliday& R. Resnick, Φυσική, Τόμος Β (1976). [2] Γ. Ασημέλλης, Μαθήματα Οπτικής, Σύγχρονη Γνώση (2008). [3] E. Hecht, Optics, Addison-Wesley, MA, Second Edition (1987). [4] Α. Χριστοδουλλίδης, Εργαστηριακά Πειράματα Φυσικής 3, Πανεπιστήμιο Ιωαννίνων (2005). (αντίτυπα υπάρχουν στο αναγνωστήριο). Πόλωση του Φωτός Ι & ΙΙ 18/18

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

Βασικές διαδικασίες παραγωγής πολωμένου φωτός

Βασικές διαδικασίες παραγωγής πολωμένου φωτός Πόλωση του φωτός Βασικές διαδικασίες παραγωγής πολωμένου φωτός πόλωση λόγω επιλεκτικής απορρόφησης - διχρωισμός πόλωση λόγω ανάκλασης από μια διηλεκτρική επιφάνεια πόλωση λόγω ύπαρξης δύο δεικτών διάθλασης

Διαβάστε περισσότερα

Μέτρηση Γωνίας Brewster Νόμοι του Fresnel

Μέτρηση Γωνίας Brewster Νόμοι του Fresnel Μέτρηση Γωνίας Bewse Νόμοι του Fesnel [] ΕΙΣΑΓΩΓΗ Στο πείραμα, δέσμη φωτός από διοδικό lase ανακλάται στην επίπεδη επιφάνεια ενός ακρυλικού ημι-κυκλικού φακού, πολώνεται γραμμικά και ανιχνεύεται από ένα

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009 ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 2 ΔΕΙΚΤΗΣ ΔΙΑΘΛΑΣΗΣ ΚΡΥΣΤΑΛΛΟΥ (MCA) Σκοπός αυτού του πειράματος είναι ο υπολογισμός του δείκτη διάθλασης ενός κρυσταλλικού υλικού (mica). ΟΡΓΑΝΑ ΚΑΙ ΥΛΙΚΑ Επιπρόσθετα από τα υλικά

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Εισαγωγή Σκοπός της εργαστηριακής άσκησης είναι η μελέτη του ηλεκτροοπτικού φαινομένου (φαινόμενο Pockels) σε θερμοκρασία περιβάλλοντος για κρύσταλλο KDP και ο προσδιορισμός της τάσης V λ/4. Στοιχεία Θεωρίας

Διαβάστε περισσότερα

Σημειώσεις. Εργαστηρίου. Κυμάνσεων & Οπτικής

Σημειώσεις. Εργαστηρίου. Κυμάνσεων & Οπτικής Σημειώσεις Εργαστηρίου Κυμάνσεων & Οπτικής Ιωάννινα 01 Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής Ασκήσεις 1. Λεπτοί Φακοί -3. Πόλωση του Φωτός Ι & ΙΙ 4. Ανάκλαση & Διάθλαση του Φωτός 5-6. Συμβολή & Περίθλαση

Διαβάστε περισσότερα

Πόλωση του φωτός Ι. Σελίδα 1. Είδη Πόλωσης Πολωτές Χαρακτηρισµός της Πόλωσης Πειραµατική διαδικασία...

Πόλωση του φωτός Ι. Σελίδα 1. Είδη Πόλωσης Πολωτές Χαρακτηρισµός της Πόλωσης Πειραµατική διαδικασία... Πόλωση του φωτός Ι Σελίδα 1. Είδη Πόλωσης.... 1 1.1 Γραµµική Πόλωση. 1. Κυκλική Πόλωση. 1.3 Ελλειπτική Πόλωση. 1.4 Φυσικό Φως & Μη-πολωµένο Φως.. Πολωτές... 5.1 ιχρωικοί Γραµµικοί Πολωτές.. ιπλοθλαστικότητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο Φυσικής ΙΙΙ - Οπτική. Πέτρος Ρακιτζής. Τμήμα Φυσικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εργαστήριο Φυσικής ΙΙΙ - Οπτική Πέτρος Ρακιτζής Πανεπιστήμιο Κρήτης 5. ΜΕΛΕΤΗ ΟΠΤΙΚΗΣ ΕΝΕΡΓΟΤΗΤΑΣ - ΠΟΛΩΣΙΜΕΤΡΟ 1. Σκοπός Μελέτη οπτικής ενεργότητας Χρήση πολωσιμέτρου

