ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ"

Transcript

1 ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ Υποστηρίζεται η άποψη ότι η ελληνιστική περίοδος (3ος - 2ος αι. π.χ.) αποτελεί το «απόγειο» της αρχαίας ελληνικής επιστήµης. Επίσης, ορισµένοι ιστορικοί της επιστήµης εκτιµούν ότι η ιστορία της ελληνικής επιστήµης κατά τον 3ο µ.χ. αιώνα και µετά χαρακτηρίζεται από µια διαρκώς φθίνουσα παραγωγή νέων ιδεών και από µια παράλληλη διοχέτευση της επιστηµονικής δραστηριότητας στη συγγραφή σχολιαστικών υποµνηµάτων. Η περίοδος αυτή χαρακτηρίζεται ως παρακµή της ελληνικής επιστήµης. Α. Αναφερθείτε στη συµβολή του Αρχιµήδη και του Ευκλείδη στην ανάπτυξη της επιστήµης κατά την ελληνιστική περίοδο. Β. Ποια είναι κατά την εκτίµησή σας τα αίτια της επιστηµονικής άνθησης κατά την ελληνιστική περίοδο; Γ. Συµφωνείτε ή διαφωνείτε µε την άποψη ότι η κατάσταση της επιστηµονικής σκέψης κατά την ύστερη αρχαιότητα (3ος - 4ος αι. µ.χ ) µπορεί να περιγραφεί µε τη φράση «παρακµή της ελληνικής επιστήµης»; ΕΙΣΑΓΩΓΗ Από τον 3 ο αιώνα πχ εγκαινιάζεται µια νέα περίοδος, η ελληνιστική περίοδος, η οποία εκφράζει µια νέα αλλαγή στον πνευµατικό κόσµο, τη φιλοσοφία και στις επιστήµες. Στην Ελληνιστική περίοδο πραγµατοποιήθηκε µια εντυπωσιακή και αξιοσηµείωτη ανάπτυξη των επιστηµών και της τεχνολογίας, όπως στους τοµείς των µαθηµατικών, της αστρονοµίας και της µηχανικής. Στην εργασία αυτή θα γίνει αναφορά στη συµβολή του Αρχιµήδη και του Ευκλείδη στην ανάπτυξη της επιστήµης κατά την ελληνιστική περίοδο. Θα προσδιοριστούν τα αίτια της άνθισης των επιστηµών κατά την ελληνιστική περίοδο και θα δοθεί απάντηση στο ερώτηµα, αν από το τέλος της ελληνιστικής περιόδου υπάρχει παρακµή της ελληνικής επιστήµης. 1

2 Η ΣΥΜΒΟΛΗ ΤΟΥ ΕΥΚΛΕΙ Η ΚΑΙ ΤΟΥ ΑΡΧΙΜΗ Η ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΤΑ ΤΗΝ ΕΛΛΗΝΙΣΤΙΚΗ ΠΕΡΙΟ Ο. Τεράστια ήταν η προσφορά των µαθηµατικών Ευκλείδη και Αρχιµήδη στην εξέλιξη της ελληνιστικής επιστήµης. Ο Ευκλείδης µε το σύγγραµµά του Στοιχεία συµπεριέλαβε όλες τις µαθηµατικές γνώσεις που είχαν αποκτηθεί µέχρι τα τέλη του 4 ου αιώνα πχ. Βέβαια σε αυτά περιέχονται και κάποιες σηµαντικές εξαιρέσεις όπως είναι η θεωρία των κωνικών τοµών και η µαθηµατική θεωρία της αρµονίας. Πραγµατοποιήθηκε µια σύνθεση µε µεγάλο βαθµό µεθοδικότητας και της συνέπειας. Το έργο του αποτέλεσε υπόδειγµα για τους µεταγενέστερους συγγραφείς στα µαθηµατικές και στις άλλες επιστήµες. 1 To κύριο χαρακτηριστικό του έργου Στοιχεία είναι η αξιωµατικήπαραγωγική µορφή έκθεσης των αποτελεσµάτων. Αυτό σηµαίνει ότι µε αφετηρία ενός µικρού αριθµού αρχικών προτάσεων(αιτήµατα, κοινές έννοιες) µε βάση κάποιους κανόνες παραγωγής παράγονται τα θεωρήµατα. 2 Ο Ευκλείδης διατυπώνει µια σειρά από ορισµούς, γιατί έχει ως σκοπό να κάνει τους αναγνώστες να καταλάβουν τον τρόπο µε τον οποίο αξιοποιούνται οι έννοιες στο έργο. Στη συνέχεια διατυπώνει τα αιτήµατα και τις κοινές έννοιες. Τα αιτήµατα αποτελούν τις βασικές παραδοχές που χρησιµοποιούνται στη Γεωµετρία, ενώ οι κοινές έννοιες είναι γενικές προτάσεις τις οποίες αποδέχονται σε όλες τις επιστήµες. Τα αιτήµατα λειτουργούν ως γεωµετρικά αξιώµατα και οι κοινές ως λογικά αξιώµατα. 3 Το έργο του Ευκλείδη Στοιχεία είναι αξιόλογο όχι µόνο για τη συστηµατικότητά του αλλά και για τη συλλογή του υλικού του. Αποτελεί ένα καλό οδηγό για να γνωρίσουµε επιστηµονικά το υλικό των µαθηµατικών. 4 Η γεωµετρία του Ευκλείδη αποτέλεσε το υπόδειγµα της επιστηµονικής αλήθειας που προσπάθησαν να εφαρµόσουν οι Aρχαίοι Έλληνες όχι µόνο στο χώρο των µαθηµατικών αλλά στην αστρονοµία και στη µηχανική. 5 1 Χριστιανίδης σελ Χριστιανίδης σελ Χριστιανίδης σελ Farington σελ Farington σελ 249 2

