( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»"

Transcript

1 ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε σ S. Στη συνέχει χρειζόμστε την δυντότητ νπράστσης μις σχέσης νάμεσ σε δύο στοιχεί, κι. Από λογικής πλευράς μι σχέση εκφράζετι πό έν κτηγόρημ Φ(, ), με δύο πρμέτρους, κι δύο στοιχεί κι, θεωρούντι ότι σχετίζοντι κτά τον τρόπο της Φ εάν κι μόνον εάν Φ(, ) = ΑΛΗΘΕΣ. Η λογική έκφρση Φ(, ) μς δίδει τον «κνόν» της σχέσης κι πρπέμπει στο «νόημ» της σχέσης λλά γι ν χειριστούμε σχέσεις, θ στρέψουμε την προσοχή μς όπως κι στη θεωρί σύνολων στην «νφορά», δηλδή στ συγκεκριμμέν ζεύγη, τ μέλη των οποίων σχετίζοντι (κτά τον οποιοδήποτε τρόπο, κι γι τον οποιοδήποτε λόγο): εξωγενής ή διμερής διμελής σχέση (ή περιληπτικά: πεικόνιση) = μι τριάδ Α, Β, S όπου, τ Α κι Β είνι σύνολ, S είνι έν σύνολο ζευγών,, Α κι Β. ΠΡΟΣΟΧΗ: μι σχέση επί των συνόλων Α, Β δεν είνι πρά έν στοιχείο του δυνμοσυνόλου ( ). ονομάζουμε τις σχέσεις υτές «διμελείς», επειδή συσχετίζουν τ στοιχεί ν δύο,, κι τις ονομάζουμε «εξωγενείς» ή «διμερείς» επειδή τ σύνολ νφοράς Α κι Β δεν είνι (κτ νάγκην) ίσ, δηλδή έν στοιχείο πό το Α σχετίζετι με έν στοιχείο (ίσως) έξω πό το Α. συχνά νφερόμστε μόνον στον κνόν Φ(, ) μις σχέσης, π.χ. λέμε «η γονική σχέση». Σε υτές τις περιπτώσεις εννοούμε την σχέση που θ προέκυπτε εάν εφρμόζμε υτόν τον κνόν σε ένν συγκεκριμμένο χώρο νφοράς. Λ.χ. μπορεί ν μιλάμε γενικά γι την «γονική» σχέση, λλά ν πούμε «σε υτή την πρέ όλ τ πιδιά είνι μονχοπίδι». 2. ΣΧΕΣΕΙΣ: η σχεδίση, κι τ μορφικά χρκτηριστικά. Ως σύνολ οι σχέσεις γράφοντι, νγινώσκοντι κι σχεδιάζοντι κι ως σύνολ. Ειδικότερ ως σχέσεις, σχεδιάζουμε τις διμελείς σχέσεις σχεδιάζοντς χωριστά τ δύο σύνολ Α κι Β, κι κάθε ζεύγος, ως έν «έλος» πό το στοιχείο στο στοιχείο. Η πρκάτω σχέση (δεξιά) S ορίζετι επί του, όπου = { 1, 2, 3, 4, 5 } κι Β = {,,,, }, κι είνι η: S = { 1,, 2,, 2,, 2,, 3,, 3,, 5, }. Σχεδιάζοντι επίσης ως υποσύνολ ενός κρτεσινού γινομένου S Τ σικά μορφικά χρκτηριστικά που μς ενδιφέρουν είνι τ εξής (σχημτικά): σύνολο φετηρίς θμός εξόδου g(2) = σύνολο προορισμού θμός εισόδου g() = 2 εικόν S[{3, 4, 5}] = {, } Β 4 4 πεδίο ορισμού omin(s) 5 πεδίο τιμών rng(s) 5 διτετγμέν ζεύγη της σχέσης S διτετγμέν ζεύγη της σχέσης S -1 Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΓΙΣΤΩΝ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Γ. Φ. Γεωργκόπουλος ΕΚΔ. 12/10/2015 ΣΕΛ. 1 / 7

