Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος"

Transcript

1 Αναγνώριση Προτύπων

2 Σήμερα! Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος

3 Περιεχόμενο μαθήματος Θεωρία Bayes Ταξινομητές (classification) Συναρτήσεις Κόστους Εξαγωγή Χαρακτηριστικών Μείωση διαστάσεων Επιλογή Χαρακτηριστικών Ταίριασμα Προτύπου Κρυμμένα Μοντέλα Markov Ομαδοποίηση (clustering) Εφαρμογές Και Matlab

4 Βαθμολόγηση Μαθήματος 1. Εργαστηριακές ασκήσεις σε Matlab lb 20%. 2. Συγγραφή εργασίας και παράδοση έως 28/11/ %. 3. Παρουσίαση και εξέταση εργασίας 29/11/ %. 4. Υλοποίηση συμφωνημένου τμήματος σε Matlab και εξέταση 40%.

5 Απαλλακτικές Εργασίες Η εξέταση στο μάθημα γίνεται με εργασία. Κάθε ομάδα εργασίας μπορεί να αποτελείται λί από ό1 2 άτομα. Η ομάδα οφείλει να δηλώσει τη συμμετοχή της μέσω e mail, μέχρι 12/10 καθώς και δύο επιλογές από τα πιο κάτω θέματα, με σειρά προτίμησης. ης Το κάθε θέμα θα δοθεί μόνο μία φορά και θα τηρηθεί σειρά προτεραιότητας. ρ

6 Θέματα Αναγνώριση δυσδιάστατου σχήματος 2. Εκτίμηση κίνησης από δορυφορική λήψη 3. Ανίχνευση ηχητικού σήματος 4. Ταξινόμηση και ανάκτηση video 5. Ανίχνευση κίνησης αντικειμένου 6. Μείωση διαστάσεων 7. Ανίχνευση και διάγνωση με χρήση Η/Υ 8. Ανίχνευση και αναγνώριση αντικειμένων 9. Ανάκτηση 3D σχήματος 10. Κατάτμηση εικόνων εγγράφων

7 Βιβλία 1. Εισαγωγή στην αναγνώριση προτύπων με Matlab lb Κωδικός Βιβλίου στον Εύδοξο: Έκδοση: 1η έκδ. Συγγραφείς: Θεοδωρίδης Σέργιος,Πικράκης Α.,Κουτρουμπάς Κωνσταντίνος Σ.,Κάβουρας Δ. 2. Αναγνώριση προτύπων Κωδικός Βιβλίου στον Εύδοξο: 6378 Έκδοση: 1/2007 Συγγραφείς: ΣΤΡΙΝΤΖΗΣ ΜΙΧΑΛΗΣ

8 Matlab Το MATLAB A (matrix lb laboratory) είναι ένα περιβάλλον αριθμητικής υπολογιστικής και μια προγραμματιστική γλώσσα τέταρτης γενιάς. Αποθηκεύει και κάνει τις πράξεις με βάση την άλγεβρα πινάκων. Η τρέχουσα έκδοσή του είναι η R2010b η οποία κυκλοφόρησε στις 3 Σεπτεμβρίου του Χρησιμοποιείται κατά κύριο λόγο για την επίλυση μαθηματικών προβλημάτων, ωστόσο είναι πολύ ʺισχυρόʺ και μπορεί να χρησιμοποιηθεί και για προγραμματισμό καθώς περιέχει εντολές από την C++ όπως την while, την switch και την if.

9 Matlab links Εισαγωγή στην Matlab lb των Γ. Γεωργίου και Χ. Ξενοφώντος Ιστοσελίδα Matlab

10 Αναγνώριση Προτύπων από Άνθρωπο Αναγνωρίζουμε ένα πρόσωπο Αντιλαμβανόμαστε τον προφορικό λόγο Διαβάζουμε χειρόγραφα κείμενα Αναγνωρίζουμε τα κλειδιά του αυτοκινήτου στην τσέπη μας Αποφασίζουμε αν ένα μήλο έχει σαπίσει από τη μυρωδιά του Ηδ διαδικασία δ κατά την οποία παρατηρούμε απλά δεδομένα και λαμβάνουμε μ αποφάσεις βασιζόμενες στην «κατηγορία» του προτύπου.