3 Ο Αρχιµήδης αξιοποιεί τις απειροστικές µεθόδους του Ευδόξου εφαρµόζοντας τες επιτυχώς για την εύρεση εµβαδών και όγκων διαφόρων σχηµάτων. 6 Ο Αρχιµήδης στο έργο Κύκλου µέτρησις διακρίνεται για τους περίπλοκους αριθµητικούς υπολογισµούς. Εκτελούσε περίπλοκους αριθµητικούς υπολογισµούς και να παρουσιάζει τα αριθµητικά αποτελέσµατα. Καταλήγει στον υπολογισµό της τιµής του π, για την εύρεση της οποίας πραγµατοποίησε µια σειρά από αριθµητικούς υπολογισµούς που όµοιοι τους δεν υπάρχουν σε κανένα προγενέστερο έργο. 7 Το γεωµετρικό έργο του Αρχιµήδη είναι αξιόλογο. Αναπτύσσονται ευρετικές µέθοδοι µε βάση τα οποία ήταν σε θέση να γνωρίζει πολλά µαθηµατικά αποτελέσµατα προτού να τα αποδείξει µε αυστηρό γεωµετρικό τρόπο Τα γεωµετρικά του συγγράµµατα διαφοροποιούνται ως προς τη Στοιχείωση του Ευκλείδη αναφέροντας τη µέθοδο ανακάλυψης των θεωρηµάτων, προτού προχωρήσει στην απόδειξή τους. Στο σύγγραµµα Περί των µηχανικών θεωρηµάτων προς Ερατοσθένη έφοδος γίνεται αναλυτική αναφορά στις ευρετικές µεθόδους µε βάση τις οποίες οδηγείται σε αποτελέσµατα. 8 Ο Αρχιµήδης γνωρίζοντας τους νόµους της στατικής ισχυρίζεται ότι κάθε µη αβαρές σώµα έχει ένα κέντρο βάρους. Χρησιµοποιεί τους νόµους της στατικής για την επίλυση γεωµετρικών προβληµάτων και την ανάλυση του εµβαδού σε άθροισµα ευθύγραµµων τµηµάτων. 9 Όπως αναφέρει στο γράµµα του προς τον Ερατοσθένη µέσω της στατικής βρίσκει τον λόγο της σφαίρας προς τον περιγεγραµµένο κύλινδρο. Με γεωµετρικό τρόπο ορίζονται τα οµογενή σήµατα και καθορίζεται το κέντρο βάρους τους. Με µεθόδους της µηχανικής και της γεωµετρίας επιχειρεί να αποδείξει ότι το εµβαδό παραβολικού τµήµατος είναι ίσο προς τα 4/3 του τριγώνου. Η επιφάνεια κάθε σφαίρας είναι τετραπλάσια του µέγιστου κύκλου της, γιατί κάθε κύκλος είναι ίσος µε το τρίγωνο που έχει βάση την περιφέρεια του κύκλου, ενώ το ύψος ισούται µε την ακτίνα του κύκλου. 10 Ο Αρχιµήδης διατυπώνει έξι αξιώµατα µε τα οποία ορίζει τις κοίλες και κυρτές γραµµές, της επιφάνειας, του στερεού τοµέα, στερεού ρόµβου. Ξεχωριστή θέση κατέχει το αξίωµα της συνέχειας, σύµφωνα µε το οποίο αν έχουµε δύο άνισες γραµµές ή άνισες επιφάνειες ή άνισα στερεά και το µεγαλύτερο από αυτά διαφέρει από 6 Χριστιανίδης σελ Χριστιανίδης σελ Χριστιανίδης σελ 161, Φίλη σελ Φίλη σελ 22, 23 3