2 Με τυπική γλώσσ κι σε κθημερινή γλώσσ, τ πρπάνω μορφικά στοιχεί ορίζοντι ως εξής: Ορολογί: Τυπική περιγρφή: Συνοπτική ερμηνεί: σύνολο φετηρίς Α υθίρετο σύνολο. σύνολο προορισμού Β υθίρετο σύνολο. ζεύγος της σχέσης,, Α κι Β στοιχείο του γινομένου. σχέση S στοιχείο του δυνμοσυνόλου ( ). πεδίο ορισμού omin(s) = { : Α κι Β, S } πεδίο τιμών rng(s) = { : Β κι Α, S } το σύνολο των «πρωτοτύπων»: όσ έχουν μι τουλάχιστον εικόν στο Β. το σύνολο των «εικόνων»: όσ έχουν έν τουλάχιστον πρωτότυπο στο Α. ντίστροφη σχέση S 1 = {, :, κι, S } η σχέση στο ν ντιστρέψουμε τ ζεύγη. εικόν X S[X] = { : Β κι Α, S } το σύνολο των εικόνων του Χ (υποσύνολο Α). θμός (εξόδου) Α() = { : Β κι, S } = S[] το πλήθος των εικόνων του. θμός (εισόδου) Β() = { : Α κι, S } = S 1 [] το πλήθος των πρωτοτύπων του. 3. ΣΧΕΣΕΙΣ οι σχέσεις μετξύ τους: ισότητ, περιορισμός/επέκτση. Δύο σχέσεις κυριρχούν στις διμελείς σχέσεις: η ισότητ (προφνώς όπως πντού!) κι η «συμπερίληψη». Κι οι δύο έχουν συνολοθεωρητικές άσεις. Α1, Β1, S1 = Α2, Β2, S2 εάν κι μόνον εάν Α1 = Α2, Β1 = Β2 κι S1 = S2, όπως κριώς ζητά η θεωρί συνόλων. Ας προσέξουμε εδώ ότι ορισμένες φορές χρησιμοποιούμε τον ίδιο κνόν γι ν ορίσουμε μι σχέση, (ν κι δεν έχουμε μι «θεωρί κνόνων»). Ότν οι κνόνες είνι οι ίδιοι (λ.χ. «φίλος με») οι πργόμενες σχέσεις δεν ποτελούντι κτ νάγκην πό τ ίδι ζεύγη ν οι χώροι νφοράς (Α κι Β) διφέρουν. Α1, Β1, S1 Α2, Β2, S2 εάν κι μόνον εάν Α1 Α2, Β1 Β2 κι S1 S2. Σε υτές τις περιπτώσεις χρησιμοποιείτι συχνά κι η έκφρση ότι η σχέση S2 επεκτείνει την S1, ή ότι η S1 είνι περιορισμός της S2. 4. ΣΧΕΣΕΙΣ η μορφολογί: 4 θεμελικά χρκτηριστικά κι 1+6 σικά είδη. Με άση τ μορφικά χρκτηριστικά προσδιορίζουμε τέσσερ θεμελικά χρκτηριστικά γι τις πεικονίσεις. Τ χρκτηριστικά υτά δίδοντι στον πρκάτω πίνκ. Ορολογί: «ριστερά» (φετηρί) «δεξιά» (προορισμός) ολική μονοσήμντη (ή μονότιμη) Α, g() 1 κάθε στοιχείο «ριστερά» έχει τουλάχιστον μί εικόν. Β, g() 1 κάθε στοιχείο έχει «ριστερά» το πολύ έν πρωτότυπο. Β, g() 1 κάθε στοιχείο «δεξιά» έχει τουλάχιστον έν πρωτότυπο. Α, g() 1 κάθε στοιχείο έχει «δεξιά» το πολύ μί εικόν. Προσέξτε ότι επιλέγουμε το «ριστερά» ολική, διότι η έμφση είνι στην ολικότητ που υπάρχει ριστερά κι επιλέγουμε το «δεξιά» μονοσήμντη, διότι η έμφση είνι στο πλήθος των εικόνων (που υπάρχουν δεξιά). Συνδυάζοντς υτά τ χρκτηριστικά, σχημτίζουμε όλες τις ενδιφέρουσες μορφές πεικονίσεων, με τον τρόπο που εικονίζετι στον μεθεπόμενο πίνκ: στην ριστερή στήλη εικονίζοντι τ χρκτηριστικά, σκιάζοντς τις σχετικές περιοχές. ολική ριστερά ολική δεξιά μονοσήμντη ριστερά μονοσήμντη δεξιά Π.χ. το πρπάνω εικονίδιο περιγράφει μι πεικόνιση ριστερά ολική κι δεξιά μονοσήμντη. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΓΙΣΤΩΝ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Γ. Φ. Γεωργκόπουλος ΕΚΔ. 12/10/2015 ΣΕΛ. 2 / 7

3 οι κτκόρυφ συμμετρικές περιπτώσεις πράγουν το ίδιο είδος, λλά γι την ντίστροφη σχέση S ( 1). στη μεσί στήλη είνι η ονομσί της κάθε περίπτωσης. στην δεξιά στήλη έχουμε έν πράδειγμ σχέσης S του εκάστοτε είδους. προσέξτε ότι η περιγρφή μονοσήμντων σχέσεων περιέχει πάντ έν οριστικό άρθρο («ο» «την» κττ). Από τ 7 σύνθετ είδη που πράγοντι, κι χρκτηρίζουν είτε την ίδι την σχέση, είτε την ντίστροφή της S ( 1), σχολιάζουμε συνοπτικά τον «ρόλο που πίζει» το κθέν πό υτά. Θ τ χρειστούμε όλ... ΟΛΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΣΥΝΑΡΤΗΣΗ ΑΝΤΙΣΤΟΙΧΙΣΗ ΑΝΙΣΩΣΗ Η γενικότερη μετρητική σχέση την νλύουμε στην ενότητ περί κτμέτρησης. Η γνωστή «σίλισσ» των μθημτικών: ντιστοιχεί κάθε στοιχείο του Α σε κριώς έν πό το Β δηλδή «εικονίζει» το σύνολο Α εντός του Β. Ο πυρήνς μις «ομοιότητς»: γι ν εξετάσουμε πότε δύο σύνθετ ντικείμεν ομοιάζουν, νζητούμε μι «κλή» ντιστοίχιση των επί μέρους στοιχείων τους. Απλή σχέση με ευρείς χρήσεως μετρητικό ντίκτυπο: δείχνει ότι το σύνολο φετηρίς είνι μικρότερο πό το σύνολο προορισμού. ΕΝΘΕΤΗΣΗ Πράγει έν ντίτυπο της φετηρίς Α εντός του προορισμού Β. ΕΠΙΘΕΤΗΣΗ Δείχνει ότι όλο το Β είνι μι «σύνοψη» του Α. ΟΛΙΚΗ ΑΝΤΙΣΤΟΙΧΙΣΗ Η κριής μετρητική σχέση («μφιμονοσήμντη πεικόνιση»): Α = Β. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΓΙΣΤΩΝ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Γ. Φ. Γεωργκόπουλος ΕΚΔ. 12/10/2015 ΣΕΛ. 3 / 7