Διαβάστε περισσότερα

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1 ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ 1. ΟΡΙΣΜΟΙ Το φως είναι ένα σύνθετο κύμα. Με εξαίρεση την ακτινοβολία LASER, τα κύματα φωτός δεν είναι επίπεδα κύματα. Κάθε κύμα φωτός είναι ένα ηλεκτρομαγνητικό κύμα στο οποίο τα διανύσματα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 11 Μελέτη πόλωσης του φωτός και των οπτικά ενεργών ουσιών

ΑΣΚΗΣΗ 11 Μελέτη πόλωσης του φωτός και των οπτικά ενεργών ουσιών Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 11 Μελέτη πόλωσης του φωτός και των οπτικά ενεργών ουσιών 11.1 Απαραίτητα όργανα και υλικά 1. Φωτεινή πηγή λέιζερ μήκους κύματος 632,8nm. 2. Δύο πολωτικά φίλτρα (πολωτής

Διαβάστε περισσότερα

ΕΙΔΗ ΚΥΜΑΤΩΝ εγκάρσια διαμήκη

ΕΙΔΗ ΚΥΜΑΤΩΝ εγκάρσια διαμήκη ΕΙΔΗ ΚΥΜΑΤΩΝ Τα οδεύοντα κύματα στα οποία η διαταραχή της μεταβλητής ποσότητας (πίεση, στάθμη, πεδίο κλπ) συμβαίνει κάθετα προς την διεύθυνση διάδοσης του κύματος ονομάζονται εγκάρσια κύματα Αντίθετα,

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ

ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ 1 ΣΚΟΠΟΣ Η παρατήρηση του φαινομένου της πόλωσης και η μέτρηση της γωνίας στροφής του πολωμένου φωτός διαλυμάτων οπτικά ενεργών ουσιών π.χ. σάκχαρα.

Διαβάστε περισσότερα

sin 2 n = sin A 2 sin 2 2 n = sin A = sin = cos

sin 2 n = sin A 2 sin 2 2 n = sin A = sin = cos 1 Σκοπός Βαθμός 9.5. Ηθελε να γραψω καλύτερα το 9 ερωτημα. Σκοπός αυτής της εργαστηριακής άσκησης είναι η μελέτη της ανάκλασης, διάθλασης και πόλωσης του φωτός. Προσδιορίζουμε επίσης τον δείκτη διάθλασης

Διαβάστε περισσότερα

4. Ανάκλαση & Διάθλαση του Φωτός

4. Ανάκλαση & Διάθλαση του Φωτός 4. Ανάκλαση & Διάθλαση του Φωτός Σελίδα 1. Σκοπός της άσκησης... 1. Στοιχεία θεωρίας... 1.1 Ανάκλαση & διάθλαση του φωτός: κρίσιμη γωνία πρόσπτωσης... 1. Συντελεστές ανακλαστικότητας & διαπερατότητας φωτεινής

Διαβάστε περισσότερα

Οπτική Μικροκυμάτων ΜΚ 1, ΜΚ 2

Οπτική Μικροκυμάτων ΜΚ 1, ΜΚ 2 Οπτική Μικροκυμάτων ΜΚ 1, ΜΚ 2 1 Εισαγωγή Μικροκύματα είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος 0.1cm

Διαβάστε περισσότερα

Οι πολωτές είναι οπτικά στοιχεία τα οποία διαμορφώνουν την κατάσταση πόλωσης του διερχόμενου φωτός.

Οι πολωτές είναι οπτικά στοιχεία τα οποία διαμορφώνουν την κατάσταση πόλωσης του διερχόμενου φωτός. Μαθηματική Περιγραφή Πολωτών: Πίνακες Jones Οι πολωτές είναι οπτικά στοιχεία τα οποία διαμορφώνουν την κατάσταση πόλωσης του διερχόμενου φωτός. Σύμφωνα με το αποτέλεσμα που επιτυγχάνουν, οι πολωτές κατατάσσονται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

Το Φως Είναι Εγκάρσιο Κύμα!