4 το µικρότερο σε µικρή ποσότητα, µε την επανάληψη αυτή εισάγει τρία καινούρια στερεά της µικρής ποσότητας θα γίνει µεγαλύτερη του αρχικά µεγαλύτερου µεγέθους. Ο Αρχιµήδης µε 32 θεωρήµατα υπολογίζει την επιφάνεια και τον όγκο της σφαίρας. Επίσης εισάγει τρία καινούρια στερεά, το ελλειψοειδές, το παραβολοειδές και το υπερβολοειδές. 11 Ο Αρχιµήδης επιχείρησε να καθορίσει τη γωνία που σχηµατίζεται από το µάτι και την αντιληπτή διάµετρο του ήλιου. Παρατήρησε τον ήλιο που µόλις βγαίνει στον ορίζοντα µε ένα στρογκυλεµένο δίσκο που στηριζόταν κάθετα στην άκρη ενός µακριού χάρακα. Ο Αρχιµήδης επιχείρησε δύο ειδών µετρήσεις, µία τη χρονική στιγµή που η ηλιακή σφαίρα σκεπάζεται από τον δίσκο και η άλλη µε την παρέκκλιση του δίσκου. Η σωστή γωνία βρισκόταν ανάµεσα στη µεγάλη γωνία που έδινε η πρώτη παρατήρηση και στη µικρή που του έδινε η δεύτερη παρατήρηση. 12.O Aρχιµήδης στα πλαίσια της φυσικής του αποδεικνύει τον νόµο για την ισορροπία του ζυγού. 13 µαθηµατικά µοντέλα Για την περιγραφή φυσικών φαινοµένων εφάρµοσε Ο Αρχιµήδης, επιπλέον, στα πλαίσια της φυσικής του, διαµορφώνει την επιστήµη της υδροστατικής. ιατυπώνει δύο αρχές. Σύµφωνα µε την πρώτη αρχή το ολιγότερο πιεζόµενο µέρος εξωθείται από το περισσότερο πιεζόµενο και κάθε ένα από τα µέρη του πιέζεται «κατά κάθετον» από το υγρό που βρίσκεται πάνω του. Με βάση αυτή την αρχή διατυπώνονται δύο θεωρήµατα της υδροστατικής. Τα πιο ελαφρά του υγρού στερεά που υπάρχουν στο υγρό ανεβαίνουν προς τα πάνω µε τόση δύναµη όσο είναι το βάρος, ενώ τα βαρύτερα του υγρού στερεά έχουν φορά προς τα κάτω. Σύµφωνα µε τη δεύτερη αρχή αυτά που βρίσκονται στο υγρό σώµατα και ωθούνται προς τα πάνω έχουν διεύθυνση προς τη κατακόρυφο η οποία διέρχεται από το κέντρο βάρους του. Με βάση αυτή την αρχή οδηγείται στο συµπέρασµα αν κάθε τµήµα σφαίρας που είναι πιο ελαφρύ από το υγρό βρεθεί στο υγρό, η βάση του θα έχει τέτοια ισορροπία, ώστε να είναι κατακόρυφος ο άξονας τµήµατος 14 «Τα βαρύτερα του υγρού στερεά όταν αφήνονται στο υγρό θα φέρονται προς τα κάτω, όσο είναι δυνατόν να βυθίζονται, και θα είναι ελαφρότερα εντός του υγρού τόσο, όσο βάρος έχει το υγρό που έχει τόσο όγκο, όσος είναι ο όγκος του στέρεου µεγέθους» Φίλη σελ Fαrrington σελ Χριστιανίδης σελ161, Φίλη σελ 24, Χριστιανίδης σελ 171 4

5 Ο Αρχιµήδης επινόησε διάφορες µηχανικές κατασκευές, οι οποίες εφαρµόζονταν µε βάση κάποιες φυσικές αρχές. 16 Θεωρήθηκε ο µεγαλύτερος µηχανικός της αρχαιότητας. Σύµφωνα µε µερικούς µελετητές αντιλήφθηκε τη σηµασία της πειραµατικής µεθόδου. 17 ΤΑ ΑΙΤΙΑ ΤΗΣ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΑΝΘΙΣΗΣ ΚΑΤΑ ΤΗΝ ΕΛΛΗΝΙΣΤΙΚΗ ΠΕΡΙΟ Ο. Οι λόγοι της ανάπτυξης στις επιστήµες κατά την ελληνιστική περίοδο ήταν οι πολιτικές και οι κοινωνικές αλλαγές που πραγµατοποιήθηκαν µε την εδραίωση των ελληνιστικών βασιλείων στη Μέση Ανατολή. Τα βασίλεια αυτά ενθάρρυναν και ενίσχυσαν τις προσπάθειες επιστηµόνων και δόθηκε έµφαση στην επιστηµονική σκέψη. ιαµορφώθηκαν οι κατάλληλες συνθήκες για νέες επιστηµονικές ανακαλύψεις και τεχνολογικές εφευρέσεις. Οι βασιλείς επέµεναν στην εξέλιξη της επιστηµονικής γνώσης, καθώς θεωρούσαν ότι µε αυτόν τον τρόπο θα είχαν πλεονεκτήµατα στο εµπόριο και στους διάφορους πολέµους που διεξήγαγαν. Ανέλαβαν να προστατεύσουν οι ίδιοι τις επιστήµες και ενίσχυσαν οικονοµικά την προσπάθεια των επιστηµόνων για νέες ανακαλύψεις. ηµιουργήθηκαν βιβλιοθήκες σε πολλές ελληνιστικές πόλεις. Η επιστήµη στην ελληνιστική περίοδο αποτελούσε υπόθεση των αυλικών και απαιτούσε την ύπαρξη βιβλιοθηκών και βασιλικές χορηγίες. 18 Η Αλεξάνδρεια αναδεικνύεται η πνευµατική εστία του ελληνόφωνου κόσµου. Σε αυτήν θεµελιώθηκαν δύο ιδρύµατα µε την ενθάρρυνση του Πτολεµαίου Α και µε τη συµβολή στην οργάνωση τους από τον ηµήτριο Φαληρέα, το Μουσείο και η Βιβλιοθήκη. Το Μουσείο αποτέλεσε µια µορφή πανεπιστηµίου, το οποίο επισκέπτονταν οι πιο επιφανείς λόγιοι των γραµµάτων και των επιστηµών από όλο τον ελληνόφωνο κόσµο. Αρχικά καθήκον τους ήταν η ενασχόληση µε την έρευνα, αλλά στην πορεία ασχολήθηκαν και µε τη διδασκαλία. Η Βιβλιοθήκη αποτέλεσε τη µεγαλύτερη και καλύτερα οργανωµένη βιβλιοθήκη της Αρχαιότητας Χριστιανίδης σελ Farrington σελ Χριστιανίδης σελ Χριστιανίδης σελ 148 5

6 Η ΠΑΡΑΚΜΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Μετά τον 3 αιώνα µχ αρχίζει να παρακµάζει η ελληνική επιστήµη. εν παράγονται νέες ιδέες και δεν ανακαλύπτονται νέα πράγµατα. Εξαντλείται η δραστηριότητα των λογίων αυτής της περιόδου στη συγγραφή σχολαστικών υποµνηµάτων, εξηγήσεων και προεκτάσεων στα µεγάλα έργα του παρελθόντος. εν υπάρχουν πλέον αξιόλογες επιστηµονικές µελέτες. εν ενδιαφέρονται οι βασιλείς για τη δαπάνη χρηµάτων για την επιστήµη, δεν υπάρχουν πλέον οι επιχορηγήσεις της ελληνιστικής περιόδου. 20 Αίτια αυτής της παρακµής µπορούν να θεωρηθούν η οικονοµική κρίση, οι πόλεµοι και η εξοντωτική φορολογία που επέβαλαν οι Ρωµαίοι και οδήγησε στην εξασθένηση των ελληνιστικών κρατών που αποτελούσαν την εστία των επιστηµονικών ανακαλύψεων της προηγούµενης περιόδου. 21 Ωστόσο µια πιο σηµαντική αιτία είναι η διακοπή της προφορικής παράδοσης της αρχαίας επιστήµης. Τα επιστηµονικά επιτεύγµατα των προηγούµενων περιόδων σχετίζονταν µε τη διατήρηση της προφορικής παράδοσης. Σηµαντικά έργα του παρελθόντος αποκτούν αξία, γιατί συνοδεύονταν µε προφορικές εξηγήσεις. Με την προφορική τονίζονται τα ουσιώδη σηµεία των γραπτών πηγών. 22 Άλλη εξίσου σηµαντική αιτία αποτελεί το ιδεολογικό υπόβαθρο των φιλοσοφικών και θρησκευτικών κινηµάτων. Ο νεοπλατωνισµός ήταν η φιλοσοφία της αποκάλυψης και απαιτούσε τον σχολιασµό των έργων του Πλάτωνα. Αυτό είχε ως αποτέλεσµα την υποβάθµιση της µαθηµατικής έρευνας 23 Παράλληλα από τον 3 αιώνα εξελίσσεται ο χριστιανισµός σε σηµαντική θρησκευτική δύναµη και από τον 4 ο αιώνα αποτελεί κρατική θρησκεία. Είναι µια θρησκεία που ενδιαφέρεται για την αποκάλυψη της αλήθειας. ιάφορα γεγονότα, όπως το κλείσιµο της Σχολής των Αθηνών το 529 µχ, η δολοφονία της Υπατίας, η καταστροφή της Βιβλιοθήκης Αλεξάνδρειας αποδεικνύουν ότι είχε καλλιεργηθεί ένα κλίµα που δεν ευνοούσε την εξέλιξη της επιστηµονικής έρευνας Χριστιανίδης σελ Χριστιανίδης σελ Χριστιανίδης 257, Χριστιανίδης σελ Χριστιανίδης σελ 259 6