4 ΓΕΝΙΚΗ ΣΧΕΣΗ M ΠΡΟΣ N Α: κάποιο χωριό, Β: κάποιο χωριό «φίλος του» ΟΛΙΚΗ ΑΡΙΣΤΕΡΑ Α: πρόσωπ, Β: οι πρόγονοι των Α «έχει πππού τον» ΟΛΙΚΗ ΔΕΞΙΑ Α: ονόμτ, Β: πρόσωπ «όνομ του»» ΜΟΝΟΣΗΜΑΝΤΗ ΑΡΙΣΤΕΡΑ Α: άνδρες, Β: πρόσωπ «είνι πτέρς του» ΜΟΝΟΣΗΜΑΝΤΗ ΔΕΞΙΑ Α: πρόσωπ, Β: πρόσωπ «έχει μεγλύτερο δελφό τον» ΓΕΝΙΚΗ ΣΧΕΣΗ M ΠΡΟΣ N, ΑΜΦΙΠΛΕΥΡΑ ΟΛΙΚΗ Α: πρόσωπ, Β: οι γλώσσες τους «ομιλεί την» Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΓΙΣΤΩΝ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Γ. Φ. Γεωργκόπουλος ΕΚΔ. 12/10/2015 ΣΕΛ. 4 / 7

5 ΑΝΤΙΣΤΟΙΧΙΣΗ (MTCHING) Α: άντρες, Β: οι συγγενείς τους «ο σύζυγος της» S ή S ( 1) : ΣΥΝΑΡΤΗΣΗ (FUNCTION) Α: πρόσωπ, Β: οι πρόγονοί τους «έχει πτέρ τον» S ή S ( 1) : ΑΝΙΣΩΣΗ, ΑΦΕΤΗΡΙΑ ΠΡΟΟΡΙΣΜΟΣ Α: μητέρες, Β: τέκν «έχει πιδί το» S ή S ( 1) : ΕΝΘΕΤΗΣΗ (INJECTION) Α: γονείς, Β: τέκν «έχει πρωτότοκο τέκνο το» S ή S ( 1) : ΕΠΙΘΕΤΗΣΗ (SURJECTION) Α: τέκν, Β: γονείς «έχει μητέρ την» ΟΛΙΚΗ ΑΝΤΙΣΤΟΙΧΙΣΗ (IJECTION) Α: έγγμοι άνδρες, Β: έγγμες γυνίκες «ο σύζυγος της» Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΓΙΣΤΩΝ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Γ. Φ. Γεωργκόπουλος ΕΚΔ. 12/10/2015 ΣΕΛ. 5 / 7

6 5. ΣΧΕΣΕΙΣ: πράξεις επί των σχέσεων. Οι πράξεις επί των σχέσεων είνι τριών ειδών, όπως στον πρκάτω πίνκ: Πράξη : Τυπική περιγρφή: Συνοπτική ερμηνεί: S S 1 S 1 = {, :, κι, S } Η ντίστροφη σχέση: (τ ζεύγη της S νεστρμμέν). Η συμπληρωμτική σχέση: S S S = Α Β S (τ πρλειπόμεν πό την S, ζεύγη). S, T S T (όπως στ σύνολ) Η ένωση των ζευγών των S, T. S, T S T (όπως στ σύνολ) Η τομή των ζευγών των S, T. S, T S T (όπως στ σύνολ) Τ ζεύγη της S εξιρώντς όσ ζεύγη της T. S, Τ So T Α, Β, S o, Γ, Τ = Α, Γ, So T, όπου So T = {, γ :, Β,, S,, γ T } Η σύνθεση δύο σχέσεων, εφόσον ο προορισμός της πρώτης είνι η φετηρί της δεύτερης: όλ τ ζεύγη, γ που προκύπτουν πό την σύνθεση ενός ζεύγους, της S με έν «συνεχόμενο» ζεύγος, γ της Τ. S, X S[X] S[X] = { : Β κι Α, S } Η εικόν υπό την S ενός υποσυνόλου Χ Α. Οι δύο πρώτες είνι μονομελείς, κι οι υπόλοιπες πέντε είνι διμελείς. Οι πέντε πρώτες είνι γενικά συνολοθεωρητικές, οι δύο τελευτίες είνι ειδικά χρκτηριστικές των «σχέσεων». 6. ΣΧΕΣΕΙΣ: οι ιδιότητες των πράξεων. Αυτό που εισάγουν οι σχέσεις (πρπάνω πό τ σύνολ), είνι το ότι μέσω των ζευγών της μις σχέσεως ορίζετι η εικόν S[X] ενός συνόλου Χ. Έτσι υτό που έχουμε εδώ ν εξετάσουμε είνι τις (επιμεριστικές κυρίως) ιδιότητες των πράξεων ως προς την πράξη της «εικόνς» S[ ]. Τ εξής ισχύουν, (μετξύ άλλων): Ιδιότητ: Σχόλιο: (S T)[X] = S[X] S[Y] Η εικόν υπό την ένωση δύο σχέσων είνι η ένωση των επι μέρους εικόνων. (S T)[X] S[X] S[Y] Η εικόν υπό την τομή δύο σχέσεων είνι πλώς υποσύνολο της τομής των εικόνων. (S T)[X] = (S T )[X] (Η εικόν υπό την διφορά δύο σχέσεων νάγετι στην εικόν υπό μί τομή σχέσεων.) S[X Y] = S[X] S[Y] S[X Y] S[X] S[Y] S[X Y] = S[X ( Y)] Η εικόν της ένωσης δύο συνόλων είνι η ένωση των επι μέρους εικόνων. Η εικόν της τομής δύο συνόλων είνι πλώς υποσύνολο της τομής των εικόνων. (Η εικόνς μις διφοράς συνόλων νάγετι στην εικόν μις τομής συνόλων.) (So T)[Χ] = T[ S[X] ] Η εικόν υπό μί σύνθεση (So T) είνι η 2 η εικόν, υπό T, της 1 ης εικόνς, υπό S. X Y S[X] S[Y] Η εικόνιση διτηρεί την σχέση του υποσυνόλου. Οι πρπάνω ιδιότητες είνι συνολοθεωρητικές ιδιότητες, κι έτσι νλύοντι με κριώς τον ίδιο τρόπο όπως κι στ σικά σύνολ. Γι ν δείξουμε λ.χ. ότι (S T)[X] = S[X] S[Y], δείχνουμε τ εξής δύο: σ (S T)[X] σ S[X] S[Y] (ευθύ). σ S[X] S[Y] σ (S T)[X] (ντίστροφο). Κι γι ν δείξουμε ότι S[X Y] S[X] S[Y] (κι όχι κτ ν γκην «ίσο»), δείχνουμε τ εξής δύο: σ S[X Y] σ S[X] S[Y]. υπάρχει σ S[X] S[Y] γι το οποίο όμως ισχύει σ S[X Y], (ντιπράδειγμ). Δίνουμε στη συνέχει τις πρπάνω (πρδειγμτικές) νλύσεις, κτ νλογί με εκείνες που είχμε δώσει γι τ σύνολ. Οι υπόλοιπες σχέσεις του πρπάνω πίνκ νλύοντι κτά κριώς πρόμοιο τρόπο. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΓΙΣΤΩΝ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Γ. Φ. Γεωργκόπουλος ΕΚΔ. 12/10/2015 ΣΕΛ. 6 / 7