Το Φως Είναι Εγκάρσιο Κύμα! ΓΙΩΡΓΟΣ ΑΣΗΜΕΛΛΗΣ Μαθήματα Οπτικής 3. Πόλωση Το Φως Είναι Εγκάρσιο Κύμα! Αυτό που βλέπουμε με τα μάτια μας ή ανιχνεύουμε με αισθητήρες είναι το αποτέλεσμα που προκύπτει όταν φως με συγκεκριμένο χρώμα -είδος,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

συνίστανται από πολωτή που επιτρέπει να περνούν µόνο τα κατακόρυφα πολωµένα κύµατα.

συνίστανται από πολωτή που επιτρέπει να περνούν µόνο τα κατακόρυφα πολωµένα κύµατα. Γραµµικά πολωµένο ηλεκτροµαγνητικό κύµα. Νόµος του Malus Η κλασσική κυµατική θεωρία του φωτός µοντελοποιεί το φως (ή ένα τυχόν ηλεκτροµαγνητικό κύµα κατ επέκταση), στον ελεύθερο χώρο, ως ένα εγκάρσιο ηλεκτροµαγνητικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 9: Κυκλικά και ελλειπτικά πολωμένο φως - μετατροπή του σε γραμμικά πολωμένο φως

Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 9: Κυκλικά και ελλειπτικά πολωμένο φως - μετατροπή του σε γραμμικά πολωμένο φως Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Οπτική (Ε) Ενότητα 9: Κυκλικά και ελλειπτικά πολωμένο φως - μετατροπή του σε γραμμικά πολωμένο φως Αθανάσιος Αραβαντινός Τμήμα

Διαβάστε περισσότερα

HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί

HMY 333 Φωτονική Διάλεξη 12 Οπτικοί κυματοδηγοί 4 Hsiu. Ha Ανάκλαση και μετάδοση του φωτός σε μια διηλεκτρική επαφή HMY 333 Φωτονική Διάλεξη Οπτικοί κυματοδηγοί i i i r i si c si v c hp://www.e.readig.ac.u/clouds/awell/ c 3 Γωνία πρόσπτωσης < κρίσιμη

Διαβάστε περισσότερα

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων 5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o προβλέπετε με βάση τη συμμετρία αν ένα μόριο έχει μόνιμη

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΚΥΜΑΤΑ Θέμα1: Α. Η ταχύτητα διάδοσης ενός ηλεκτρομαγνητικού κύματος: α. εξαρτάται από τη συχνότητα ταλάντωσης της πηγής β. εξαρτάται

Διαβάστε περισσότερα

Περίθλαση και εικόνα περίθλασης

Περίθλαση και εικόνα περίθλασης Περίθλαση και εικόνα περίθλασης Η περίθλαση αναφέρεται στη γενική συμπεριφορά των κυμάτων, τα οποία διαδίδονται προς όλες τις κατευθύνσεις καθώς περνούν μέσα από μια σχισμή. Ο όρος εικόνα περίθλασης είναι

Διαβάστε περισσότερα

Γραµµικά πολωµένο φως - Ο νόµος του Malus

Γραµµικά πολωµένο φως - Ο νόµος του Malus Ο10 Γραµµικά πολωµένο φως - Ο νόµος του Malus 1. Σκοπός Στην άσκηση αυτή θα επιβεβαιώσουµε πειραµατικά την προβλεπόµενη σχέση ανάµεσα στη διεύθυνση πόλωσης του φωτός και της έντασής του, καθώς αυτό διέρχεται

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή

Διαβάστε περισσότερα

Πόλωση ηλεκτρικού πεδίου

Πόλωση ηλεκτρικού πεδίου ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 15 2. Άσκηση 2 Πόλωση ηλεκτρικού πεδίου 2.1 Σκοπός της Εργαστηριακής Άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την πόλωση των µικροκυµάτων και την