7 Ο ιόφαντος αποτέλεσε την εξαίρεση στο γενικότερο κλίµα παρακµής στα µέσα του 3 αιώνα µχ. Εισάγει µια ειδική ορολογία και µια σειρά από συντοµογραφίες. Η Εισαγωγή των Αριθµητικών αποτελεί το αρχαιότερο εγχειρίδιο Άλγεβρας στην ιστορία µαθηµατικών. Η καινοτοµία είναι ότι κάνει υπολογισµούς µε τον άγνωστο. Το έργο του έχει αλγεβρικό χαρακτήρα. Αποτέλεσε ο ιόφαντος παράδειγµα πρωτότυπης σκέψης, ο οποίος επέδρασε στους µαθηµατικούς τον 16 ο και τον 17 ο αιώνα και συνέβαλε στη γέννηση της άλγεβρας. 25 ΣΥΜΠΕΡΑΣΜΑΤΑ Το έργο που ξεχώρισε από την όλη δραστηριότητα του Ευκλείδη είναι τα Στοιχεία, το πιο γνωστό σύγγραµµα στην ιστορία των µαθηµατικών. Μεγάλη είναι η συµβολή του Ευκλείδη στο χώρο των µαθηµατικών. Το έργο αυτό είναι το αρχαιότερο παράδειγµα έργου στην ιστορία, στο οποίο παρατηρείται η πιο συνεπής εφαρµογή της αξιωµατικής- παραγωγικής µεθόδου. 26 Η σκέψη του Αρχιµήδη διακρίνεται για τη µεθοδικότητα, την άψογη τεχνική και την πληρότητα των συλλογισµών του. Παρουσίασε µέσω της µαθηµατικής γλώσσας απλές γνώσεις και εµπειρίες. ύσκολες θεµελιώδεις προτάσεις διατυπώνονται από τον Αρχιµήδη µε τον πιο απλό τρόπο. 27 Συνδέει όλους τους κλάδους της επιστήµης, δανείζοντας αρχές από το ένα για να διατυπώσει τα θεωρήµατα των άλλων. Οι λόγοι της άνθισης των επιστηµών στην ελληνιστική περίοδο είναι νέες πολιτικές και κοινωνικές συνθήκες, το ενδιαφέρον των βασιλιάδων για την επιστηµονική εξέλιξη, την οποία ήθελαν οι ίδιοι να αξιοποιήσουν στις επιδιώξεις τους, η οργάνωση βιβλιοθηκών και οι επιχορηγήσεις. Από τον 3 ο µχ αιώνα αρχίζει να παρακµάζει η ελληνική επιστήµη λόγω των γενικότερων πολιτικών και κοινωνικών αναταραχών, αλλά κυρίως λόγω της διακοπής της προφορικής παράδοσης και του ιδεολογικού υποβάθρου του νεοπλατωνισµού και του χριστιανισµού. 25 Χριστιανίδης Χριστιανίδης σελ Φίλη 24,26 7

8 ΒΙΒΛΙΟΓΡΑΦΙΑ Χριστιανίδης κα, Εγχειρίδιο ΕΑΠ, Β τόµος Farrington B., Η επιστήµη στην αρχαία Ελλάδα, Κάλβος Χριστίνα Φίλη, Αρχιµήδης, Ελευθεροτυπία, Ιστορικά,

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Υπατία. Εργασία της µαθήτριας Ελευθεριάδη Κωνσταντίνα Υπεύθυνη καθηγήτρια: Dr. Σταυρούλα Πατσιοµίτου 1 ο ΠρότυποΠειραµατικόΓυµνάσιοΑθηνών

Υπατία. Εργασία της µαθήτριας Ελευθεριάδη Κωνσταντίνα Υπεύθυνη καθηγήτρια: Dr. Σταυρούλα Πατσιοµίτου 1 ο ΠρότυποΠειραµατικόΓυµνάσιοΑθηνών Υπατία Τετάρτη20 Νοεµβρίου 2013 Σχολικό έτος 2013-2014 Εργασία της µαθήτριας Ελευθεριάδη Κωνσταντίνα Υπεύθυνη καθηγήτρια: Dr. Σταυρούλα Πατσιοµίτου 1 ο ΠρότυποΠειραµατικόΓυµνάσιοΑθηνών Τµήµα Β1 Βιογραφικό

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ (ΑΠΟΦΟΙΤΟΙ) ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ H γενική τάση των κατοίκων της Αιγύπτου στις επιστήμες χαρακτηριζόταν από την προσπάθεια

Διαβάστε περισσότερα

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη 1 2 Περιεχόµενα Πρόλογος...5 Εισαγωγή: Οι Απαρχές της Ελληνικής Επιστήµης...8 Κεφάλαιο 1: Η Αρχαία Ελληνική Επιστήµη...24 1.1 Οι φυσικές θεωρίες των Προσωκρατικών φιλοσόφων...25 1.1.1 H πρώιµη ιωνική φιλοσοφική

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Μεθοδολογίες στην Μηχανική των Ρευστών

Μεθοδολογίες στην Μηχανική των Ρευστών Μεθοδολογίες στην Μηχανική των Ρευστών η Μεθοδολογία: «Ανυψωτήρας» Το υγρό του δοχείου κλείνεται με δύο έμβολα που βρίσκονται στην ίδια οριζόντιο. Στο έμβολο με επιφάνεια Α ασκείται δύναμη F. ον Η F ασκεί

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

Δραστηριότητα Εύρεση του π

Δραστηριότητα Εύρεση του π Δραστηριότητα Εύρεση του π Ανάµεσα σε πολλά πρωτότυπα και εντυπωσιακά επιτεύγµατα του Αρχιµήδη, η µέθοδός του για την εύρεση µιας αριθµητικής προσέγγισης για το π ξεχωρίζει για την κοµψότητα και την ασυνήθιστη

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ»

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» ΤΑΚΕΦΑΛΑΙΑΤΟΥΒΙΒΛΙΟΥ 1. ΟΡΙΣΜΟΣ ΚΑΙ ΙΣΤΟΡΙΚΗ ΑΝΑΣΚΟΠΗΣΗ 2. ΒΙΟΓΡΑΦΙΕΣ:ΘΑΛΗΣ, ΠΥΘΑΓΟΡΑΣ, ΑΡΧΙΜΗ ΗΣ, ΕΥΚΛΕΙ ΗΣ 3. ΜΑΘΗΜΑΤΙΚΑ: ΑΝΑΚΑΛΥΨΗ Η ΕΠΙΝΟΗΣΗ; 4. Ο ΘΑΥΜΑΣΤΟΣ ΚΟΣΜΟΣ ΤΩΝ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ. Νίκος Κανδεράκης

ΚΙΝΗΜΑΤΙΚΗ. Νίκος Κανδεράκης ΚΙΝΗΜΑΤΙΚΗ Νίκος Κανδεράκης Η ΚΙΝΗΣΗ ΣΤΗΝ ΑΡΙΣΤΟΤΕΛΙΚΗ ΦΥΣΙΚΗ Φυσική κίνηση: τα σώματα πηγαίνουν προς στη φυσική τους θέση Βαριά σώματα (γη, νερό) προς τα κάτω Ελαφριά σώματα (αέρας, φωτιά) προς τα πάνω

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

Γεωμετρική σκέψη και γεωμετρικές έννοιες. Γεωμετρικά σχήματα και σώματα

Γεωμετρική σκέψη και γεωμετρικές έννοιες. Γεωμετρικά σχήματα και σώματα Γεωμετρική σκέψη και γεωμετρικές έννοιες Γεωμετρικά σχήματα και σώματα Αφόρμιση Σχεδιάστε 5 τρίγωνα, κάθε ένα από τα οποία διαφέρει από τα άλλα Εξηγείστε ως προς τι διαφέρουν τα τρίγωνά σας Σε τι διαφέρουν;

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. σχήμα 1, β. σχήμα 2, γ.

ΟΡΟΣΗΜΟ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. σχήμα 1, β. σχήμα 2, γ. ÑïðÞ äýíáìçò - Ióïññïðßá óôåñåïý óþìáôïò ÊÅÖÁËÁÉÏ 4.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. F 1 β. F 2 γ. F δ. F 4.2 Ένα σώμα δέχεται πολλές

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Aστρολάβος - Eξάντας

Aστρολάβος - Eξάντας Aστρολάβος - Eξάντας Αν πλέοντας προς την Αλεξάνδρεια το βάθος των νερών είναι 11 οργιές, θέλεις ακόμα ταξίδι μιας μέρας. Ηρόδοτος (4 ος αιώνας π.χ.) Από τα πανάρχαια χρόνια, οι ναυτικοί είχαν πάντα την

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. F 1 β. F 2 γ. F 3 δ. F 4 3. 2 Ένα σώμα δέχεται πολλές ομοεπίπεδες δυνάμεις. Τότε: α. οι ροπές

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 - ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 - ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: 28/02/16 - ΑΠΑΝΤΗΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

Σπουδαίοι μαθηματικοί ανά τους αιώνες

Σπουδαίοι μαθηματικοί ανά τους αιώνες Σπουδαίοι μαθηματικοί ανά τους αιώνες ΑΡΧΑΙΟΙ ΧΡΟΝΟΙ Πυθαγόρας (580-500π.Χ) Ευκλείδης (350-270π.Χ) Αρχιμήδης (287-212π.Χ) Διοκλής (240-180π.Χ) ΠΡΩΤΟΧΡΙΣΤΙΑΝΙΚΗ ΠΕΡΙΟΔΟΣ Ήρων (1 Ος αιώνας μ.χ) Υπατία (370-416

Διαβάστε περισσότερα

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Τα μαθηματικά διαπερνούν κάθε ανθρώπινη δραστηριότητα. Σ αυτή την παρουσίαση θα

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 15.03.12 Χ. Χαραλάμπους Έργα Στοιχεία Δεδομένα Φαινόμενα ή Σφαιρικά Οπτικά Κατοπτρικά Στοιχεία Μουσικής Βιβλίο περί διαιρέσεων Πορίσματα Κωνικά Τόποι προς επιφάνειες Ψευδάρια Μηχανική

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ;

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ; ΦΩΣ ΚΑΙ ΣΚΙΑ Πως δημιουργείτε η σκιά στη φυσική ; Λόγω της ευθύγραμμης διάδοσης του φωτός, όταν μεταξύ μιας φωτεινής πηγής και ενός περάσματος παρεμβάλλεται ένα αδιαφανές σώμα, δημιουργείτε στο πέρασμα

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Ροπή Δύναμης Θα έχετε παρατηρήσει πως κλείνετε ευκολότερα μια πόρτα, αν την σπρώξετε σε μια θέση που βρίσκεται σχετικά μακρύτερα από τον άξονα περιστροφής της (τους μεντεσέδες

Διαβάστε περισσότερα

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 8 ΙΟΥΛΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΘΕΜΑΤΑ Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι δεκτή

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΘΕΜΑΤΑ Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι δεκτή ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΤΜΗΜΑ 1ο Λ.Βουλιαγµένης 283, Αγ. ηµήτριος (Παναγίτσα), τηλ: 210-9737773 2ο Κάτωνος 13, Ηλιούπολη (Κανάρια), τηλ: 210-9706888 3o Αρχιµήδους 22 & ούναρη (Άνω λυφάδα), τηλ: 210-9643433 4ο Θεοµήτορος

Διαβάστε περισσότερα

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ SECTIN 1 5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ 5.1 Σε δύο ιαστάσεις Συστήµατα συντεταγµένων Για να καθοριστεί η θέση, το σχήµα και η κίνηση των σωµάτων στο χώρο (που θεωρείται Ευκλείδειος, δηλαδή µε θετική απόσταση µεταξύ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ Β Λ (ΠΡΟΕΤΟΙΜΑΣΙΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 04/01/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη ΘΕΜΑ : Καθορισµός και διαχείριση διδακτέας ύλης Θετικών Μαθηµάτων των Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2011 12. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ 1 ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ A Να γράψετε στο

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 1ο: ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Στις ηµιτελείς παρακάτω προτάσεις να γράψετε

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Αφιερωµένη στη µνήµη της Φυσικού Σύλβιας Γιασουµή Κυριακή, 19 Μαρτίου, 2006 Ώρα: 10:30-13:30 Οδηγίες: 1) Το δοκίµιο αποτελείται από έξι

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ ΣΤΡΕΦΜΕΝΙ ΙΣΚΙ & ΠΕΡΙ ΣΤΡΦΡΜΗΣ Ένας οµογενής και συµπαγής δίσκος µάζας m και ακτίνας =,2m στρέφεται γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κέντρο του µε γωνιακή ταχύτητα µέτρου ω =1 ra/sec.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals

Διαβάστε περισσότερα

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 14.03.12 Χ. Χαραλάμπους Πριν: Σύμφωνα με την πυθαγόρεια αντιμετώπιση η διαγώνιος και η ακμή τετραγώνου δεν είναι συγκρίσιμα. Ορισμός Ευδόξου: δύο μεγέθη σχηματίζουν λόγο όταν (ακέραιο)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΣΤΙΚΟΙ ΚΑΙ ΡΩΜΑΪΚΟΙ ΧΡΟΝΟΙ: 323 Π.Χ. 324 Μ.Χ.

ΕΛΛΗΝΙΣΤΙΚΟΙ ΚΑΙ ΡΩΜΑΪΚΟΙ ΧΡΟΝΟΙ: 323 Π.Χ. 324 Μ.Χ. ΕΛΛΗΝΙΣΤΙΚΟΙ ΚΑΙ ΡΩΜΑΪΚΟΙ ΧΡΟΝΟΙ: 323 Π.Χ. 324 Μ.Χ. Α.ΤΑ ΕΛΛΗΝΙΣΤΙΚΑ ΒΑΣΙΛΕΙΑ Β. ΑΠΟΤΗΡΩΜΗΣΤΟΒΥΖΑΝΤΙΟ 1 Τα ελληνιστικά βασίλεια Ελληνιστικός : από το ρήµα ελληνίζω, δηλ. µιµούµαι τους Έλληνες Ήταν τα βασίλεια

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ-A ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

1. ΧΗΜΙΚΑ ΣΤΟΙΧΕΙΑ ΧΗΜΙΚΕΣ ΕΝΩΣΕΙΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΟΜΗ ΤΗΣ ΜΑΖΑΣ

1. ΧΗΜΙΚΑ ΣΤΟΙΧΕΙΑ ΧΗΜΙΚΕΣ ΕΝΩΣΕΙΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΟΜΗ ΤΗΣ ΜΑΖΑΣ 1. ΧΗΜΙΚΑ ΣΤΟΙΧΕΙΑ ΧΗΜΙΚΕΣ ΕΝΩΣΕΙΣ ΘΕΩΡΙΕΣ ΓΙΑ ΤΗ ΟΜΗ ΤΗΣ ΜΑΖΑΣ Από τα αρχαιότατα χρόνια, έχουν καταβληθεί σηµαντικές προσπάθειες οι απειράριθµες ουσίες που υπάρχουν στη φύση να αναχθούν σε ενώσεις λίγων

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α.

2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22. ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. Θέµατα & Ασκήσεις από: www.arnos.gr 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΕΠΟ 22 ΘΕΜΑ: Οι βασικοί σταθµοί του νεώτερου Εµπειρισµού από τον Locke µέχρι και τον Hume. ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ Α. ΕΙΣΑΓΩΓΗ Σύµφωνα µε τη θεωρία του εµπειρισµού

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης ΕΠΑ 331 Διδακτική των Μαθηματικών Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1 ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1. Αναγνωρίζουν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά,

Διαβάστε περισσότερα

ΔΙΕΥΚΡΙΝΙΣΕΙΣ. 1.Στόχοι της εργασίας. 2. Λέξεις-κλειδιά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΟΝ ΕΥΡΩΠΑΙΚΟ ΠΟΛΙΤΙΣΜΟ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΕΠΟ42

ΔΙΕΥΚΡΙΝΙΣΕΙΣ. 1.Στόχοι της εργασίας. 2. Λέξεις-κλειδιά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΟΝ ΕΥΡΩΠΑΙΚΟ ΠΟΛΙΤΙΣΜΟ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΕΠΟ42 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΠΟΥΔΕΣ ΣΤΟΝ ΕΥΡΩΠΑΙΚΟ ΠΟΛΙΤΙΣΜΟ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΕΠΟ42 2 Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ 2012-2013 ΘΕΜΑ: «Να συγκρίνετε τις απόψεις του Βέμπερ με αυτές του Μάρξ σχετικά με την ηθική της

Διαβάστε περισσότερα