7 Η κτεύθυνση: σ (S T)[X] σ S[X] S[Y]:,σ S σ S[ σ ( S T )[ Α,, σ ( S T ) σ S[ T[,σ T σ T[ Η ντίστροφη κτεύθυνση: σ S[X] S[Y] σ (S T)[X]: σ S[, σ S σ S[ T[ Α,, σ ( S T ) σ ( S T )[ σ T[, σ T Η κτεύθυνση: σ S[X Y] σ S[X] S[Y]: X, σ S, σ S[ σ S[ X Y ] ( X Y ),, σ S σ S[ T[ Y, σ S, σ S[ Y ] Πργωγή ντιπρδείγμτος γι την ντίστροφη κτεύθυνση: σ, σ S[X] S[Y], λλά σ S[X Y]. σ S[ S[ Y ] σ S[ σ S[Y ] X, σ S X Y, σ T Y X Y X = Y X Y ( X Y ),, σ S σ S[ X Y ] Η πόδειξη «κολλάει» στην περίπτωση Χ Υ, κι άρ γι ντιπράδειγμ ρκεί το: S = { Χ, σ, Y, σ }, Χ = { Χ }, Υ ={ Υ }: S[X Y] = S[ ] = S[X] S[Y] = { σ } { σ } = { σ }.?? Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΓΙΣΤΩΝ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Γ. Φ. Γεωργκόπουλος ΕΚΔ. 12/10/2015 ΣΕΛ. 7 / 7

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών.

ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών. ΘΕΩΡΙ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών. 1. ΣΥΝΟΛ: το σκεπτικό. σύνολο = πολλά στοιχεία ως «ένα», ως «μία» ολότητα. τα στοιχεία ανήκουν στο σύνολο, ή είναι μέλη του συνόλου το σύνολο περιέχει

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ και ΚΑΤΑΜΕΤΡΗΣΗ ΘΕΜΕΛΙΑΚΩΝ ΣΥΝ ΥΑΣΤΙΚΩΝ ΜΟΡΦΩΝ

ΟΡΙΣΜΟΣ και ΚΑΤΑΜΕΤΡΗΣΗ ΘΕΜΕΛΙΑΚΩΝ ΣΥΝ ΥΑΣΤΙΚΩΝ ΜΟΡΦΩΝ ΟΡΙΣΜΟΣ και ΚΤΜΤΡΗΣΗ ΘΜΛΙΚΩΝ ΣΥΝ ΥΣΤΙΚΩΝ ΜΟΡΦΩΝ. ΣΥΝΥΣΤΙΚΣ ΜΟΡΦΣ: η μορφολογία. Όλες οι συνδυαστικές μορφές που θα εξετάσουμε είναι διαφόρων ειδών συναρτήσεις. Οι «παράμετροι» που παραλλάσονται είναι οι

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ.

1. Η συγκεκριμένη εφαρμογή της λειτουργίας για τη λήψη φορολογικής ενημερότητας βρίσκεται στην αρχική σελίδα της ιστοσελίδας της Γ.Γ.Π.Σ. ΕΓΚΥΚΛΙΟΣ 23 η ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα, 10 Ιουλίου 2013 ΥΠΟΥΡΓΕΙΟ ΔΙΚΑΙΟΣΥΝΗΣ, ΔΙΑΦΑΝΕΙΑΣ ΚΑΙ ΑΝΘΡΩΠΙΝΩΝ ΔΙΚΑΙΩΜΑΤΩΝ ΣΥΝΤΟΝΙΣΤΙΚΗ ΕΠΙΤΡΟΠΗ Αριθμ. Πρωτ. 153 ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΩΝ ΣΥΛΛΟΓΩΝ ΕΛΛΑΔΟΣ Α Θ Η Ν

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανεξάρτητα δείγματα: Αφορά δύο κανονικούς πληθυσμούς με παραμέτρους

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία

ΘΕΜΑ: Aποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία ΘΕΜΑ: ποτελεσματικότητα της νομισματικής και δημοσιονομικής πολιτικής σε μια ανοικτή οικονομία Σύνταξη: Μπαντούλας Κων/νος, Οικονομολόγος, Ms Χρηματοοικονομικών 1 Η πρώτη θεωρία σχετικά με τον αυτόματο

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ

ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ ΤΑ ΜΙΚΡΑ ΒΗΜΑΤΑ ΤΗΣ ΘΕΡΑΠΕΥΤΙΚΗΣ ΔΙΑΔΙΚΑΣΙΑΣ: ΠΩΣ ΕΡΧΟΝΤΑΙ ΚΑΙ ΠΩΣ ΜΠΟΡΟΥΜΕ ΝΑ ΒΟΗΘΗΣΟΥΜΕ ΓΙΑ ΝΑ ΕΡΘΟΥΝ Eugene T. GENDLIN University of Chicago, U.S.A Αυτό το άρθρο είναι μια αναθεωρημένη έκδοση της πλήρους

Διαβάστε περισσότερα

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ

ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ. (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΔΙΚΑΙΩΜΑΤΑ ΠΡΟΣΟΡΜΙΣΗΣ, ΠΑΡΑΒΟΛΗΣ, ΠΡΥΜΝΟΔΕΤΗΣΗΣ ΚΑΙ ΕΛΛΙΜΕΝΙΣΜΟΥ ΣΚΑΦΩΝ ΣΕ ΘΑΛΑΣΣΙΕΣ ΠΕΡΙΟΧΕΣ (ΛΙΜΑΝΙΑ κ.λπ.) ΤΟΠΙΚΗΣ ΑΡΜΟΔΙΟΤΗΤΑΣ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ ΚΑΙ ΔΗΜΟΤΙΚΩΝ ΛΙΜΕΝΙΚΩΝ ΤΑΜΕΙΩΝ Επιμέλεια Άγγελου Αργυρακόπουλου

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Βασίλειος Σταματόπουλος, Δικηγόρος, Δ.Μ.Σ. Συνάντηση 4 η ΕΝΟΧΕΣ ΔΙΑΖΕΥΚΤΙΚΕΣ Εννοιολογική προσέγγιση. Διαζευκτική είναι η ενοχή που έχει ως αντικείμενο δύο ή περισσότερες

Διαβάστε περισσότερα

ΠΡΟΒΑΛΟΝΤΑΣ ΤΗΝ ΘΕΩΡΙΑ ΤΟΥ FOUCAULT ΓΙΑ ΤΗΝ ΕΞΟΥΣΙΑ ΤΟΥ ΛΟΓΟΥ ΣΤΑ ΜΕΣΑ ΜΑΖΙΚΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΚΑΙ ΕΝΗΜΕΡΩΣΗΣ

ΠΡΟΒΑΛΟΝΤΑΣ ΤΗΝ ΘΕΩΡΙΑ ΤΟΥ FOUCAULT ΓΙΑ ΤΗΝ ΕΞΟΥΣΙΑ ΤΟΥ ΛΟΓΟΥ ΣΤΑ ΜΕΣΑ ΜΑΖΙΚΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΚΑΙ ΕΝΗΜΕΡΩΣΗΣ ΠΡΟΒΑΛΟΝΤΑΣ ΤΗΝ ΘΕΩΡΙΑ ΤΟΥ FOUCAULT ΓΙΑ ΤΗΝ ΕΞΟΥΣΙΑ ΤΟΥ ΛΟΓΟΥ Εργασία για το µάθηµα του εαρινού εξαµήνου του µεταπτυχιακού προγράµµατος του τµήµατος Επικοινωνίας & Μέσων Μαζικής Ενηµέρωσης του Εθνικού

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργακόπουλος Μέρος B Βασικά στοιχεία περί ασυμφραστικών

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

Συμβόλαια γάμου στους παπύρους της Αιγύπτου

Συμβόλαια γάμου στους παπύρους της Αιγύπτου ΣΧΟΛΙΑ Συμβόλαια γάμου στους παπύρους της Αιγύπτου Τα συμβόλαια γάμου που προέρχονται από την Αίγυπτο, διακρίνονται σε δύο είδη, τη συγγραφὴν συνοικισίου/ συνοικισίας, όπως είναι και το συμβόλαιο που εξετάζουμε,

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. Γεωργακόπουλος.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. Γεωργακόπουλος. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργακόπουλος Μέρος B Βασικά στοιχεία περί ασυμφραστικών γραμματικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

Κείµενο διδαγµένο Κείµενο από το πρωτότυπο

Κείµενο διδαγµένο Κείµενο από το πρωτότυπο ΤΡΙΤΗ 29 ΙΟΥΝΙΟΥ 1999 ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Κείµενο διδαγµένο Κείµενο από το πρωτότυπο Θουκυδίδη Ιστορία Γ, 70 Καὶ (ἦν γὰρ Πειθίας ἐθελοπρόξενός τε τῶν Ἀθηναίων καὶ τοῦ δήµου προειστήκει)

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΚΕΙΜΕΝΟ. Πέµπτη 19 Νοεµβρίου 1942. Αγαπητή Κίττυ,

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΚΕΙΜΕΝΟ. Πέµπτη 19 Νοεµβρίου 1942. Αγαπητή Κίττυ, ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑ ΕΚΦΡΑΣΗ - ΕΚΘΕΣΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Αγαπητή

Διαβάστε περισσότερα

Αναγνώριση Προτύπων 1

Αναγνώριση Προτύπων 1 Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το

Διαβάστε περισσότερα

ΠΡΟΒΟΛΗ ΣΥΛΛΟΓΩΝ ΚΑΙ ΔΡΑΣΕΩΝ ΤΟΥ ΜΟΥΣΕΙΟΥ ΜΠΕΝΑΚΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ

ΠΡΟΒΟΛΗ ΣΥΛΛΟΓΩΝ ΚΑΙ ΔΡΑΣΕΩΝ ΤΟΥ ΜΟΥΣΕΙΟΥ ΜΠΕΝΑΚΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ ΠΡΑΞΗ: ΠΡΟΒΟΛΗ ΣΥΛΛΟΓΩΝ ΚΑΙ ΔΡΑΣΕΩΝ ΤΟΥ ΜΟΥΣΕΙΟΥ ΜΠΕΝΑΚΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ ΔΙΑΓΩΝΙΣΜΟΣ: ΑΡΙΘΜΟΣ ΔΙΑΚΗΡΥΞΗΣ: Αναλυτικός σχεδιασμός πράξης, ανάπτυξη περιεχομένου, δημοσιοποίηση αποτελεσμάτων ΨΣ19/1/12

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

ΣΟΦΟΚΛΕΟΥΣ ΑΝΤΙΓΟΝΗ Κείµενο από το πρωτότυπο (στ.471-490) ΧΟΡΟΣ ηλοῖ τὸ γέννηµ' ὠµὸν ἐξ ὠµοῦ πατρὸς 471 τῆς παιδὸς εἴκειν δ'οὐκ ἐπίσταται κακοῖς.