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΧΧ ΑΝΑΚΛΑΣΗ ΠΟΛΩΜΕΝΟΥ ΦΩΤΟΣ - ΕΞΙΣΩΣΕΙΣ FRESNEL

ΑΣΚΗΣΗ ΧΧ ΑΝΑΚΛΑΣΗ ΠΟΛΩΜΕΝΟΥ ΦΩΤΟΣ - ΕΞΙΣΩΣΕΙΣ FRESNEL ΑΣΚΗΣΗ ΧΧ ΑΝΑΚΛΑΣΗ ΠΟΛΩΜΕΝΟΥ ΦΩΤΟΣ - ΕΞΙΣΩΣΕΙΣ FRESNEL ΧΧ.1 Σκοπός Σκοπός αυτής της άσκησης είναι η μελέτη της συμπεριφοράς του γραμμικά πολωμένου φωτός, όταν ανακλάται σε επίπεδη επιφάνεια διηλεκτρικού

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 20-3-2011 2 ΘΕΜΑ 1ο Να γράψετε στο

Διαβάστε περισσότερα

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης...

1. Σκοπός της άσκησης... 1. 2. Στοιχεία θεωρίας... 1. 2.1 Γεωμετρική οπτική... 1. 2.2 Ο νόμος της ανάκλασης... 1. 2.3 Ο νόμος της διάθλασης... 1. Λεπτοί Φακοί Σελίδα 1. Σκοπός της άσκησης.... 1 2. Στοιχεία θεωρίας... 1 2.1 Γεωμετρική οπτική... 1 2.2 Ο νόμος της ανάκλασης... 1 2.3 Ο νόμος της διάθλασης... 2 2.4 Είδωλα & παραξονική προσέγγιση...

Διαβάστε περισσότερα

Φίλιππος Φαρμάκης Επ. Καθηγητής. Δείκτης διάθλασης. Διάδοση του Η/Μ κύματος μέσα σε μέσο

Φίλιππος Φαρμάκης Επ. Καθηγητής. Δείκτης διάθλασης. Διάδοση του Η/Μ κύματος μέσα σε μέσο 9 η Διάλεξη Απόσβεση ακτινοβολίας, Σκέδαση φωτός, Πόλωση Φίλιππος Φαρμάκης Επ. Καθηγητής 1 Δείκτης διάθλασης Διάδοση του Η/Μ κύματος μέσα σε μέσο Η ταχύτητα διάδοσης μειώνεται κατά ένα παράγοντα n (v=c/n)

Διαβάστε περισσότερα

ΕΙΔΗ ΚΥΜΑΤΩΝ εγκάρσια διαμήκη

ΕΙΔΗ ΚΥΜΑΤΩΝ εγκάρσια διαμήκη ΕΙΔΗ ΚΥΜΑΤΩΝ Τα οδεύοντα κύματα στα οποία η διαταραχή της μεταβλητής ποσότητας (πίεση, στάθμη, πεδίο κλπ) συμβαίνει κάθετα προς την διεύθυνση διάδοσης του κύματος ονομάζονται εγκάρσια κύματα Αντίθετα,

Διαβάστε περισσότερα

Περιεχόμενα διάλεξης

Περιεχόμενα διάλεξης 7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια

Διαβάστε περισσότερα

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30

ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΤΑΞΗ ΤΜΗΜΑ ΗΜ/ΝΙΑ ΚΥΡΙΑΚΗ 11/3/2012 ΧΡΟΝΟΣ ΕΞΕΤΑΣΗΣ: 10:30-13:30 Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s.

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. 1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. Να βρεθεί το μήκος κύματος. 2. Σε ένα σημείο του Ειρηνικού ωκεανού σχηματίζονται κύματα με μήκος κύματος 1 m και

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία 1 ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία Ιωάννης Πούλιος Αθανάσιος Κούρας Ευαγγελία Μανώλη ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 54124

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 0 Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Γ Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα

Διαβάστε περισσότερα

Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell)

Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell) Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell) 1. Σκοπός Αξιοποιώντας τις μετρήσεις των γωνιών πρόσπτωσης, διάθλασης α και δ αντίστοιχα μίας πολύ στενής φωτεινής δέσμης

Διαβάστε περισσότερα

5 Δεκεμβρίου 2015 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

5 Δεκεμβρίου 2015 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ 5 Δεκεμβρίου 2015 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2.. 3.. ΜΟΝΑΔΕΣ: Το πρόβλημα Μελέτη οπτικών ιδιοτήτων διαφανούς υλικού με τη βοήθεια πηγής φωτός laser Είστε στο δωμάτιό

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήρια Οπτικής ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2009