11 Αναγνώριση Προτύπων από υπολογιστικά συστήματα Η αυτόματη αναγνώριση φωνής Η αναγνώριση μέσω δαχτυλικών αποτυπωμάτων Η οπτική αναγνώριση χαρακτήρων κειμένου Η αναγνώριση ακολουθιών DNA Για κάποια προβλήματα όπως είναι η ομιλία και η οπτική αναγνώριση, οι προσπάθειες σχεδιασμού μπορεί να εμπνευστούν από τη γνώση του πώς αυτά επιλύονται λειτουργούν λειτουργούν στη φύση.

12 Παράδειγμα Πρόβλημα Υποθέστε ότι ένα εργοστάσιο πακεταρίσματος επιθυμεί να αυτοματοποιήσει τη διαδικασία ταξινόμησης των εισερχομένων ψαριών επάνω σε έναν ιμάντα μεταφοράς, ανάλογα με το είδος του ψαριού. Συγκεκριμένα θέλουμε να διαχωρίζονται μέσω οπτικών αισθητήρων τα ψάρια «σολομός» και «πέρκα».

13 Παράδειγμα Διαδικασία Στήνουμε μια κάμερα Παίρνουμε κάποιες εικόνες δειγματοληπτικά Αρχίζουμε να παρατηρούμε κάποιες φυσικές διαφορές μεταξύ των δύο αυτών ειδών ψαριού (χαρακτηριστικά features): Μήκος Χρωματισμός μ Πλάτος Ο αριθμός και το σχήμα των λεπιών ρ μ χήμ τους

14 Παράδειγμα Διαδικασία Παρατηρείται η ύπαρξη ανεπιθύμητου θορύβου και κάποιων διαταραχών στις εικόνες: διαφορές στο χρωματισμό στη θέση των ψαριών στον ιμάντα μεταφοράς

15 Παράδειγμα Μοντελοποίηση Υπάρχουν διαφορές μεταξύ των πληθυσμών της πέρκας και του σολομού; έχουν διαφορετικά μοντέλα (models): διαφορετική περιγραφή με μαθηματικό τύπο. Κάθε πρότυπο το αντιστοιχούμε στο μοντέλο που το περιγράφει καλύτερα Επεξεργαζόμαστε τα δεδομένα που λαμβάνουμε από τους αισθητήρες Υποθέτουμε τις διάφορες κλάσεις των μοντέλων Κάθε τεχνική που βοηθάει και συντελεί στην καλύτερη ολοκλήρωση του τελευταίου μέρους πρέπει να ληφθεί υπόψη από το σχεδιαστή συστημάτων αναγνώρισης προτύπων.

16 Σύστημα Αναγνώρισης Προτύπων Η κάμερα λαμβάνει μια εικόνα από το ψάρι Η εικόνα προεπεξεργάζεται (preprocessed) για να απλοποιηθούν οι επόμενες πράξεις χωρίς να χαθούν όμως ζωτικές πληροφορίες: τμηματοποίηση (segmentation): εικόνες από διαφορετικά ψάρια κατά κάποιο τρόπο απομονώνονται η μια από την άλλη και από το φόντο (background).

17 Σύστημα Αναγνώρισης Προτύπων H πληροφορία από ένα μόνο ψάρι στέλνεται σε ένα εξαγωγέα χαρακτηριστικών (feature extractor): η λειτουργία του επικεντρώνεται στο να μειώσει τον όγκο των δεδομένων, λαμβάνοντας υπόψη του μόνο κάποια σημαντικά «χαρακτηριστικά» ρ ή «ιδιότητες». Οι τιμές αυτών των χαρακτηριστικών περνάνε σε ένα ταξινομητή που παίρνει την τελική απόφαση

18

19 Επιλογή Χαρακτηριστικών Ένας υπάλληλος στο τμήμα διαχωρισμού των ψαριών μας αποκάλυψε ότι γενικά η πέρκα είναι μεγαλύτερη σε μήκος από το σολομό. Αυτό μας δίνει κάποια δοκιμαστικά μοντέλα για τα ψάρια: Οι πέρκες έχουν κάποιο τυπικό μήκος και αυτό είναι μεγαλύτερο από το μήκος των σολομών. Το μήκος είναι ένα προφανές χαρακτηριστικό και μπορούμε να προσπαθήσουμε να ταξινομήσουμε ένα ψάρι ανάλογα με το μήκος του Για να επιλέξουμε το κατώφλι l* θα μπορούσαμε να πάρουμε κάποια δείγματα εκπαίδευσης ή σχεδίασης από ψάρια των δύο ειδών, να κάνουμε μετρήσεις και να επιθεωρήσουμε τα αποτελέσματα.

20 Επιλογή Χαρακτηριστικών Ανεξάρτητα από το l*, δεν μπορούμε αξιόπιστα να ξεχωρίσουμε την πέρκα από το σολομό μόνο βάση του μήκους

21 Επιλογή Χαρακτηριστικών Προχωράμε στην επιλογή άλλου χαρακτηριστικού πχ. ο μέσος όρος φωτεινότητας του χρώματος του ψαριού Τώρα πρέπει να είμαστε πολύ προσεκτικοί ώστε να εξαλείψουμε τις αποκλίσεις της φωτεινότητας

22 Επιλογή Χαρακτηριστικών

23 Επιλογή Χαρακτηριστικών & Κόστος Απόφασης Αποφασίζοντας πέρκα αντί για το σωστό (σολομός) έχει το ίδιο κόστος με το αντίστροφο Φανταστείτε το παράδειγμα ενός ταξινομητή για νάρκες ενεργές ή μη Έστω ότι μια εταιρεία γνωρίζει ότι οι πελάτες της δέχονται κομμάτια σολομού στις κονσέρβες τους «πέρκα», όμως δυσανασχετούν για κομμάτια πέρκας στην κονσέρβα τους «σολομός». Πρέπει να μεταφερθεί το όριο απόφασης σε χαμηλότερες τιμές φωτεινότητας

24 Θεωρία Αποφάσεων Ασχολείται με το συνολικό κόστος που σχετίζεται με την απόφασή μας και τη δημιουργία ενός κανόνα απόφασης τέτοιο ώστε να ελαχιστοποιηθεί το κόστος αυτό.

25 Επιλογή Χαρακτηριστικών Ακόμη και αν γνωρίζουμε το κόστος το οποίο συνδέεται με τις αποφάσεις μας και διαλέξουμε το κρίσιμο σημείο x*, μπορεί να απογοητευτούμε με το ανακριβές αποτέλεσμα που θα προκύψει. Η πρώτη μας προσπάθεια τότε είναι να ψάξουμε για κάποιο άλλο διαφορετικό χαρακτηριστικό πάνω στο οποίο θα στηριχτούμε για να διαχωρίσουμε τα ψάρια. Ας υποθέσουμε όμως ότι κανένα άλλο οπτικό χαρακτηριστικό από μόνο του δεν λειτουργεί καλύτερα από τη φωτεινότητα. Για να βελτιώσουμε την αναγνώριση, τότε πρέπει να καταφύγουμε στη ηχρήση περισσότερων ρ του ενός χαρακτηριστικών.

26 Επιλογή Χαρακτηριστικών Μπορούμε να στηριχθούμε στο γεγονός ότι η πέρκα είναι γενικά πιο μεγάλη σε πλάτος από το σολομό. Τώρα έχουμε δύο χαρακτηριστικά: την φωτεινότητα x1 το πλάτος x2 Τότε ο εξαγωγέας χαρακτηριστικών έχει «μειώσει» την εικόνα για κάθε ψάρι σε ένα σημείο ή αλλιώς σε ένα διάνυσμα χαρακτηριστικών x, σε ένα δύο διαστάσεων χώρο χαρακτηριστικών: x x 1 x 2

27 Ταξινόμηση To πρόβλημα μας στη συνέχεια, έγκειται στο να διαχωρίσουμε αυτό το χώρο χαρακτηριστικών σε δύο περιοχές: Αυτές οι περιοχές θα είναι διαχωρισμένες έτσι ώστε για όλα τα σημεία εντός της μίας περιοχής να ονομάζουμε το ψάρι «πέρκα» και εντός της άλλης περιοχής να το ονομάζουμε «σολομό». Aς υποθέσουμε ότι μετράμε τα διανύσματα των χαρακτηριστικών για τα δείγματα μας Ταξινομούμε τα ψάρια ως «πέρκα» έ αν το δά διάνυσμα των χαρακτηριστικών του είναι πάνω από το όριο απόφασης και ως «σολομό» διαφορετικά.

28 Ταξινόμηση

29 Προβλήματα στην επιλογή Χαρακτηριστικών Εκτός από τη φωτεινότητα και το πλάτος των ψαριών μπορούμε ακόμη να συμπεριλάβουμε κάποια σχηματική παράμετρο: όπως είναι η κυρτή γωνία του ραχιαίου πτερυγίου την τοποθεσία των οφθαλμών Κάποια χαρακτηριστικά μπορεί να είναι πλεονάζοντα. Για παράδειγμα, αν το χρώμα των ματιών των ψαριών σχετίζεται άψογα και με το πλάτος τους, τότε η επιλογή του χρώματος του ματιού ως χαρακτηριστικό θα είναι πλεονάζουσα.

30 Προβλήματα στην επιλογή Χαρακτηριστικών Πως γνωρίζουμε εκ των προτέρων ποιο από τα χαρακτηριστικά θα δουλέψει καλύτερα; Κάποια χαρακτηριστικά είναι δύσκολο (ή ακριβό) να μετρηθούν ή απλώς προσφέρουν μικρή βελτίωση στον ταξινομητή ή ακόμη χειροτερεύουν την ταξινόμηση. Μια άλλη προσέγγιση θα ήταν να πάρουμε όσο το δυνατόν περισσότερα δείγματα εκπαίδευσης για να έχουμε την όσο το δυνατόν καλύτερη εκτίμηση των σχετικών χαρακτηριστικών. Σε κάποια προβλήματα όμως, το πλήθος των δεδομένων είναι περιορισμένο.

31 Προβλήματα στην επιλογή Χαρακτηριστικών Αν τα μοντέλα μας ήταν πολύ περίπλοκα, ο ταξινομητής μας θα είχε όριο απόφασης πιο πολύπλοκο από την απλή ευθεία γραμμή. Ο κεντρικός σκοπός μας, όταν κατασκευάζουμε ένα ταξινομητή, είναι να μας προτείνει δράσεις όταν παρουσιάζονται σε αυτόν νέα πρότυπα όπως π.χ. κάποιο ψάρι που δεν έχει ξαναδεί. Αυτό είναι γνωστό με τον όρο γενίκευση.

32 Προβλήματα στην επιλογή Χαρακτηριστικών

33 Προβλήματα στην επιλογή Χαρακτηριστικών Ψάχνουμε να απλοποιήσουμε τον ταξινομητή μας και το όριο απόφασης Συμβιβαζόμαστε β με μια πιο χαμηλή απόδοση του ταξινομητή μας στα δεδομένα εκπαίδευσης, αν αυτό οδηγήσει σε έναν ταξινομητή με καλύτερη απόδοση σε καινούρια πρότυπα

34 Ταξινόμηση Η ταξινόμηση είναι μια διαδικασία εύρεσης του μοντέλου που γεννάει τα πρότυπα Διάφορες τεχνικές αναγνώρισης είναι χρήσιμες ανάλογα με το είδος των υποψηφίων μοντέλων Στην Στατιστική Αναγνώριση Προτύπων επικεντρωνόμαστε στις στατιστικές ιδιότητες των προτύπων Στην Συντακτική Αναγνώριση Προτύπων το μοντέλο μας αποτελείται από ένα σύνολο από όλογικούς κανόνες

35 Χρήση Ταξινομητή Διαφορετικές αποφάσεις μπορεί να απαιτούν διαφορετικά χαρακτηριστικά και όρια αν θέλουμε να κατατάσσει τα ψάρια ανάλογα με το φύλο τους αν θέλουμε να επιλέξουμε τα αλλοιωμένης εμφάνισης ψάρια Για τα ίδια εισαγόμενα στον ταξινομητή πρότυπα χρησιμοποιούμε άλλη συνάρτηση κόστους ήκάνουμε διαφορετικό διαχωρισμό.

36 Συμπεράσματα Ο άνθρωπος έχει την ικανότητα να «δουλεύει» ύ καλά σε διαφορετικά προβλήματα αναγνώρισης προτύπων και να εναλλάσσεται στιγμιαία μεταξύ τους Η δημιουργία μοντέλου αναγνώρισης προτύπων για γενική χρήση είναι δύσκολο εγχείρημα Κατά τη σχεδίαση του μοντέλου οι αποφάσεις μας βασίζονται στο κόστος και την εργασία που επιθυμούμε

37 Συμπεράσματα Είναι σημαντικό σε κάθε πρόβλημα αναγνώρισης προτύπων να κατασκευάσουμε μια «επιτυχή» αναπαράσταση, με απλές δομικές σχέσεις ανάμεσα στα χαρακτηριστικά Πρέπει μέσω της αναπαράστασης να εκφράζεται το πραγματικό μοντέλο των προτύπων Τα πρότυπα που οδηγούν στην ίδια απόφαση πρέπει να είναι κοντά και όσο γίνεται πιο μακριά από τα πρότυπα που οδηγούν σε διαφορετική απόφαση. Επιλέγουμε έναν μικρό αριθμό χαρακτηριστικών που: να οδηγήσουν σε απλούστερες περιοχές απόφασης να απλοποιήσουν το χρόνο εκπαίδευσης του ταξινομητή

Αναγνώριση Προτύπων. Σήμερα! Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος

Αναγνώριση Προτύπων. Σήμερα! Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος Αναγνώριση Προτύπων Σήμερα! Περιεχόμενο μαθήματος Διαδικαστικά Απαλλακτικές Εργασίες Εισαγωγή στο αντικείμενο του μαθήματος 1 Περιεχόμενο μαθήματος Επιλογή Χαρακτηριστικών Γέννηση Χαρακτηριστικών Ταξινομητές

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Αναγνώριση Προτύπων 1

Αναγνώριση Προτύπων 1 Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων

Διαβάστε περισσότερα

Συναρτήσεις. Σημερινό μάθημα

Συναρτήσεις. Σημερινό μάθημα Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές

τεσσάρων βάσεων δεδομένων που θα αντιστοιχούν στους συνδρομητές Σ Υ Π Τ Μ Α 8 Ιουνίου 2010 Άσκηση 1 Μια εταιρία τηλεφωνίας προσπαθεί να βρει πού θα τοποθετήσει τις συνιστώσες τηλεφωνικού καταλόγου που θα εξυπηρετούν τους συνδρομητές της. Η εταιρία εξυπηρετεί κατά βάση

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Αλγόριθμοι & Βελτιστοποίηση

Αλγόριθμοι & Βελτιστοποίηση Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)

Διαβάστε περισσότερα

Μια εικόνα. χίλιες λέξεις

Μια εικόνα. χίλιες λέξεις Μια εικόνα χίλιες λέξεις Σήμερα! Κανονισμός μαθήματος Χρησιμότητα εικόνας Υπολογιστική όραση Ψηφιακή εικόνα Εφαρμογές 1 Επεξεργασία Εικόνας και Όραση Υπολογιστών t μαθήματος Επεξεργασία εικόνας Πρακτική

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ

ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ ΣΤΗ ΚΡΗΤΗ ΑΝΤΙΟΠΗ ΓΙΓΑΝΤΙ ΟΥ Τοµεάρχης Λειτουργίας Κέντρων Ελέγχου Συστηµάτων Μεταφοράς ιεύθυνσης ιαχείρισης Νησιών ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ ΚΡΗΤΗΣ 2009 Εγκατεστηµένη Ισχύς (Ατµοµονάδες, Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση.

Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Αναγνώριση Προτύπων Η κατάρα της διαστατικότητας Ο όρος εισήχθηκε το 1961 από τον Bellman Αναφέρεται στο πρόβλημα της ανάλυσης δεδομένων πολλών μεταβλητών καθώς αυξάνει η διάσταση. Η κατάρα της διαστατικότητας

Διαβάστε περισσότερα

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

14 Φεβρουαρίου 2014, Βόλος

14 Φεβρουαρίου 2014, Βόλος ιαφορικές Εξισώσεις Εισαγωγή Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 14 Φεβρουαρίου 2014, Βόλος ιαδικαστικά Θέματα Ο τελικός βαθμός προτείνω να υπολογισθεί

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

Projects για το εργαστήριο. των Βάσεων Δεδομένων

Projects για το εργαστήριο. των Βάσεων Δεδομένων Projects για το εργαστήριο των Βάσεων Δεδομένων Θεσσαλονίκη, Νοέμβριος Δεκέμβριος 2013 1. Το πολυκατάστημα Το πολυκατάστημα έχει ένα σύνολο από εργαζομένους. Κάθε εργαζόμενος χαρακτηρίζεται από έναν κωδικό

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Κλασικός Αθλητισμός Δρόμοι : Μεσαίες και μεγάλες αποστάσεις Ταχύτητες Σκυταλοδρομίες Δρόμοι με εμπόδια Δρόμοι Μεσαίων και Μεγάλων αποστάσεων Στην αρχαία εποχή ο δρόμος που είχε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Συναρτήσεις & Κλάσεις

Συναρτήσεις & Κλάσεις Συναρτήσεις & Κλάσεις Overloading class member συναρτήσεις/1 #include typedef unsigned short int USHORT; enum BOOL { FALSE, TRUE}; class Rectangle { public: Rectangle(USHORT width, USHORT

Διαβάστε περισσότερα

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις (3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων. Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά

Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων. Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά Κεφάλαιο 2.3: Marketing Κοινωνικών Επιχειρήσεων Περίληψη Κεφαλαίου: Στο παρόν κεφάλαιο παρουσιάζονται εν τάχει τα βασικά χαρακτηριστικά του μείγματος Marketing (Μ.Κ.Τ.), στο πλαίσιο της εύρυθμης λειτουργίας

Διαβάστε περισσότερα

(7 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ Ι: «ταξινόμηση» (8 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ ΙΙ: «κυρτό περίβλημα»

(7 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ Ι: «ταξινόμηση» (8 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ ΙΙ: «κυρτό περίβλημα» (7 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ Ι: «ταξινόμηση» (8 ο ) ΔΙΑΙΡΕΙ & ΒΑΣΙΛΕΥΕ ΙΙ: «κυρτό περίβλημα» Σύντομα προλεγόμενα: πού να ψάξουμε για δραστικούς αλγορίθμους; Θα αρχίσουμε από αυτό το κεφάλαιο την ξενάγησή

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες 20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

Συμπεριφοριακή Επιχειρηματικότητα

Συμπεριφοριακή Επιχειρηματικότητα Συμπεριφοριακή Επιχειρηματικότητα Great talent can come from anywhere, free your mind Το ταλέντο μπορεί να εμφανιστεί από οπουδήποτε, ελευθερώστε το μυαλό σας 1 Επιχειρηματίας Entrepreneur Γαλλική προέλευση

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη

Υπολογιστική Νοημοσύνη Υπολογιστική Νοημοσύνη Σημερινή Διάλεξη Περιεχόμενο μαθήματος Διαδικαστικά Εργασίες Μαθήματος Εισαγωγή στο αντικείμενο του μαθήματος Εφαρμογές 1 Περιεχόμενο μαθήματος οµή και Χαρακτηριστικά ενός Γενετικού

Διαβάστε περισσότερα

Αντικειμενοστραφής. Προγραμματισμού

Αντικειμενοστραφής. Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Σημερινό μάθημα Μειονεκτήματα Δομημένου Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Ορισμοί Κλάσεις Αντικείμεναμ Χαρακτηριστικά ΑΠ C++ Class 1 Δομημένος Προγραμματισμός

Διαβάστε περισσότερα

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ.

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ. ΕΓΚΥΚΛΙΟΣ 23 η ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα, 10 Ιουλίου 2013 ΥΠΟΥΡΓΕΙΟ ΔΙΚΑΙΟΣΥΝΗΣ, ΔΙΑΦΑΝΕΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΩΝ ΔΙΚΑΙΩΜΑΤΩΝ ΣΥΝΤΟΝΙΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Αριθμ. Πρωτ. 153 ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΩΝ ΣΥΛΛΟΓΩΝ ΕΛΛΑΔΟΣ Α Θ Η Ν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

CSE.UOI : Μεταπτυχιακό Μάθημα

CSE.UOI : Μεταπτυχιακό Μάθημα Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &

Διαβάστε περισσότερα

όπου ω j η κλάση j και x το διάνυσμα χαρακτηριστικών Ένας τυπικός κανόνας απόφασης είναι να επιλέγουμε την κλάση με τη μέγιστη P[ω j x]

όπου ω j η κλάση j και x το διάνυσμα χαρακτηριστικών Ένας τυπικός κανόνας απόφασης είναι να επιλέγουμε την κλάση με τη μέγιστη P[ω j x] Bayes Classifiers Θεώρημα Bayes Tο θώ θεώρημα Bayes εκφράζεται ως: όπου ω j η κλάση j και x το διάνυσμα χαρακτηριστικών Ένας τυπικός κανόνας απόφασης είναι να επιλέγουμε την κλάση με τη μέγιστη P[ω j x]

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

Ο Β ΤΟΜΕΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ: Υπολογιστικά Συστήματα και Εφαρμογές Πληροφορικής Pragmatic Computer Science

Ο Β ΤΟΜΕΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ: Υπολογιστικά Συστήματα και Εφαρμογές Πληροφορικής Pragmatic Computer Science Ο Β ΤΟΜΕΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ: Υπολογιστικά Συστήματα και Εφαρμογές Πληροφορικής Pragmatic Computer Science Αλέξης ελής ιευθυντής Β Τομέα www.di.uoa.gr/ ad Τμήμα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Opinion Mining. Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr. Χριστίνα Αραβαντινού Opinion Mining Μάιος 2014 1 / 26

Opinion Mining. Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr. Χριστίνα Αραβαντινού Opinion Mining Μάιος 2014 1 / 26 Opinion Mining Χριστίνα Αραβαντινού aravantino@ceid.upatras.gr Μάιος 2014 Χριστίνα Αραβαντινού Opinion Mining Μάιος 2014 1 / 26 Περιεχόμενα Εισαγωγή Εφαρμογές ομή μιας άποψης Είδη απόψεων Προσεγγίσεις

Διαβάστε περισσότερα

Kατάτμηση εικόνας. Σήμερα!

Kατάτμηση εικόνας. Σήμερα! Kατάτμηση εικόνας Σήμερα! Κατωφλίωση (binarization) Καθολικό ό( (global) κατώφλι LocalΤhresholding Φωτισμός και Ανακλαστικότητα Τεχνικές ανίχνευσης ακμών Τελεστές κλίσης (gradient operators) (gradient

Διαβάστε περισσότερα

έγγραφο σε κάθε διάσταση αντιστοιχούν στο πλήθος εμφανίσεων της λέξης (που αντιστοιχεί στη συγκεκριμένη διάσταση) εντός του εγγράφου.

έγγραφο σε κάθε διάσταση αντιστοιχούν στο πλήθος εμφανίσεων της λέξης (που αντιστοιχεί στη συγκεκριμένη διάσταση) εντός του εγγράφου. Π Π Σ Τ Π Ε Τ Ψ Σ Δομές Δεδομένων 2016-2017 2η Εργασία Χρήστος Δουλκερίδης Ορέστης Τελέλης 1 Περιγραφή Η ομαδοποίηση εγγράφων (document clustering) με βάση τα περιεχόμενά τους είναι ένα πολύ ενδιαφέρον

Διαβάστε περισσότερα

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου

«Εξατομικεύοντας την επιλογή των πόρων των ψηφιακών βιβλιοθηκών για την υποστήριξη της σκόπιμης μάθησης» Άννα Μαρία Ολένογλου ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΥΠΗΡΕΣΙΕΣ ΠΛΗΡΟΦΟΡΗΣΗΣ ΣΕ ΨΗΦΙΑΚΌ ΠΕΡΙΒΑΛΛΟΝ Εργασία στο μάθημα «Ψηφιακές Βιβλιοθήκες» Παρουσίαση του άρθρου (ECDL, 2008, LNCS,

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Δίκαιο και Οικονομικά: Οι Εξετάσεις

Δίκαιο και Οικονομικά: Οι Εξετάσεις Δίκαιο και Οικονομικά: Οι Εξετάσεις Το κείμενο αυτό ανανεώνεται με τη δική σας παρέμβαση, τις ερωτήσεις, τα σχόλια και τις παρατηρήσεις σας. Θα συνεχίζει να ανανεώνεται μέχρι την ημέρα των εξετάσεων. Αυτή

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΓΟΥΜΕΝΙΣΣΑΣ ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑΣ

ΓΥΜΝΑΣΙΟ ΓΟΥΜΕΝΙΣΣΑΣ ΕΡΓΑΣΙΑ ΓΕΩΓΡΑΦΙΑΣ ΙΣΤΟΡΙΑ ΚΑΙ ΠΟΛΙΤΙΣΜΟΣ ΜΕΣΟΓΕΙΟΥ ΜΑΘΗΤΡΙΕΣ ΤΟΥ Β2 ΠΕΤΡΑ ΠΕΤΣΟΥ ΔΕΣΠΟΙΝΑ ΜΠΟΖΙΝΗ ΜΑΡΙΑ ΧΡΥΣΟΣΤΟΜΙΔΟΥ Yπεύθυνοι καθηγητές Μπουρμπούλιας Βασίλης - φιλόλογος Τσατσούλα Μαρία - φυσικός 1 Η ΜΕΣΟΓΕΙΟΣ: Η Μεσόγειος

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

Πηγές πληροφόρησης και εργαλεία

Πηγές πληροφόρησης και εργαλεία Πηγές πληροφόρησης και εργαλεία αναζήτησης Ένας σύντομος οδηγός για τους φοιτητές του τμήματος Λογιστικής και Χρηματοοικονομικής Σύνταξη : Θεοδώρα Τσώλη, Βιβλιοθηκονόμος MSc Νοέμβριος 2014 Βιβλιοθήκη Παραρτήματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming)

Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 1 Πανεπιστήμιο Κύπρου Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής ΜΜΚ 452: Μηχανικές Ιδιότητες και Κατεργασία Πολυμερών Εργαστηριακή Άσκηση Θερμομόρφωση (Thermoforming) Σελίδα 2 Εισαγωγή: Η

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

5.1 Μετρήσιμες συναρτήσεις

5.1 Μετρήσιμες συναρτήσεις 5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ. Διδακτική ενότητα

ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ. Διδακτική ενότητα ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΙΣΤΟΡΙΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΙΣΤΟΡΙΑ Α, Β, Γ, ΓΥΜΝΑΣΙΟΥ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ Διδακτική ενότητα Στόχος μας είναι: Να ανακαλύψετε τους παράγοντες που οδήγησαν στην εμφάνιση και

Διαβάστε περισσότερα

Κείµενο διδαγµένο Κείµενο από το πρωτότυπο

Κείµενο διδαγµένο Κείµενο από το πρωτότυπο ΤΡΙΤΗ 29 ΙΟΥΝΙΟΥ 1999 ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Κείµενο διδαγµένο Κείµενο από το πρωτότυπο Θουκυδίδη Ιστορία Γ, 70 Καὶ (ἦν γὰρ Πειθίας ἐθελοπρόξενός τε τῶν Ἀθηναίων καὶ τοῦ δήµου προειστήκει)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΚΕΙΜΕΝΟ. Πέµπτη 19 Νοεµβρίου 1942. Αγαπητή Κίττυ,

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΚΕΙΜΕΝΟ. Πέµπτη 19 Νοεµβρίου 1942. Αγαπητή Κίττυ, ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ ΕΚΦΡΑΣΗ - ΕΚΘΕΣΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Αγαπητή

Διαβάστε περισσότερα

Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο

Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο Η Πληροφορική στο Δημοτικό Διδακτικές Προσεγγίσεις Αδάμ Κ. Αγγελής Παιδαγωγικό Ινστιτούτο Α) Το γενικό πλαίσιο.ε.π.π.σ. και Α.Π.Σ. Β) Ο Υπολογιστής στην τάξη Γ) Ενδεικτικές ραστηριότητες Α) Το γενικό πλαίσιο.ε.π.π.σ.

Διαβάστε περισσότερα

Επιμέλεια σύνταξης απαντήσεων: Μαρία Πέτρα ΑΠΑΝΤΗΣΕΙΣ

Επιμέλεια σύνταξης απαντήσεων: Μαρία Πέτρα ΑΠΑΝΤΗΣΕΙΣ Κλάδος: ΠΕ 60 ΝΗΠΙΑΓΩΓΩΝ ΕΞΕΤΑΣΗ ΣΤΗ ΔΕΥΤΕΡΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Ειδική Διδακτική και Παιδαγωγικά Γενική Διδακτική) Κυριακή 1-2-2009 ΕΡΩΤΗΜΑ 2ο: Την τελευταία περίπου πενταετία εφαρμόζεται στα νηπιαγωγεία

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 16 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΒΙΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ 1ο Στις ερωτήσεις 1 5, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους.

Προτεινόμενα θέματα. στο μάθημα. Αρχές οργάνωσης και διοίκησης επιχειρήσεων. ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους. Προτεινόμενα θέματα στο μάθημα Αρχές οργάνωσης και διοίκησης επιχειρήσεων ΟΜΑΔΑ Α: Ερωτήσεις Σωστού Λάθους Στις παρακάτω προτάσεις να γράψετε δίπλα στον αριθμό της καθεμιάς τη λέξη Σωστό αν κρίνετε ότι

Διαβάστε περισσότερα

Περιεχόμενο: Τυπικές τεχνικές αναθεώρησης λογισμικού

Περιεχόμενο: Τυπικές τεχνικές αναθεώρησης λογισμικού Περιεχόμενο: Τυπικές τεχνικές αναθεώρησης λογισμικού ΤΥΠΙΚΕΣ ΤΕΧΝΙΚΕΣ ΑΝΑΘΕΩΡΗΣΗΣ (ΤΤΑ) (FORMAL TECHNICAL REVIEWS) Η ΤΤΑ είναι μια δραστηριότητα εξασφάλισης της ποιότητας του λογισμικού που πραγματοποιείται

Διαβάστε περισσότερα

Κατασκευή της κίνησης Brown και απλές ιδιότητες

Κατασκευή της κίνησης Brown και απλές ιδιότητες 5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες

Διαβάστε περισσότερα