ΣΟΦΟΚΛΕΟΥΣ ΑΝΤΙΓΟΝΗ Κείµενο από το πρωτότυπο (στ.471-490) ΧΟΡΟΣ ηλοῖ τὸ γέννηµ' ὠµὸν ἐξ ὠµοῦ πατρὸς 471 τῆς παιδὸς εἴκειν δ'οὐκ ἐπίσταται κακοῖς. ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 24 ΙΟΥΝΙΟΥ 1999 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΣΟΦΟΚΛΕΟΥΣ ΑΝΤΙΓΟΝΗ Κείµενο από το πρωτότυπο

Διαβάστε περισσότερα

Παράδειγμα. «Κεφάλαιο» «Περιουσία» «Περιουσία» Οικονομική επιστήμη «μέσων», «ανάγκες» «αγαθά» Επιχειρήσεων.

Παράδειγμα. «Κεφάλαιο» «Περιουσία» «Περιουσία» Οικονομική επιστήμη «μέσων», «ανάγκες» «αγαθά» Επιχειρήσεων. (ΜΕΡΟΣ ΠΡΩΤΟ) Οικονομική μονάδα είναι ο συστηματικός συνδυασμός των συντελεστών της παραγωγής (φύση, εργασία, κεφάλαιο) με τον οποίο αποσκοπείται η παραγωγή αγαθών ή η προσφορά υπηρεσιών για την κάλυψη

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΘΕΜΑ: Η ΔΙΟΙΚΗΤΙΚΗ ΟΡΓΑΝΩΣΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ Ο ΙΕΡΑΡΧΙΚΟΣ ΕΛΕΓΧΟΣ ΚΑΙ Η ΔΙΟΙΚΗΤΙΚΗ ΕΠΟΠΤΕΙΑ Σύνταξη: Ηλίας Κουβαράς, Δικηγόρος L.L.M., Υπ. Διδάκτωρ Δημοσίου Δικαίου

Διαβάστε περισσότερα

Projects για το εργαστήριο. των Βάσεων Δεδομένων

Projects για το εργαστήριο. των Βάσεων Δεδομένων Projects για το εργαστήριο των Βάσεων Δεδομένων Θεσσαλονίκη, Νοέμβριος Δεκέμβριος 2013 1. Το πολυκατάστημα Το πολυκατάστημα έχει ένα σύνολο από εργαζομένους. Κάθε εργαζόμενος χαρακτηρίζεται από έναν κωδικό

Διαβάστε περισσότερα

(14 ο,15 ο,16 ο ) ΟΡΘΟΤΗΤΑ ΕΝΟΣ ΑΛΓΟΡΙΘΜΟΥ: ΕΝΟΤΗΤΑ Ι ΙΙ ΙΙΙ

(14 ο,15 ο,16 ο ) ΟΡΘΟΤΗΤΑ ΕΝΟΣ ΑΛΓΟΡΙΘΜΟΥ: ΕΝΟΤΗΤΑ Ι ΙΙ ΙΙΙ (14 ο,15 ο,16 ο ) ΟΡΘΟΤΗΤΑ ΕΝΟΣ ΑΛΓΟΡΙΘΜΟΥ: ΕΝΟΤΗΤΑ Ι ΙΙ ΙΙΙ Το πρόβλημα της «ορθότητας» ενός αλγορίθμου. Θεωρούμε συχνότατα τους αλγορίθμους, (όπως και σε αυτές τις σημειώσεις), ως προγράμματα γραμμένα

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Υπουργείο Εσωτερικών Γενική Δ/νση Αναπτυξιακών Προγραμμάτων Δ/νση Μηχανοργάνωσης & Η.Ε.Σ.

Υπουργείο Εσωτερικών Γενική Δ/νση Αναπτυξιακών Προγραμμάτων Δ/νση Μηχανοργάνωσης & Η.Ε.Σ. Υπουργείο Εσωτερικών Γενική Δ/νση Αναπτυξιακών Προγραμμάτων Δ/νση Μηχανοργάνωσης & Η.Ε.Σ. Απρίλιος 2012 ΥΠΕΣ-ΔΜΗΕΣ Β' κ Γ' ΑΝΑΘΕΩΡΗΣΗ 2009 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΒΑΣΙΚΟΙ ΕΚΛΟΓΙΚΟΙ ΚΑΤΑΛΟΓΟΙ ΠΙΝΑΚΕΣ 1 Εκλογείς

Διαβάστε περισσότερα

Συμβατικές υποχρεώσεις, καθήκοντα και γενικοί κανόνες φοίτησης στα Εξ Αποστάσεως Προγράμματα του Ευρωπαϊκού Πανεπιστήμιου Κύπρου

Συμβατικές υποχρεώσεις, καθήκοντα και γενικοί κανόνες φοίτησης στα Εξ Αποστάσεως Προγράμματα του Ευρωπαϊκού Πανεπιστήμιου Κύπρου 0 Συμβατικές υποχρεώσεις, καθήκοντα και γενικοί κανόνες φοίτησης στα Εξ Αποστάσεως Προγράμματα του Ευρωπαϊκού Πανεπιστήμιου Κύπρου Οι σπουδές στο Ευρωπαϊκό Πανεπιστήμιο Κύπρου προσφέρονται δεν προσφέρονται

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

Υπουργείο Εσωτερικών Γενική Δ/νση Ηλεκτρονικής Διακυβέρνησης & Εκλογών Δ/νση Ηλεκτρονικής Διακυβέρνησης

Υπουργείο Εσωτερικών Γενική Δ/νση Ηλεκτρονικής Διακυβέρνησης & Εκλογών Δ/νση Ηλεκτρονικής Διακυβέρνησης Υπουργείο Εσωτερικών Γενική Δ/νση Ηλεκτρονικής Διακυβέρνησης & Εκλογών Δ/νση Ηλεκτρονικής Διακυβέρνησης Ιανουάριος 2015 ΥΠΕΣ- Η Ε' ΑΝΑΘΕΩΡΗΣΗ 2014 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΒΑΣΙΚΟΙ ΕΚΛΟΓΙΚΟΙ ΚΑΤΑΛΟΓΟΙ ΠΙΝΑΚΕΣ

Διαβάστε περισσότερα

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K Θεωρία Τομών Επίπεδων Καμπυλών Εργασία στο πλαίσιο τού μαθήματος Αλγεβρικές Καμπύλες (με κωδ. αριθμό Α 19) Χειμερινό Εξάμηνο 2008-2009 Μιχαήλ Γκίκας 1 Αριθμός τομής δυο συσχετικών επίπεδων καμπυλών Εστω

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ Μορφές δημόσιου δανεισμού Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate 1 Ανάλογα με την πηγή προελεύσεως των πόρων Με βάση το κριτήριο αυτό, ο δανεισμός διακρίνεται

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται

1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται 1. Ο εγγυημένος ρυθμός οικονομικής ανάπτυξης στο υπόδειγμα Harrod Domar εξαρτάται από: α) Τη ροπή για αποταμίευση β) Το λόγο κεφαλαίου προϊόντος και τη ροπή για αποταμίευση γ) Το λόγο κεφαλαίου προϊόντος

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΕΚΠΑ, ΠΡΟΓΡΑΜΜΑ ΝΑΥΤΙΛΟΣ

ΕΚΠΑ, ΠΡΟΓΡΑΜΜΑ ΝΑΥΤΙΛΟΣ ΣΧΟΛΙΑ Οι κληρούχοι συντάκτες της αίτησης και οι εμπλεκόμενοι Πτολεμαϊκοί αξιωματούχοι Η αίτηση υποβάλλεται από δύο κληρούχους ιππείς, το Μακεδόνα Αντίμαχο, γιο του Αριστομήδη, και το Θράκα Ηρακλείδη,

Διαβάστε περισσότερα

ΘΕΜΑ: Μελέτες Περιβαλλοντικών επιπτώσεων

ΘΕΜΑ: Μελέτες Περιβαλλοντικών επιπτώσεων ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ: Μελέτες Περιβαλλοντικών επιπτώσεων 1 8.α. Μελέτη Περιβαλλοντικών Επιπτώσεων Μελέτη Περιβαλλοντικών Επιπτώσεων (ΜΠΕ) ονομάζεται η εμπεριστατωμένη και τεκμηριωμένη επιστημονική

Διαβάστε περισσότερα

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Α. Επειδή βλέπουμε κάθε πόλη κράτος να είναι ένα είδος κοινότητας και κάθε κοινότητα να έχει συσταθεί για χάρη κάποιου

Διαβάστε περισσότερα

Δίκαιο και Οικονομικά: Οι Εξετάσεις

Δίκαιο και Οικονομικά: Οι Εξετάσεις Δίκαιο και Οικονομικά: Οι Εξετάσεις Το κείμενο αυτό ανανεώνεται με τη δική σας παρέμβαση, τις ερωτήσεις, τα σχόλια και τις παρατηρήσεις σας. Θα συνεχίζει να ανανεώνεται μέχρι την ημέρα των εξετάσεων. Αυτή

Διαβάστε περισσότερα

ΕΚΘΕΣΕΙΣ ΑΠΟΛΟΓΙΣΜΟΥ

ΕΚΘΕΣΕΙΣ ΑΠΟΛΟΓΙΣΜΟΥ ΕΚΘΕΣΕΙΣ ΑΠΟΛΟΓΙΣΜΟΥ ΥΠΟΒΟΛΗ ΑΠΟΔΟΧΗ ΑΞΙΟΛΟΓΗΣΗ Αθήνα, 16 Οκτωβρίου 2009 Παναγιάρη Μαρία, Πολυμερή Σχέδια «Μεταφορά Καινοτομίας» ΥΠΟΒΟΛΗ ΕΚΘΕΣΕΩΝ ΑΠΟΛΟΓΙΣΜΟΥ (1) ΠΟΤΕ; Στη μέση της υλοποίησης (άρθρο V

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1

Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1 Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1 Θέμα : Βαθμολογούμενοι Αγώνες, Τρόπος Βαθμολόγησης. Οι βαθμολογούμενοι αγώνες για το έτος 2013 είναι οι κάτωθι : - Πανελλήνιο Πρωτάθλημα 2x18μ. - Ανοιχτό Πρωτάθλημα 2x70μ. για

Διαβάστε περισσότερα

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων 28 Μαΐου 2012 Αρχαία Ελληνικά Θεωρητικής Κατεύθυνσης Απαντήσεις Θεμάτων Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων Α1. Και αυτά, επειδή η ηθική αρετή συνδέεται με τα ευχάριστα και τα δυσάρεστα συναισθήματα