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήρια Οπτικής ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2009 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήρια Οπτικής ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 2009 Σκοπός της άσκησης 1. Να μπορείτε, αν σας δίνονται οι συναρτήσεις των δύο κάθετα γραμμικά

Διαβάστε περισσότερα

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,,

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,, 1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι μετρημένα σε και

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΦΩΣ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 04-05 ΠΟΡΕΙΑ ΑΚΤΙΝΑΣ. Β. Στο διπλανό

Διαβάστε περισσότερα

Γραµµικά πολωµένο φως - Ο νόµος του Malus

Γραµµικά πολωµένο φως - Ο νόµος του Malus Ο10 Γραµµικά πολωµένο φως - Ο νόµος του Malus 1. Σκοπός Στην άσκηση αυτή θα επιβεβαιώσουµε πειραµατικά την προβλεπόµενη σχέση ανάµεσα στη διεύθυνση πόλωσης του φωτός και της έντασής του, καθώς αυτό διέρχεται

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης.

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. ΠΕΙΡΑΜΑ 5 Μελέτη ευθύγραμμης ομαλής και επιταχυνόμενης κίνησης. Σκοπός του πειράματος Σκοπός του πειράματος είvαι vα μελετηθούν τα βασικά φυσικά μεγέθη της μεταφορικής κίνησης σε μία διάσταση. Τα μεγέθη

Διαβάστε περισσότερα

1. Το σημείο Ο ομογενούς ελαστικής χορδής, τη χρονική στιγμή t= αρχίζει να εκτελεί Α.Α.Τ. με εξίσωση y=,5ημπt ( SI), κάθετα στη διεύθυνση της χορδής. Το κύμα που παράγεται διαδίδεται κατά τη θετική κατεύθυνση

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 4: ΟΠΤΙΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ AΠΟΡΡΟΦΗΣΗΣ

ΠΕΙΡΑΜΑ 4: ΟΠΤΙΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ AΠΟΡΡΟΦΗΣΗΣ ΠΕΙΡΑΜΑ 4: ΟΠΤΙΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ AΠΟΡΡΟΦΗΣΗΣ [1] ΘΕΩΡΙΑ Σύμφωνα με τη κβαντομηχανική, τα άτομα απορροφούν ηλεκτρομαγνητική ενέργεια με διακριτό τρόπο, με «κβάντο» ενέργειας την ενέργεια hv ενός φωτονίου,

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Γ Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Γ Λυκείου Γ Λυκείου Θεωρητικό Μέρος 10 Μαρτίου 2012 ω Θέμα 1ο Α. Ένα βαρίδι με μάζα m προσαρμόζεται σε ελατήριο με φυσικό μήκος L 0 και σταθερά k. Το σύστημα περιστρέφεται και διαγράφει οριζόντιο κύκλο με γωνιακή

Διαβάστε περισσότερα

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ ΔΙΩΝΙΣΜ: Μ Θ Η Μ : www.paideia-agrinio.gr ΤΞΗΣ ΛΥΕΙΟΥ Φ Υ ΣΙ Η ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ :...... Σ Μ Η Μ :..... Η Μ Ε Ρ Ο Μ Η Ν Ι : 23 / 0 3 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Θ ΕΜ Σ Ω Ν : ΥΡΜΗ

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Επιστημονική Φωτογραφία (Ε)

Επιστημονική Φωτογραφία (Ε) Διάθλαση μέσω πρίσματος Φασματοσκοπικά χαρακτηριστικά πρίσματος Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Επιστημονική Φωτογραφία (Ε) Ενότητα 4: Πόλωση από γραμμικό, πολωτικό φίλτρο

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 010 Σκοπός της άσκησης Να μπορείτε να εξηγήσετε το φαινόμενο της Συμβολής και κάτω από ποιες προϋποθέσεις δύο δέσμες φωτός, μπορεί να συμβάλουν. Να μπορείτε να περιγράψετε

Διαβάστε περισσότερα

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 11 ΣΕΠΤΕΜΒΡΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Πειραματικός υπολογισμός του μήκους κύματος μονοχρωματικής ακτινοβολίας

Πειραματικός υπολογισμός του μήκους κύματος μονοχρωματικής ακτινοβολίας Πειραματικός υπολογισμός του μήκους κύματος μονοχρωματικής ακτινοβολίας Τάξη : Γ Λυκείου Βασικές έννοιες και σχέσεις Μήκος κύματος - Μονοχρωματική ακτινοβολία - Συμβολή ηλεκτρομαγνητικών κυμάτων - Κροσσοί

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΗ ΣΥΝΕΧΩΝ ΦΑΣΜΑΤΩΝ ΕΚΠΟΜΠΗΣ & ΑΠΟΡΡΟΦΗΣΗΣ ΣΤΕΡΕΟΥ

ΠΑΡΑΤΗΡΗΣΗ ΣΥΝΕΧΩΝ ΦΑΣΜΑΤΩΝ ΕΚΠΟΜΠΗΣ & ΑΠΟΡΡΟΦΗΣΗΣ ΣΤΕΡΕΟΥ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΑΡΑΤΗΡΗΣΗ ΣΥΝΕΧΩΝ ΦΑΣΜΑΤΩΝ ΕΚΠΟΜΠΗΣ & ΑΠΟΡΡΟΦΗΣΗΣ ΣΤΕΡΕΟΥ Α. ΣΤΟΧΟΙ Η παραγωγή λευκού φωτός με τη χρήση λαμπτήρα πυράκτωσης. Η χρήση πηγών φωτός διαφορετικής

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος.

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος. Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ. Διάθλαση μέσω πρίσματος - Φασματοσκοπικά χαρακτηριστικά πρίσματος. 1. Σκοπός Όταν δέσμη λευκού φωτός προσπέσει σε ένα πρίσμα τότε κάθε μήκος κύματος διαθλάται σύμφωνα με τον αντίστοιχο

Διαβάστε περισσότερα

ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ

ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 1 ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση

Διαβάστε περισσότερα

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης 3 Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης Μέθοδος Σε σώμα διαφανές ημικυλινδρικού σχήματος είναι εύκολο να επιβεβαιωθεί ο νόμος του Sell και να εφαρμοστεί

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009 ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΦΩΤΟΣ ASER ΥΛΙΚΑ ΚΑΙ ΟΡΓΑΝΑ Επιπρόσθετα με τα υλικά 1), 2) και 3), αναμένεται να χρησιμοποιήσετε τα ακόλουθα: 4) Φακός ενσωματωμένος μέσα σε

Διαβάστε περισσότερα

Ερωτήσεις-Θέματα προηγούμενων εξετάσεων

Ερωτήσεις-Θέματα προηγούμενων εξετάσεων Ερωτήσεις-Θέματα προηγούμενων εξετάσεων Μέρος Α Κεφάλαιο 1 ο Εισαγωγή 1.1. Ποια είναι η διάκριση μεταξύ Μεσοφάσεων και Υγροκρυσταλλικών φάσεων; Κεφάλαιο ο Είδη και Χαρακτηριστικά των Υγρών Κρυστάλλων.1.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 22 ΜΑΪΟΥ 2013 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Στις ερωτήσεις Α1-Α4 να γράψετε

Διαβάστε περισσότερα

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη

Διαβάστε περισσότερα

Φυσική ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3

Φυσική ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3 Φυσική ΘΕΜΑ 1 1) Υπάρχουν δύο διαφορετικά είδη φορτίου που ονομάστηκαν θετικό και αρνητικό ηλεκτρικό φορτίο αντίστοιχα. Τα σώματα που έχουν θετικό φορτίο λέμε ότι είναι θετικά φορτισμένα (π.χ. μια γυάλινη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

δ. έχουν πάντα την ίδια διεύθυνση.

δ. έχουν πάντα την ίδια διεύθυνση. Διαγώνισμα ΦΥΣΙΚΗ Κ.Τ Γ ΛΥΚΕΙΟΥ ΖΗΤΗΜΑ 1 ον 1.. Σφαίρα, μάζας m 1, κινούμενη με ταχύτητα υ1, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m. Οι ταχύτητες των σφαιρών μετά την κρούση α. έχουν

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στα ΚΥΜΑΤΑ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στα ΚΥΜΑΤΑ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr Φυσική Γ Λυκείου Θετικής - Τεχνολογικής κατεύθυνσης Επαναληπτικά θέματα στα ΚΥΜΑΤΑ Πηγή: study4exams.gr Επιμέλεια: Μαρούσης Βαγγέλης Φυσικής ζητήματα 1 Επαναληπτικά Θέματα στα Κύματα A. Ερωτήσεις Πολλαπλής

Διαβάστε περισσότερα

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα.

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. 1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. Για τους δείκτες διάθλασης n 1 και n 2 ισχύει: n 2 = (11 / 10)

Διαβάστε περισσότερα

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος 1. Εισαγωγή Όταν δέσµη λευκού φωτός προσπέσει σε ένα πρίσµα τότε κάθε µήκος κύµατος διαθλάται σύµφωνα µε τον αντίστοιχο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: ΧΡΟΝΟΣ: ΦΥΣΙΚΗ 3 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: 27/05/2014 ΩΡΑ ΕΝΑΡΞΗΣ:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ 17/12/24 ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 24-5 3 η ΕΡΓΑΣΙΑ Προθεσμία παράδοσης 31/1/25 Άσκηση 1 α) Το ηλεκτρικό πεδίο ενός επιπέδου ηλεκτρομαγνητικού κύματος έχει 2 1 πλάτος 1 Vm. Βρείτε (i) το μέτρο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Γ Λυκείου 1 Μαρτίου 11 Θέμα 1 ο Α. Η οκτάκωπος είναι μια μακρόστενη λέμβος κωπηλασίας με μήκος 18 m. Στα κωπηλατοδρόμια, κάποιες φορές, κύματα τα οποία δεν έχουν μεγάλο πλάτος μπορεί να

Διαβάστε περισσότερα

Περίθλαση από διπλή σχισµή.

Περίθλαση από διπλή σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 81 8. Άσκηση 8 Περίθλαση από διπλή σχισµή. 8.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φράγµατα περίθλασης και ειδικότερα

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 0 ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που

Διαβάστε περισσότερα

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες:

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: ΔΙΑΓΩΝΙΣΜΑ ΚΥΜΑΤΩΝ (1) ΘΕΜΑ 1 ο Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: 1) Κατά τη διάδοση ενός κύματος μεταφέρεται ενέργεια και ορμή, αλλά όχι ύλη. 2) Σε

Διαβάστε περισσότερα

Μέσα στην τάξη. Φωτοελαστικότητα. Το πολωμένο φως και το ταπεινό σελοτέηπ σε μία πολύχρωμη συνεργασία

Μέσα στην τάξη. Φωτοελαστικότητα. Το πολωμένο φως και το ταπεινό σελοτέηπ σε μία πολύχρωμη συνεργασία Φωτοελαστικότητα. Το πολωμένο φως και το ταπεινό σελοτέηπ σε μία πολύχρωμη συνεργασία Παναγιώτης Λάζος Η οπτική είναι ένας μάλλον περιθωριοποιημένος κλάδος της Φυσικής σε όλες τις βαθμίδες της εκπαίδευσης.

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34

Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34 Κυματική ΦΥΕ34 0/07/0 Ελληνικό Ανοικτό Πανεπιστήμιο Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34 KYMATIKH Διάρκεια: 80 λεπτά Ονοματεπώνυμο: Τμήμα: Θέμα ο (Μονάδες:.5) Α) Θεωρούμε

Διαβάστε περισσότερα

Περιεχόμενα διάλεξης

Περιεχόμενα διάλεξης 7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

Γραμμικώς πολωμένα κύματα σε κάθετο επίπεδο

Γραμμικώς πολωμένα κύματα σε κάθετο επίπεδο ΚΥΚΛΙΚΟΣ ΔΙΧΡΩΙΣΜΟΣ Γραμμικώς πολωμένα κύματα σε κάθετο επίπεδο όταν το διάνυσμα του ηλεκτρικού πεδίου ταλαντεύεται κατά μήκος μιας ίσιας γραμμής τότε τα κύματα λέγονται επίπεδα ή γραμμικώς πολωμένα Γραμμικώς

Διαβάστε περισσότερα

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: ,  / Γ.Κονδύλη & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο:20-6.24.000, http:/ / www.akadimos.gr ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 204 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια Θεμάτων: Παπαδόπουλος Πασχάλης ΘΕΜΑ

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα