ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ"

Transcript

1 ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ δύο ηµιευθειών µε αρχή το ίδιο σηµείο. Οι δύο ηµιευθείες λέγονται πλευρές της γωνίας ενώ το κοινό τους σηµείο κορυφή της γωνίας. Μονάδα µέτρησης των γωνιών είναι η µια µοίρα (1 ). Μια µοίρα ισούται µε 60 πρώτα λεπτά 1 = 60 Ένα πρώτο λεπτό ισούται µε 60 δεύτερα λεπτά 1 = 60 Μηδενική είναι η γωνία που οι πλευρές της συµπίπτουν και είναι ίση µε 0. Ορθή είναι η γωνία που οι πλευρές της είναι κάθετες και είναι ίση µε 90. Ευθεία είναι η γωνία που οι πλευρές της είναι η µια προέκταση της άλλης και είναι ίση µε 180. Πλήρης είναι η γωνία που η µια πλευρά της, αφού κάνει µια πλήρη στροφή συµπίπτει µε την άλλη πλευρά και είναι ίση µε 360. Οξεία γωνία είναι κάθε γωνία που είναι µικρότερη από 90. Αµβλεία γωνία είναι κάθε γωνία που είναι µεγαλύτερη από µια ορθή και µικρότερη από 180 Κυρτή λέγεται κάθε γωνία που είναι µικρότερη από 180 ( δηλαδή αν προεκτείνουµε οποιαδήποτε πλευρά της, όλα τα σηµεία της γωνίας βρίσκονται στο ίδιο ηµιεπίπεδο.) Μη Κυρτή λέγεται κάθε γωνία που είναι µεγαλύτερη από 180 και µικρότερη από Απόσταση σηµείου από ευθεία είναι το µήκος του κάθετου τµήµατος που φέρνουµε από το σηµείο στην ευθεία 4. Εφεξής λέγονται δύο γωνίες που έχουν κοινή κορυφή, κοινή µια πλευρά και κανένα άλλο κοινό σηµείο. Οι είναι εφεξής γωνίες

2 5. ιαδοχικές είναι τρεις ή περισσότερες γωνίες που ανά δύο είναι εφεξής 6. Συµπληρωµατικές είναι δύο γωνίες που έχουν άθροισµα Παραπληρωµατικές είναι δύο γωνίες που έχουν άθροισµα Κατακορυφήν είναι δύο γωνίες που οι πλευρές της µιας είναι προεκτάσεις των πλευρών της άλλης. ύο κατακορυφήν γωνίες είναι πάντα ίσες. 9. Στοιχεία κύκλου Ο κέντρον του κύκλου ΟΑ ακτίνα κύκλου ΒΓ χορδή Ε διάµετρος τόξο ( ένα µέρος του κύκλου ) Κυκλικός δίσκος είναι το µέρος του επιπέδου που περικλείεται από ένα κύκλο. Στον ίδιο κύκλο ή σε ίσους κύκλους: (i) Σε ίσες χορδές αντιστοιχούν ίσα τόξα (ii) Σε ίσα τόξα αντιστοιχούν ίσες χορδές. Επίκεντρη γωνία είναι η γωνία που έχει κορυφή το κέντρο του κύκλου και πλευρές δύο ακτίνες του..

3 Θέσεις ευθείας και κύκλου (i) Η ευθεία ε 1 είναι τέµνουσα του κύκλου και έχει δύο κοινά σηµεία µε το κύκλο (ii) Η ευθεία ε 1 είναι εφαπτοµένη του κύκλου, και έχει ένα κοινό σηµείο µε το κύκλο (iii) Η ευθεία ε 1 είναι εξωτερική του κύκλου. Β. ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ - ΤΡΙΓΩΝΑ - ΤΕΤΡΑΠΛΕΥΡΑ 1. ύο ευθείες του ιδίου επιπέδου που όσο και αν προεκταθούν δεν έχουν κοινά σηµεία λέγονται παράλληλες 2. Γωνίες παράλληλων ευθειών Οι γωνίες γ, δ, ε και ζ λέγονται εντός γωνίες Οι γωνίες α, β, η και θ λέγονται εκτός γωνίες Οι γωνίες α, δ, ε και θ λέγονται επί τα αυτά µέρη γωνίες Οι γωνίες β, γ, ζ και η είναι επίσης επί τα αυτά µέρη γωνίες Οι γωνίες δ και ζ, οι γ και ε, οι α και η κ.τ.λ. που βρίσκονται σε διαφορετική πλευρά της ευθείας ε1 λέγονται εναλλάξ γωνίες Ετσι: οι γωνίες δ και ζ είναι εντός εναλλάξ γωνίες οι γωνίες ε και α είναι εντός, εκτός και επί τα αυτά µέρη γωνίες Οι εντός εναλλάξ γωνίες είναι ίσες Οι εντός εκτός και επί τα αυτά µέρη γωνίες είναι ίσες Οι εντός και επί τ αυτά µέρη γωνίες είναι παραπληρωµατικές 3. Όταν δύο ευθείες τέµνονται από τρίτη και σχηµατίζουν δύο εντός εναλλάξ γωνίες ίσες ή δύο εντός εκτός και επί τ αυτά µέρη γωνίες ίσες ή δύο εντός και επί τ αυτά µέρη γωνίες παραπληρωµατικές τότε είναι παράλληλες. 4. Κύρια στοιχεία τριγώνου είναι οι πλευρές του και οι γωνίες του.

4 5. Είδη τριγώνων (α) Ανάλογα µε τις γωνίες του Οξυγώνιο λέγεται το τρίγωνο που έχει όλες τις γωνίες του οξείες. Ορθογώνιο λέγεται το τρίγωνο που έχει µια γωνία ορθή (και τις δύο άλλες οξείες). Οι πλευρές που σχηµατίζουν την ορθή γωνία του τριγώνου τις λέµε κάθετες πλευρές του ενώ η πλευρά που είναι απέναντι από την ορθή γωνία λέγεται υποτείνουσα του. Αµβλυγώνιο λέγεται το τρίγωνο που έχει µια γωνία αµβλεία (και τις δύο άλλες οξείες). β) Ανάλογα µε τις πλευρές του Ισοσκελές λέγεται το τρίγωνο που έχει δύο πλευρές ίσες. (Οι παρά τη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες) Ισόπλευρο λέγεται το τρίγωνο που έχει όλες τις πλευρές του ίσες. Το ισόπλευρο τρίγωνο έχει και όλες τις γωνίες του ίσες. Σκαληνό λέγεται το τρίγωνο που έχει τις πλευρές του άνισες. 6. ευτερεύοντα στοιχεία τριγώνου ιάµεσος τριγώνου είναι το ευθύγραµµο τµήµα που ενώνει µια κορυφή του τριγώνου µε το µέσο της απέναντι πλευράς. Το σηµείο τοµής των διαµέσων λέγεται κέντρο βάρους ή βαρύκεντρο του τριγώνου. ιχοτόµος τριγώνου είναι η διχοτόµος µιας γωνίας του. Το σηµείο τοµής των διχοτόµων ενός τριγώνου λέγεται έκκεντρο του τριγώνου. `Υψος τριγώνου είναι η απόσταση µιας κορυφής του τριγώνου από την απέναντι πλευρά (µήκος της κάθετης που φέρνουµε από τη κορυφή στην απέναντι πλευρά). Το σηµείο τοµής των υψών τριγώνου λέγεται ορθόκεντρο του τριγώνου. 7. Το άθροισµα των γωνιιών ενός τριγώνου είναι ίσο µε 180. Κάθε εξωτερική γωνία ενός τριγώνου είναι ίση µε το άθροισµα των δύο απέναντι εσωτερικών γωνιών του

5 8. Τετράπλευρα Το άθροισµα των γωνιών ενός τετραπλεύρου είναι 360 Τραπέζιο είναι το τετράπλευρο που έχει δύο πλευρές παράλληλες ( βάσεις του τραπεζίου) ενώ οι δύο άλλες πλευρές δεν είναι παράλληλες. Η απόσταση των βάσεων ενός τραπεζίου λέγεται ύψος του τραπεζίου. Αν οι µη παράλληλες πλευρές του τραπεζίου είναι ίσες, τότε το τραπέζιο λέγεται ισοσκελές. Αν η µια µη παράλληλη πλευρά του είναι κάθετη στις βάσεις του τότε το τραπέζιο λέγεται ορθογώνιο. Παραλληλόγραµµο είναι το τετράπλευρο που έχει τις απέναντι του πλευρές παράλληλες. Η απόσταση δύο απέναντι πλευρών του λέγεται ύψος του παραλληλόγραµµου. Ιδιότητες παραλληλογράµµων (i) Οι απέναντι πλευρές παραλληλογράµµου είναι ίσες. (ii) Οι απέναντι γωνίες παραλληλογράµµου είναι ίσες. (iii) Οι διαγώνιες του παραλληλογράµµου διχοτοµούνται. (i) ΑΒ = Γ και ΒΓ = Α (ii) (iii) ΑΕ = ΕΓ και ΒΕ = Ε Ορθογώνιο παραλληλόγραµµο είναι το παραλληλόγραµµο που έχει τις γωνίες του ορθές.

6 Ιδιότητες ορθογωνίου (i) Έχει όλες τις ιδιότητες του παραλληλογράµµου (ii) Οι διαγώνιες του είναι ίσες ΑΒΓ ορθογώνιο ΑΓ = Β Ρόµβος είναι το παραλληλόγραµµο που έχει όλες τις πλευρές του ίσες ΑΒ = ΒΓ = Γ = Α ΑΒΓ ρόµβος Ιδιότητες ρόµβου (i) Έχει όλες τις ιδιότητες του παραλληλογράµµου. (ii) Οι διαγώνιες του τέµνονται κάθετα. (iii) Οι διαγώνιες του διχοτοµούν τις γωνιές του. Τετράγωνο είναι το παραλληλόγραµµο που έχει όλες τις γωνίες του ορθές και όλες τις πλευρές του ίσες. Ιδιότητες τετραγώνου (i) Έχει όλες τις ιδιότητες του ορθογωνίου (ii) Έχει όλες τις ιδιότητες του ρόµβου.

7 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Α. Να βρείτε τη γωνία χ στα πιο κάτω σχήµατα. Όπου χρειάζεται να γραφεί εξίσωση (οι ευθείες µε βελάκι είναι παράλληλες) : Β και Γ διχοτόµοι ( Με εξίσωση )

8 ΑΒΓ παραλληλόγραµµο Β. Να υπολογίσετε τις γωνίες που είναι σηµειωµένες:

9 6. 7. ΑΓ ιχοτόµος 8. Γ. Να λύσετε τις ασκήσεις.

10

11 (β) Να δείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. εδοµένα Ζητούµενα ε 1 // ε 2 (α) Είδος τριγώνου ΑΒΓ (β)

12 εδοµένα Ζητούµενα ε 1 // ε 2 ΑΓ διχοτόµος της 12. εδοµένα Ζητούµενα ΑΒΓ τετράγωνο Β = 6 cm KΓ = ; 13. εδοµένα Ζητούµενα Ε // ΒΓ Β διχοτόµος 14. εδοµένα Ζητούµενα ισοσκελές ΑΒ = ΑΓ ΒΕ ύψος Ε // ΒΓ

13 ΛΥΣΕΙΣ ΣΤΙΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Α. Να βρείτε τη γωνία x στα πιο κάτω σχήµατα. Όπου χρειάζεται να γραφεί εξίσωση : 1. x + x + 20 = 140 x + x = x = 120 x = 120 : 2 = Β και Γ διχοτόµοι 3. φ + ω + ρ = 180 ο φ + 70 ο + 60 ο = 180 ο φ = 180 ο ο = 50 ο x + φ + 90 ο = 180 ο x + 50 o + 90 o = 180 o x = 180 o o = 40 o x = 108 o (εντός εκτός και επί τ αυτά)

14 6. x + 82 o = 180 o x = 180 o - 82 o x = 98 o 7. x + 60 o + 43 o = 180 o x = 180 o - 60 o - 43 o x = 77 o 8. (Με εξίσωση) x + x o = 180 o x + x = 180 o o 2x = 120 x = 120 : 2 = 60 o 9. 2x + x + 30 = 180 o 3x = 180 o - 30 o 3x = 150 o x = 150 o : 3 = 50 o α = x + 30 = 50 o + 30 o = 80 o (εντός εναλλάξ) 10. ΑΒΓ παραλληλόγραµµο (απέναντι γωνίες παραλληλογράµµου) Β. Να υπολογίσετε τις γωνίες που είναι σηµειωµένες 1. α, β β = 115 ο (εντός εκτός και επί τ αυτά) α = 180 ο ο = 65 ο 2. x, ψ ψ = 66 ο (παρά τη βάση ισοσκελούς τριγώνου) x = 180 o o = 180 o o = 48 o

15 3. x, ψ x = 180 o - 90 o - 50 o = 40 o ψ = 180 ο - 40 ο = 140 ο 4. x, ψ ψ = 180 ο - 40 ο - 70 ο = 70 ο x = ψ + 40 ο = 70 ο + 40 ο = 110 ο 5. x, ψ, ω ψ = 30 ο (κατά κορυφή) ω = 25 ο (κατά κορυφή) x 1 = ψ = 30 ο (εντός εναλλάξ) x 2 = ω = 25 ο (εντός εναλλάξ) x = x 1 + x 2 = 30 o + 25 o = 55 o ή 6. x, ψ ψ = 180 ο ψ = 180 ο ο = 40 ο φ = 360 ο - (240 ο + ψ) = 360 ο - (240 ο + 40 ο ) = 360 ο ο = 80 ο x + φ = 180 ο x + 80 o = 180 o x = 180 o - 80 o = 100 o 7. ΑΓ διχοτόµος x, ψ, ω x = 50 o (εντός εκτός και επί τ αυτά) 2ψ = 180 ο - x = 180 o - 50 o = 130 o ψ = 130 : 2 = 65 ο ω = 180 ο - (50 ο + ψ) = = 180 ο - (50 ο + 65 ο ) = = 180 ο = 65 ο 8 x, ψ (παρά τη βάση ισοσκελούς)

16 Γ. Να λύσετε τις ασκήσεις. 1. α, β, γ, δ α = 60 ο (εντός εναλλάξ) γ = 48 ο (κατά κορυφή) β = 180 ο - (α + γ) = 180 ο - (60 ο + 48 ο ) = = 180 ο ο = 72 ο δ = β + 60 ο = 72 ο + 60 ο = 132 ο 2. x, ψ, ω x = 65 ο (εντός εναλλάξ) 65 ο + ψ = 110 ο ή ψ = 110 ο - 65 ο = 45 ο ω ο = 180 ο ω = 180 ο ο = 70 ο 3. x, ψ x o = 180 o x = 180 o o = 50 o ψ ο = 180 ο ψ = 180 ο ο = 40 ο 4. x φ = 80 ο (εντός εναλλάξ) x = φ = 80 ο (εντός εναλλάξ) 5. x = 4φ x, ψ, ω, φ, ρ x + φ = 140 ο <=> 4φ + φ = 140 ο <=> 5φ = 140 ο φ = 140 : 5 = 28 ο <=> x = 4φ = ο = 112 ο ρ = φ = 28 ο (εντός εναλλάξ) 6. ω + 28 ο + 90 ο = 140 ο <=> ω = 140 ο ο = 22 ο ψ = ω + φ (εντός εναλλάξ) <=> ψ = 22 ο + 28 ο = 50 ο φ, x, ψ, ω φ = 44 ο (εντός εναλλάξ) ω = 180 ο - (ψ + φ) = 180 ο - (28 ο + 44 ο ) = 180 ο - 72 ο = 108 ο x + 62 ο = ω ή x + 62 o = 108 o ή x = 108 o - 62 o = 46 o 7. ΓΕ = Γ α, β, γ, δ, ε α + 32 ο + 68 ο = 180 ο α = 180 ο ο = 80 ο β = α + 32 ο = 80 ο + 32 ο = 112 ο δ = Ε 1 = 56 ο (κατά κορυφή) ε + δ = 180 ο ε + 56 ο = 180 ο

17 8. ε = 180 ο - 56 ο = 124 ο (β) Να δείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. Α Α 2 = 180 ο - ( 65 ο + 50 ο ) = 180 ο ο = 65 ο Α 1 = ( εντός εναλλάξ ) ισοσκελές 9. εδοµένα Ζητούµενα ε 1 // ε 2 (α) Είδος τριγώνου ΑΒΓ (β) ω = 40 ο (εντός εναλλάξ) ψ = 180 ο - (90 ο + ω) = 180 ο - (90 ο + 40 ο ) = 180 ο ο = 50 ο φ = 64 ο (εντός εναλλάξ) x = 180 ο - ( ο ) = 180 ο ο = 26 ο x + ψ = 26 ο + 50 ο = 76 ο 10. (κατά κορυφή) x x + 50 = 180 o 4x = 180 o - 80 o = 100 o x = 100 : 4 = 25 o 11. εδοµένα ε 1 // ε 2 Ζητούµενα ΑΓ διχοτόµος της (εντός εναλλάξ) `Ωστε : ω = φ = 45 ο ή ΑΓ διχοτόµος 12. εδοµένα ΑΒΓ τετράγωνο Β = 6 cm Ζητούµενα KΓ = ; ΑΓ = Β ή ΑΓ = 6 cm

18 13 εδοµένα Ζητούµενα Ε // ΒΓ Β διχοτόµος (εντός εκτός και επί τ αυτά) 14. εδοµένα Ζητούµενα ΑΒ = ΑΓ ΒΕ ύψος Ε // ΒΓ ( εντός εκτός και επί τα αυτά ) φ = ψ = 20 ο ( εντός εναλλάξ )

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //

5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = // 1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου

Τρύφων Παύλος - Ευκλείδεια Γεωµετρία Α τάξης Γενικού Λυκείου Τρύφων Παύλος - Ευκλείδεια εωµετρία τάξης ενικού υκείου ΩΝΙΕΣ ρισµός: Έστω χ και ψ δύο ηµιευθείες που δεν έχουν κοινό φορέα και έστω p το ηµιεπίπεδο που έχει ακµή τον φορέα της Oχ και περιέχει την ψ και

Διαβάστε περισσότερα

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1

Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ

ΚΕΦΑΛΑΙΟ 2 o ΤΑ ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΚΕΦΛΙΟ 2 o Τ ΣΙΚ ΓΕΩΜΕΤΡΙΚ ΣΧΗΜΤ Πρωταρχικές έννοιες Όπως τα αντιλαμβανόμαστε : Σημείο, Ευθεία, Επίπεδο. ξιώματα προτάσεις που τις αποδεχόμαστε χωρίς απόδειξη. αξίωμα: πό δυο διαφορετικά σημεία του επιπέδου

Διαβάστε περισσότερα

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.

Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της. 5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και

Διαβάστε περισσότερα

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ

2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ 1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180

Διαβάστε περισσότερα

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι:

Θεωρούμε τρίγωνο ΑΒΓ και τα μέσα Δ, Ε των ΑΒ, ΑΓ αντίστοιχα.θα αποδείξουμε ότι: 7o Γενικό Λύκειο Αθηνών Σχολικό Έτος 04-5 Τάξη: A' Λυκείου Αθήνα -6-05 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Θέμα ο Α. Να αποδείξετε ότι: Το ευθύγραμμο τμήμα που ενώνει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

1 Εγγεγραµµένα σχήµατα

1 Εγγεγραµµένα σχήµατα Εγγεγραµµένα σχήµατα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σκοπός του µαθήµατος είναι να δώσει στους µαθητές συνοπτικά τις απαραίτητες γνώσεις από τη διδακτέα ύλη της Α λυκείου που δεν διδάχθηκε ή διδάχθηκε περιληπτικά.

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr

6. Εγγεγραμμένα Σχήματα. Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 6. Εγγεγραμμένα Σχήματα Αθανασίου Δημήτρης (Μαθηματικός) asepfreedom@yahoo.gr 1 Επίκεντρη γωνία Μια γωνία λέγεται επίκεντρη γωνία ενός κύκλου αν η κορυφή της είναι το κέντρο του κύκλου. Το τόξο ΑΓΒ που

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Θαλής 1998 Β Γυµνασίου

Θαλής 1998 Β Γυµνασίου Να βρεθούν όλες οι πραγµατικές ρίζες της εξίσωσης 2 42 x + x= 2 x + x+ 1. Θαλής 1998 Α Λυκείου Έστω ότι για τους θετικούς πραγµατικούς αριθµούς α, β, γ ισχύει α+ β β+ γ γ + α αβ γ + βγ α + γα β = 0. 2

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.

Διαβάστε περισσότερα

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179

8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179 8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.

ΚΕΦΑΛΑΙΟ 11ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ. Κανονικά Πολύγωνα. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες. ΚΕΦΛΙΟ ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ Κανονικά Πολύγωνα. Να δοθεί ο ορισμός του κανονικού πολυγώνου. Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες.. Να βρεθεί η γωνία

Διαβάστε περισσότερα

. Ασκήσεις για εξάσκηση

. Ασκήσεις για εξάσκηση . Ασκήσεις για εξάσκηση Βασικές ασκήσεις Εφαρµογές 1.76 ίνεται ένα τρίγωνο ΑΒΓ µε AB= 8 και AΓ= 1. Ένας κύκλος διέρχεται από τα σηµεία Β και Γ και τέµνει τις πλευρές ΑΒ και ΑΓ στα σηµεία και Ε αντίστοιχα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α

Ευκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms. Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε

Διαβάστε περισσότερα

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο

2.4 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ 30 Ο 45 Ο 60 Ο .4 ΤΡΙΩΝΟΜΕΤΡΙΚΟΙ ΡΙΘΜΟΙ 0 Ο 45 Ο 60 Ο ΘΕΩΡΙ. Τριγωνοµετρικοί αριθµοί 0 ο, 45 ο, 60 ο : ηµίτονο συνηµίτονο εφαπτοµένη 0 ο 45 ο 60 ο ΣΚΗΣΕΙΣ. Στο διπλανό πίνακα, σε κάθε πληροφορία της στήλης, να επιλέξετε

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Α και Β Γενικού Λυκείου ε 3 Γ ε 2 Κ Ε ε 1 Ι Ο Θ Η Ζ Α μ α Ψ ε 4 Β Β ( Σελ. 63 120 ) Τόμος 2ος ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

Από το επίπεδο στο χώρο (Στερεομετρία)

Από το επίπεδο στο χώρο (Στερεομετρία) Από το επίπεδο στο χώρο (Στερεομετρία) (Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού) Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός)

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ: 011-01 ΝΟΜΟΣ ΔΩΔΕΚΑΝΗΣΟΥ ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ-ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΡΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΣ 01 Θέματα προαγωγικών και απολυτηρίων εξετάσεων

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. ΚΕΦΑΛΑΙΟ 10ο ΕΜΒΑΔΑ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΩΜΕΤΡΙ ΛΥΚΕΙΟΥ ΚΕΦΛΙΟ 0ο ΕΜ ΕΠΙΜΕΛΕΙ ΥΕΡΙΝΟΣ ΣΙΛΗΣ 57 ΚΕΦΛΙΟ 0ο ΕΜ Πολυγωνικά χωρία - Πολυγωνικές επιφάνειες. Τι καλούμαι πολυγωνικό χωρίο και πως ονομάζεται αυτό ; Πότε δύο πολυγωνικά χωρία λέγονται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΓΥΜΝΑΣΙΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ: 011-01 ΝΟΜΟΣ: ΔΩΔΕΚΑΝΗΣΟΥ ΕΠΙΜΕΛΕΙΑ: ΚΑΡΑΓΙΑΝΝΗΣ Β. ΙΩΑΝΝΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΠΕ03 ΡΟΔΟΣ, ΣΕΠΤΕΒΡΙΟΣ 01 Θέματα προαγωγικών και απολυτηρίων

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Από κάθε κορυφή ενός τετραγώνου «κόβουµε» τριγωνική πυραµίδα όπως φαίνεται στο σχήµα, όπου ΚΛΜ µέσα των ακµών του κύβου. Τούτο κάνουµε µε όλες τις κορυφές του κύβου. Να βρείτε πόσες είναι οι κορυφές του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ αγγέλης Α Νικολακάκης Μαθηματικός ΛΙΑ ΛΟΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 0, δηλαδή το σύνολο των μονάδων των απολυτήριων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ και ΝΙΚΟΥ ΛΥΚΙΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ΥΠΟΥΡΙΟ ΠΙΙΣ ΚΙ ΘΡΗΣΚΥΤΩΝ Κωδικός βιβλίου: 0--007 ΠΟΛΙΤΙΣΟΥ ΚΙ ΘΛΗΤΙΣΟΥ ΥΚΛΙΙ ΩΤΡΙ ΛΥΣΙΣ ΤΩΝ ΣΚΗΣΩΝ ε Κ ε Ψ Ζ Ο Ι Θ ε Η μα ε4 και ΝΙΚΟΥ ΛΥΚΙΟΥ ISBN 978-960-06--6

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ. Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου 70 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ Ορισµός τριγωνοµετρικών αριθµών οξείας γωνίας ορθογωνίου τριγώνου Σχέσεις µεταξύ τριγωνοµετρικών αριθµών 71 Εφαρµογές 72 73 74 75 76 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ 5.

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Ευκλείδεια Γεωμετρία. ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ και ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ 1 Σωτήρης Ε. Λουρίδας 1. ΓΕΝΙΚΑ: 1.1 Θεωρούμε ότι κάθε Μαθηματικό πρόβλημα είναι της μορφής «αν p τότε q», συμβολικά p q. 1.2. Λύση ενός Μαθηματικού προβλήματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠ.ΔΒΜ ΚΑΙ ΘΡΗ. ΠΕΡ/ΚΗ Δ/ΝΣΗ Π & Δ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν. ΛΕΣΒΟΥ 4 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 01 ΜΑΘΗΜΑ : ΓΕΩΜΕΤΡΙΑ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 36653-367784 - Fax: 36405, Ιστοσελίδα: Tel. 36653-367784 - Fax: 36405 Site: ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

, y 1. y y y y = x ( )

, y 1. y y y y = x ( ) ΚΕΦΑΛΑΙΟ Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕ Ο ΠΑΡΑΓΡΑΦΟΣ. ΕΞΙΣΩΣΗ ΓΡΑΜΜΗΣ Μία εξίσωση µε αγνώστους x, y λέγεται εξίσωση µίας γραµµής C, όταν οι συντεταγµένες των σηµείων της C και µόνο αυτές την επαληθεύουν. Αν έχουµε

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ

Τριγωνομετρία ΓΙΩΡΓΟΣ ΚΑΡΙΠΙΔΗΣ 2 ΑΝΘΟΥΛΑ ΣΟΦΙΑΝΟΠΟΥΛΟΥ ΕΥΚΛΕΙΔΗΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΟ ΒΑΣΙΚΟ ΘΕΩΡΗΜΑ: ημ χ+συν χ= ημ χ=-συν χ συν χ=- ημ χ εφχ + σφ χ = εφχ ημχ συνχ = σφχ = ημ χ εφχσφχ σφχ = = συνχ ημχ + εφ χ = συν χ Γωνία χ Τριγωνομετρικοί Αριθμοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 7 8 (A - Β Γυμνασίου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιά η τιμή: 12 + 23 + 34 + 45 + 56 + 67 + 78 + 89 ; A) 389 B) 396 C) 404 D) 405 E) άλλη απάντηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.

ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και

Διαβάστε περισσότερα