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Ι

Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@uop.gr 24 Απριλίου 2012 Σκιαγράφηση της διάλεξης Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State Machine) Ορισμός

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που

Διαβάστε περισσότερα

ΚΑΤΕΥΘΥΝΣΗ: Διοικητικής Δικαιοσύνης

ΚΑΤΕΥΘΥΝΣΗ: Διοικητικής Δικαιοσύνης ΚΑΤΕΥΘΥΝΣΗ: Διοικητικής Δικαιοσύνης Συντάκτης: Γεώργιος Πατρίκιος, Δικηγόρος, LL.M., Υπ. Δ.Ν. Έννοια Τα δημόσια έργα είναι έργα υποδομής της Χώρας, που καλύπτουν βασικές ανάγκες του κοινωνικού συνόλου,

Διαβάστε περισσότερα

ΤΙΜΕΣ DISNEYLAND RESORT PARIS

ΤΙΜΕΣ DISNEYLAND RESORT PARIS ΤΙΜΕΣ DISNEYLAND RESORT PARIS 09 Νοεµβρίου 2009 01 Απριλίου 2010 DISNEYLAND 4 3 2 1 4 3 2 1 4 3 2 1 CHD ΠΑΚΕΤΟ 2N/3Μ 350 419 558 973 392 475 641 1140 491 607 840 1538 117 ΠΑΚΕΤΟ 3N/4Μ 464 562 760 1353

Διαβάστε περισσότερα

Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε

Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε Ποια έντομα είναι εχθροί των φυτών και πώς θα τα αντιμετωπίσετε Δυστυχώς είναι μια πραγματικότητα της ζωής ότι αν διατηρείτε στο σπίτι σας φυτά, υπάρχει πάντα η πιθανότητα να υποστούν ζημίες από βλαβερούς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΔΙΑΓΩΝΙΣΜΑ ΝΕΩΝ ΕΛΛΗΝΙΚΩΝ ΦΙΛΟΛΟΓΩΝ ΠΕ 02 1. Ο Γιώργος Θεοτοκάς είναι ένας από τους κύριους εκπροσώπους : α) της Νέας Αθηναϊκής Σχολής β) της Γενιάς του 30 γ) του Συμβολισμού δ) του Νατουραλισμού 2. Η

Διαβάστε περισσότερα

ΑΠΑΝΣΗΕΙ ΣΟΤ ΔΙΑΓΩΝΙΜΑΣΟ ΔΙΔΑΓΜΕΝΟ ΚΕΙΜΕΝΟ

ΑΠΑΝΣΗΕΙ ΣΟΤ ΔΙΑΓΩΝΙΜΑΣΟ ΔΙΔΑΓΜΕΝΟ ΚΕΙΜΕΝΟ ΑΠΑΝΣΗΕΙ ΣΟΤ ΔΙΑΓΩΝΙΜΑΣΟ ΔΙΔΑΓΜΕΝΟ ΚΕΙΜΕΝΟ Α. Από το κείμενο που σας δίνεται να μεταφράσετε τα αποσπάσματα: «Ἐξ οὗ καὶ δῆλον< ἄλλως ἂν ἐθισθείη» και «Μαρτυρεῖ δὲ< πολιτείας ἀγαθὴ φαύλης». Βλέπετε βιβλίο

Διαβάστε περισσότερα

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία

Διαβάστε περισσότερα

Αθήνα, 29 Νοεμβρίου 2006 ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΑΠΟΚΕΝΤΡΩΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΤΟΠ. ΑΥΤ/ΣΗΣ Δ/ΝΣΗ ΟΡΓ. & ΛΕΙΤ. ΟΤΑ TMHMA ΟΡΓ & ΛΕΙΤ.

Αθήνα, 29 Νοεμβρίου 2006 ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΑΠΟΚΕΝΤΡΩΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΤΟΠ. ΑΥΤ/ΣΗΣ Δ/ΝΣΗ ΟΡΓ. & ΛΕΙΤ. ΟΤΑ TMHMA ΟΡΓ & ΛΕΙΤ. Ελληνική ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΑΠΟΚΕΝΤΡΩΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΤΟΠ. ΑΥΤ/ΣΗΣ Δ/ΝΣΗ ΟΡΓ. & ΛΕΙΤ. ΟΤΑ TMHMA ΟΡΓ & ΛΕΙΤ. ΟΤΑ Ταχ. Δ/νση: Σταδίου 27 Ταχ. Κώδικας: 101 83 Αθήνα FAX: 210 3233027

Διαβάστε περισσότερα

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Διδαγμένο Κείμενο ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ 2014 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Α1. Επομένως οι αρετές δεν υπάρχουν μέσα μας εκ φύσεως ούτε αντίθετα προς τη φύση μας, αλλά έχουμε από τη φύση την ιδιότητα να τις δεχτούμε

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS

Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS ΕΛΕΝΗ ΤΑΝΤΟΥΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΗΣ ΤΣΟΛΟΜΥΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΑΜΟΣ 2009 Στην μητέρα μου που μπορεί και με ανέχεται ακόμα,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Πομπιέρη Βασιλεία, Δικηγόρος, LLM UCL Πτωχευτικό Δίκαιο Σημαντικότερες ρυθμίσεις σε προπτωχευτικό στάδιο. Εισαγωγή της διαδικασίας συνδιαλλαγής Σκοπός Η διάσωση και εξυγίανση

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ 1 ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ Οι τάξεις της Β και Γ Λυκείου είναι χωρισμένες σε τρείς Κατευθύνσεις Θεωρητική, Θετική, Τεχνολογική Οι Σχολές είναι ταξινομημένες σε πέντε επιστημονικά πεδία 1 ο ΕΠΙΣΤΗΜΟΝΙΚΟ

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα