17 Μαρτίου 2013, Βόλος

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "17 Μαρτίου 2013, Βόλος"

Transcript

1 Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 17 Μαρτίου 2013, Βόλος

2 Σ Ε πρώτης τάξης dy dx = f(x, y) ή y = f(x, y)

3 Σ Ε πρώτης τάξης dy dx = f(x, y) ή y = f(x, y)

4 Σ Ε πρώτης τάξης dy dx = f(x, y) ή y = f(x, y) έστω ότι f(x, y) = f(x) y = f(x).

5 Σ Ε πρώτης τάξης dy dx = f(x, y) ή y = f(x, y) έστω ότι f(x, y) = f(x) τότε y (x) d = y = f(x). f(x) dx + C, δηλαδή y(x) = f(x) dx + C.

6 Παράδειγμα Λύση y = e x2, y(0) = 1. x y(x) = 0 e s2 ds + 1.

7 Παράδειγμα 9 9yy = 4x. y(x)y (x)dx + 4 xdx = C

8 9 9 Παράδειγμα 9yy = 4x. y(x)y (x)dx + 4 xdx = C ydy + 4x 2 = C 9y 2 + 4x 2 = 2C

9 9 9 Παράδειγμα 9yy = 4x. y(x)y (x)dx + 4 xdx = C ydy + 4x 2 = C 9y 2 + 4x 2 = 2C Σχήμα : y x2 9 = C

10 Παράδειγμα y + yx = x.

11 Παράδειγμα y 1 y = x y + yx = x.

12 Παράδειγμα y + yx = x. y 1 y = x dy 1 y = xdx

13 Παράδειγμα y + yx = x. y 1 y = x dy 1 y = xdx ln 1 y = x2 2 + C

14 Παράδειγμα y + yx = x. y 1 y = x dy 1 y = xdx ln 1 y = x2 2 + C y = 1 + Ce x2 2

15 Παράδειγμα y + yx = x. y 1 y = x dy 1 y = xdx ln 1 y = x2 2 + C y = 1 + Ce x2 2

16 Σ Ε πρώτης τάξης dy dx = f(x, y) ή y = f(x, y)

17 Σ Ε πρώτης τάξης dy dx = f(x, y) ή y = f(x, y) έστω ότι f(x, y) = f(y) dy dx = f(y) dx dy = 1 x(y) = 1 f(y) f(y). dy + C. Παραδείγματα y = ky y = Ce kx. dx dy y = C x 1 ή y = 0.

18 Παράδειγμα Πόσο μακριά θα έχει φθάσει ένα όχημα που κινείται με ταχύτητα e t/2 μέτρα το δευτερόλεπτο σε 2 δευτερόλεπτα και πόσο σε 10 δευτερόλεπτα; x = e t/2 x(t) = 2e t/2 + C. 0 = x(0) = 2e 0/2 + C = 2 + C C = 2. x(t) = e t/2 2. x(2) = 2e 2/ μέτρα, x(10) = 2e 10/ μέτρα.

19 Παράδειγμα Πού θα βρίσκεται ένα όχημα την χρονική στιγμή t = 10 αν επιταχύνει με ρυθμό t 2 s m και την χρονική στιγμή t 2 = 0 βρίσκεται σε απόσταση 1 μέτρου από την αρχική του θέση και κινείται με ταχύτητα 10 m s ; Αν θέσουμε x = v x = t 2, x(0) = 1, x (0) = 10. v = t 2, v(0) = 10, λύσουμε ως προς v, και κατόπιν ολοκληρώνουμε για να βρούμε το x.

20 Πεδία κατευθύνσεων y = f(x, y) τιμή της κλίσης της y σε κάθε σημείο του επιπέδου (x, y).

21 Πεδία κατευθύνσεων y = f(x, y) τιμή της κλίσης της y σε κάθε σημείο του επιπέδου (x, y). Σχήμα : Το πεδίο κατευθύνσεων της y = xy και η λύση που ικανοποιεί τις συνθήκες y(0) = 0.2, y(0) = 0, και y(0) = 0.2.

22 Πεδία κατευθύνσεων y = f(x, y) τιμή της κλίσης της y σε κάθε σημείο του επιπέδου (x, y). Σχήμα : Το πεδίο κατευθύνσεων της y = xy και η λύση που ικανοποιεί τις συνθήκες y(0) = 0.2, y(0) = 0, και y(0) =

23 Πεδία κατευθύνσεων y = f(x, y) τιμή της κλίσης της y σε κάθε σημείο του επιπέδου (x, y). Σχήμα : Το πεδίο κατευθύνσεων της y = xy και η λύση που ικανοποιεί τις συνθήκες y(0) = 0.2, y(0) = 0, και y(0) =

24 Είμαστε μηχανικοί Η/Υ Χρήση λογισμικού!

25 Υπαρξη και μοναδικότητα y = f(x, y), y(x 0 ) = y 0. (i) Υπάρχει λύση; (ii) Είναι η λύση μοναδική (εάν υπάρχει);

26 Υπαρξη και μοναδικότητα y = f(x, y), y(x 0 ) = y 0. (i) Υπάρχει λύση; (ii) Είναι η λύση μοναδική (εάν υπάρχει); Παράδειγμα: y = 1 x, y(0) = 0 y = ln x + C.

27 Θεώρημα του Picard Θεώρημα Εάν η f(x, y) είναι συνεχής και εάν η παράγωγος f y υπάρχει και είναι συνεχής σε κάποια περιοχή γύρω από το (x 0, y 0 ), τότε η λύση του προβλήματος y = f(x, y), y(x 0 ) = y 0, υπάρχει (τουλάχιστον για κάποια x) και είναι μοναδική.

28 Θεώρημα του Picard Θεώρημα Εάν η f(x, y) είναι συνεχής και εάν η παράγωγος f y υπάρχει και είναι συνεχής σε κάποια περιοχή γύρω από το (x 0, y 0 ), τότε η λύση του προβλήματος y = f(x, y), y(x 0 ) = y 0, υπάρχει (τουλάχιστον για κάποια x) και είναι μοναδική. Παραδείγματα 1. y = 1 x, y(0) = 0 2. y = 2 y, y(0) = 0

29 Υπαρξη και μοναδικότητα Παράδειγμα: y = 1 x, y(0) = 0 y = ln x + C.

30 Υπαρξη και μοναδικότητα Παράδειγμα: y = 1 x, y(0) = 0 y = ln x + C. Σχήμα : Πεδίο διευθύνσεων της y = 1 x και της y = 2 y

31 Υπαρξη και μοναδικότητα Παράδειγμα: y = 1 x, y(0) = 0 y = ln x + C. Σχήμα : Πεδίο διευθύνσεων της y = 1 x και της y = 2 y

32 Προσοχή στον γορίλα y = y 2, y(0) = A,

33 Προσοχή στον γορίλα y = y 2, y(0) = A, x = 1 y 2,

34 Προσοχή στον γορίλα y = y 2, y(0) = A, x = 1 y 2, άρα x = 1 y + C,

35 Προσοχή στον γορίλα y = y 2, y(0) = A, x = 1 y 2, άρα συνεπώς x = 1 y + C, y = 1 C x.

36 Προσοχή στον γορίλα y = y 2, y(0) = A, x = 1 y 2, άρα συνεπώς οπότε x = 1 y + C, y = 1 C x. y(0) = A C = 1 A y = 1 1 A x.

37 ιαχωρίσιμες Εξισώσεις Πίσω στην y = f(x, y),

38 ιαχωρίσιμες Εξισώσεις Πίσω στην Εστω ότι y = f(x, y), f(x, y) = f(x)g(y),

39 ιαχωρίσιμες Εξισώσεις Πίσω στην Εστω ότι Τότε y = f(x, y), f(x, y) = f(x)g(y), y = f(x)g(y),

40 ιαχωρίσιμες Εξισώσεις Πίσω στην Εστω ότι Τότε dy dx = f(x)g(y) y = f(x, y), f(x, y) = f(x)g(y), y = f(x)g(y), dy = f(x) dx g(y) dy g(y) = f(x) dx + C.

41 Παράδειγμα y = xy.

42 Παράδειγμα Μια λύση y = 0. y = xy.

43 Παράδειγμα Μια λύση y = 0. dy y = y = xy. x dx + C.

44 Παράδειγμα Μια λύση y = 0. dy y = y = xy. x dx + C. ln y = x2 2 + C

45 Παράδειγμα Μια λύση y = 0. dy y = y = xy. x dx + C. ln y = x2 2 + C y = e x2 2 +C = e x2 2 e C = De x2 2,

46 Παράδειγμα Μια λύση y = 0. dy y = y = xy. x dx + C. ln y = x2 2 + C y = e x2 2 +C = e x2 2 e C = De x2 2, y = De x2 2 D.

47 Κάπως ποιο προσεκτικά dy dx = f(x)g(y)

48 Κάπως ποιο προσεκτικά dy dx = f(x)g(y) Η y = y(x) είναι συνάρτηση του x. Όμως και η dx dy είναι συνάρτηση του x!

49 Κάπως ποιο προσεκτικά dy dx = f(x)g(y) Η y = y(x) είναι συνάρτηση του x. Όμως και η dx dy είναι συνάρτηση του x! 1 g(y) dy dx = f(x)

50 Κάπως ποιο προσεκτικά dy dx = f(x)g(y) Η y = y(x) είναι συνάρτηση του x. Όμως και η dx dy είναι συνάρτηση του x! 1 g(y) dy dx = f(x) Ολοκληρώνουμε και τα δύο μέρη ως προς x. 1 g(y) dy dx dx = f(x) dx + C.

51 Κάπως ποιο προσεκτικά dy dx = f(x)g(y) Η y = y(x) είναι συνάρτηση του x. Όμως και η dx dy είναι συνάρτηση του x! 1 g(y) dy dx = f(x) Ολοκληρώνουμε και τα δύο μέρη ως προς x. 1 g(y) dy dx dx = Αλλαγή μεταβλητών 1 g(y) dy = f(x) dx + C. f(x) dx + C.

52 Εμμεσες Λύσεις y = xy y

53 y y Εμμεσες Λύσεις dy = y = xy y ( y + 1 ) dy = x dx y

54 y y Εμμεσες Λύσεις y = xy y ( dy = y + 1 ) dy = x dx y y ln y = x2 2 + C

55 y y Εμμεσες Λύσεις y = xy y ( dy = y + 1 ) dy = x dx y y ln y = x2 2 + C y ln y = x 2 + C. Εμμεση λύση. Επιβεβαίωση!

56 y y Εμμεσες Λύσεις y = xy y ( dy = y + 1 ) dy = x dx y y ln y = x2 2 + C y ln y = x 2 + C. Εμμεση λύση. Επιβεβαίωση! ( y 2y + 2 ) = 2x. y

57 y y Εμμεσες Λύσεις y = xy y ( dy = y + 1 ) dy = x dx y y ln y = x2 2 + C y ln y = x 2 + C. Εμμεση λύση. Επιβεβαίωση! ( y 2y + 2 ) = 2x. y Υπάρχει βεβαίως και η ιδιάζουσα λύση y(x) = 0.

58 Παράδειγμα x 2 y = 1 x 2 + y 2 x 2 y 2, y(1) = 0

59 Παράδειγμα x 2 y = 1 x 2 + y 2 x 2 y 2, y(1) = 0 x 2 y = (1 x 2 )(1 + y 2 ).

60 Παράδειγμα x 2 y = 1 x 2 + y 2 x 2 y 2, y(1) = 0 x 2 y = (1 x 2 )(1 + y 2 ). y 1 + y 2 = 1 x2 x 2 y 1 + y 2 = 1 x 2 1, arctan(y) = 1 x x + C, y = tan ( 1 x x + C ). Από την αρχική συνθήκη, 0 = tan( 2 + C) έχουμε C = 2 (ή 2 + π,... ) και καταλήγουμε ( ) 1 y = tan x x + 2.

61 Παράδειγμα Φτιάχνουμε καφέ χρησιμοποιώντας βραστό νερό (100 o C). Μετά απο 1 η θερμοκρασία T του καφέ είναι 95 o C. Η θερμοκρασία A του περιβάλοντος είναι 10 o C και προτιμούμε τον καφέ μας στους 70 o C. Πόσο πρέπει να περιμένουμε;

62 Παράδειγμα Φτιάχνουμε καφέ χρησιμοποιώντας βραστό νερό (100 o C). Μετά απο 1 η θερμοκρασία T του καφέ είναι 95 o C. Η θερμοκρασία A του περιβάλοντος είναι 10 o C και προτιμούμε τον καφέ μας στους 70 o C. Πόσο πρέπει να περιμένουμε; dt dt = k(a T), A = 10, T(0) = 100, T(1) = 95.

63 Παράδειγμα Φτιάχνουμε καφέ χρησιμοποιώντας βραστό νερό (100 o C). Μετά απο 1 η θερμοκρασία T του καφέ είναι 95 o C. Η θερμοκρασία A του περιβάλοντος είναι 10 o C και προτιμούμε τον καφέ μας στους 70 o C. Πόσο πρέπει να περιμένουμε; dt dt 1 dt A T dt = k = k(a T), A = 10, T(0) = 100, T(1) = 95.

64 Παράδειγμα Φτιάχνουμε καφέ χρησιμοποιώντας βραστό νερό (100 o C). Μετά απο 1 η θερμοκρασία T του καφέ είναι 95 o C. Η θερμοκρασία A του περιβάλοντος είναι 10 o C και προτιμούμε τον καφέ μας στους 70 o C. Πόσο πρέπει να περιμένουμε; dt dt = k(a T), A = 10, T(0) = 100, T(1) = dt A T dt = k ln(a T) = kt+c A T = D e kt, T = A D e kt ηλαδή T = 10 D e kt 100 = T(0) = 10 D D = 90

65 Παράδειγμα Φτιάχνουμε καφέ χρησιμοποιώντας βραστό νερό (100 o C). Μετά απο 1 η θερμοκρασία T του καφέ είναι 95 o C. Η θερμοκρασία A του περιβάλοντος είναι 10 o C και προτιμούμε τον καφέ μας στους 70 o C. Πόσο πρέπει να περιμένουμε; dt dt = k(a T), A = 10, T(0) = 100, T(1) = A T ηλαδή T = 10 D e kt 100 = T(0) = 10 D D = 90 dt dt = k ln(a T) = kt+c A T = D e kt, T = A D e kt T = e kt 95 = T(1) = e k k = ln

66 Παράδειγμα Φτιάχνουμε καφέ χρησιμοποιώντας βραστό νερό (100 o C). Μετά απο 1 η θερμοκρασία T του καφέ είναι 95 o C. Η θερμοκρασία A του περιβάλοντος είναι 10 o C και προτιμούμε τον καφέ μας στους 70 o C. Πόσο πρέπει να περιμένουμε; dt dt = k(a T), A = 10, T(0) = 100, T(1) = A T ηλαδή T = 10 D e kt 100 = T(0) = 10 D D = 90 dt dt = k ln(a T) = kt+c A T = D e kt, T = A D e kt T = e kt 95 = T(1) = e k k = ln = e 0.06t t = ln , 8 λεπτά.

67 Γραμμικές εξισώσεις Πρώτης τάξης y + p(x)y = f(x). (1)

68 Γραμμικές εξισώσεις Πρώτης τάξης y + p(x)y = f(x). (1) Ιδιότητες Η λύση υπάρχει αρκεί να ορίζονται οι p(x) και f(x) Η ομαλότητα της λύσης ταυτίζεται με την ομαλότητα των p(x) και f(x)

69 Μεθοδολογία επίλυσης y + p(x)y = f(x). (2)

70 Μεθοδολογία επίλυσης y + p(x)y = f(x). (2) r(x)y + r(x)p(x)y = d dx[ r(x)y ].

71 Μεθοδολογία επίλυσης Παρατηρήστε ότι y + p(x)y = f(x). (2) r(x)y + r(x)p(x)y = d dx[ r(x)y ]. d [ ] r(x)y = r(x)f(x). dx

72 Μεθοδολογία επίλυσης y + p(x)y = f(x). (2) r(x)y + r(x)p(x)y = d dx[ r(x)y ]. d [ ] r(x)y = r(x)f(x). dx Παρατηρήστε ότι το δεξιό μέρος δεν εξαρτάται από το y το αριστερό μέρος είναι η αντιπαράγωγος μιας συνάρτησης μπορούμε να λύσουμε ως προς y

73 Μεθοδολογία επίλυσης y + p(x)y = f(x). (2) r(x)y + r(x)p(x)y = d dx[ r(x)y ]. d [ ] r(x)y = r(x)f(x). dx Παρατηρήστε ότι το δεξιό μέρος δεν εξαρτάται από το y το αριστερό μέρος είναι η αντιπαράγωγος μιας συνάρτησης μπορούμε να λύσουμε ως προς y αν γνωρίζουμε την r(x)!

74 Ολοκληρωτικός Παράγοντας Βρές r(x) τέτοια ώστε εάν την παραγωγίσουμε, θα πάρουμε την ίδια την συνάρτηση πολλαπλασιασμένη με p(x).

75 Ολοκληρωτικός Παράγοντας Βρές r(x) τέτοια ώστε εάν την παραγωγίσουμε, θα πάρουμε την ίδια την συνάρτηση πολλαπλασιασμένη με p(x). r(x) = e p(x)dx

76 Ολοκληρωτικός Παράγοντας Βρές r(x) τέτοια ώστε εάν την παραγωγίσουμε, θα πάρουμε την ίδια την συνάρτηση πολλαπλασιασμένη με p(x). r(x) = e p(x)dx Μένει να κάνουμε ανιαρές πράξεις. y + p(x)y = f(x), e p(x)dx y + e p(x)dx p(x)y = e p(x)dx f(x), d [ e p(x)dx y ] = e dx p(x)dx f(x), e p(x)dx y = e p(x)dx f(x) dx + C, y = e p(x)dx ( e p(x)dx f(x) dx + C ).

77 Γραμμικές εξισώσεις y + p(x)y = f(x).

78 Γραμμικές εξισώσεις y + p(x)y = f(x). r(x)y + r(x)p(x)y = d dx[ r(x)y ].

79 Γραμμικές εξισώσεις y + p(x)y = f(x). r(x)y + r(x)p(x)y = dx[ d ] r(x)y. r (x) = p(x)r(x) r(x) = e p(x)dx

80 Γραμμικές εξισώσεις y + p(x)y = f(x). r(x)y + r(x)p(x)y = d dx[ r(x)y ]. r (x) = p(x)r(x) r(x) = e p(x)dx y + p(x)y = f(x), e p(x)dx y + e p(x)dx p(x)y = e p(x)dx f(x), d [ e p(x)dx y ] = e dx p(x)dx f(x), y = e ( p(x)dx e p(x)dx y = e p(x)dx f(x) dx + C e ) p(x)dx f(x) dx + C.

81 Παράδειγμα y + 2xy = e x x2 y(0) = 1.

82 Παράδειγμα y + 2xy = e x x2 y(0) = 1. p(x) = 2x, f(x) = e x x2, r(x) = e p(x) dx = e x 2.

83 Παράδειγμα y + 2xy = e x x2 y(0) = 1. p(x) = 2x, f(x) = e x x2, r(x) = e p(x) dx = e x 2. e x2 y + 2xe x2 y = e x x2 e x2, d [ e x 2 y ] = e dx x.

84 Παράδειγμα y + 2xy = e x x2 y(0) = 1. p(x) = 2x, f(x) = e x x2, r(x) = e p(x) dx = e x 2. e x2 y + 2xe x2 y = e x x2 e x2, d [ e x 2 y ] = e dx x. Ολοκληρώνουμε e x2 y = e x + C, y = e x x2 + Ce x2.

85 Παράδειγμα y + 2xy = e x x2 y(0) = 1. p(x) = 2x, f(x) = e x x2, r(x) = e p(x) dx = e x 2. e x2 y + 2xe x2 y = e x x2 e x2, d [ e x 2 y ] = e dx x. Ολοκληρώνουμε e x2 y = e x + C, y = e x x2 + Ce x2. Από τις αρχικές συνθήκες 1 = y(0) = 1 + C C = 2.

86 Παράδειγμα y + 2xy = e x x2 y(0) = 1. p(x) = 2x, f(x) = e x x2, r(x) = e p(x) dx = e x 2. e x2 y + 2xe x2 y = e x x2 e x2, d [ e x 2 y ] = e dx x. Ολοκληρώνουμε e x2 y = e x + C, y = e x x2 + Ce x2. Από τις αρχικές συνθήκες 1 = y(0) = 1 + C C = 2. y = e x x2 2e x2.

87 Θεμελιώδες Θεώρημα του Λογισμού Μπορούμε να γράψουμε το f(x) dx + C ως εξής x x 0 f(t) dt + C.

88 Ορισμένα Ολοκληρώματα y + p(x)y = f(x), y(x 0 ) = y 0.

89 Ορισμένα Ολοκληρώματα y + p(x)y = f(x), y(x 0 ) = y 0. ( y(x) = e x ) x0 p(s) ds x e t x0 p(s) ds f(t) dt + y 0. x 0 Μπορούμε να υλοποιήσουμε τον παραπάνω τύπο στον υπολογιστή για να πάρουμε την τιμή της λύσης σε όποιο σημείο επιθυμούμε.

90 Παράδειγμα Μια δεξαμενή 100λ περιέχει 10κ αλατιού διαλυμένα σε 60λ νερού. ιάλυμα νερού και αλατιού πυκνότητας 0.1κ/λ εισάγεται στο δοχείο με ρυθμό 5λ το λεπτό και εξάγεται από το δοχείο με ρυθμό 3λ το λεπτό. Πόσο αλάτι θα περιέχει η δεξαμενή όταν θα έχει γεμίσει;

91 Παράδειγμα Μια δεξαμενή 100λ περιέχει 10κ αλατιού διαλυμένα σε 60λ νερού. ιάλυμα νερού και αλατιού πυκνότητας 0.1κ/λ εισάγεται στο δοχείο με ρυθμό 5λ το λεπτό και εξάγεται από το δοχείο με ρυθμό 3λ το λεπτό. Πόσο αλάτι θα περιέχει η δεξαμενή όταν θα έχει γεμίσει; x(t) : αλάτι στη δεξαμενή την στιγμή t x (ρυθμός εισαγωγής συγκέντρωση εισαγωγής) t (ρυθμός εξαγωγής συγκέντρωση εξαγωγής) t.

92 Παράδειγμα Μια δεξαμενή 100λ περιέχει 10κ αλατιού διαλυμένα σε 60λ νερού. ιάλυμα νερού και αλατιού πυκνότητας 0.1κ/λ εισάγεται στο δοχείο με ρυθμό 5λ το λεπτό και εξάγεται από το δοχείο με ρυθμό 3λ το λεπτό. Πόσο αλάτι θα περιέχει η δεξαμενή όταν θα έχει γεμίσει; x(t) : αλάτι στη δεξαμενή την στιγμή t x dx dt = (ρυθμός εισαγωγής συγκέντρωση εισαγωγής) t (ρυθμός εξαγωγής συγκέντρωση εξαγωγής) t. (ρυθμός εισαγωγής συγκέντρωση εισαγωγής) (ρυθμός εξαγωγής συγκέντρωση εξαγωγής).

93 Παράδειγμα Μια δεξαμενή 100λ περιέχει 10κ αλατιού διαλυμένα σε 60λ νερού. ιάλυμα νερού και αλατιού πυκνότητας 0.1κ/λ εισάγεται στο δοχείο με ρυθμό 5λ το λεπτό και εξάγεται από το δοχείο με ρυθμό 3λ το λεπτό. Πόσο αλάτι θα περιέχει η δεξαμενή όταν θα έχει γεμίσει; x(t) : αλάτι στη δεξαμενή την στιγμή t x dx dt = dx dt (ρυθμός εισαγωγής συγκέντρωση εισαγωγής) t (ρυθμός εξαγωγής συγκέντρωση εξαγωγής) t. (ρυθμός εισαγωγής συγκέντρωση εισαγωγής) (ρυθμός εξαγωγής συγκέντρωση εξαγωγής). ( = (5 0.1) 3 x t ) dx dt t x = 0.5.

94 Παράδειγμα (συνέχεια) dx dt t x = 0.5.

95 ( r(t) = exp Παράδειγμα (συνέχεια) dx dt t x = 0.5. ) ( ) t dt = exp 2 ln(60 + 2t) = (60 + 2t) 3/2.

96 ( r(t) = exp Παράδειγμα (συνέχεια) dx dt t x = 0.5. ) ( ) t dt = exp 2 ln(60 + 2t) (60 3/2 dx + 2t) dt + (60 + 2t)3/ t x = 0.5(60 + 2t)3/2, d [ dt (60 + 2t) 3/2 x ] = 0.5(60 + 2t) 3/2, (60 + 2t) 3/2 x = 0.5(60 + 2t) 3/2 dt + C, = (60 + 2t) 3/2.

97 ( r(t) = exp Παράδειγμα (συνέχεια) dx dt t x = 0.5. ) ( ) t dt = exp 2 ln(60 + 2t) (60 3/2 dx + 2t) dt + (60 + 2t)3/ t x = 0.5(60 + 2t)3/2, d [ dt (60 + 2t) 3/2 x ] = 0.5(60 + 2t) 3/2, (60 + 2t) 3/2 x = 0.5(60 + 2t) 3/2 dt + C, = (60 + 2t) 3/2. x = (60 + 2t) 3/2 (60 + 2t) 3/2 2 dt + C(60 + 2t) 3/2, x = (60 + 2t) 3/ (60 + 2t)5/2 + C(60 + 2t) 3/2

98 ( r(t) = exp Παράδειγμα (συνέχεια) dx dt t x = 0.5. ) ( ) t dt = exp 2 ln(60 + 2t) (60 3/2 dx + 2t) dt + (60 + 2t)3/ t x = 0.5(60 + 2t)3/2, d [ dt (60 + 2t) 3/2 x ] = 0.5(60 + 2t) 3/2, (60 + 2t) 3/2 x = 0.5(60 + 2t) 3/2 dt + C, = (60 + 2t) 3/2. x = (60 + 2t) 3/2 (60 + 2t) 3/2 2 dt + C(60 + 2t) 3/2, x = (60 + 2t) 3/ (60 + 2t)5/2 + C(60 + 2t) 3/2

99 Παράδειγμα (συνέχεια) Μια δεξαμενή 100λ περιέχει 10κ αλατιού διαλυμένα σε 60λ νερού. ιάλυμα νερού και αλατιού πυκνότητας 0.1κ/λ εισάγεται στο δοχείο με ρυθμό 5λ το λεπτό και εξάγεται από το δοχείο με ρυθμό 3λ το λεπτό. Πόσο αλάτι θα περιέχει η δεξαμενή όταν θα έχει γεμίσει; x(t) = t 10 + C(60 + 2t) 3/2.

100 Παράδειγμα (συνέχεια) Μια δεξαμενή 100λ περιέχει 10κ αλατιού διαλυμένα σε 60λ νερού. ιάλυμα νερού και αλατιού πυκνότητας 0.1κ/λ εισάγεται στο δοχείο με ρυθμό 5λ το λεπτό και εξάγεται από το δοχείο με ρυθμό 3λ το λεπτό. Πόσο αλάτι θα περιέχει η δεξαμενή όταν θα έχει γεμίσει; x(t) = t 10 + C(60 + 2t) 3/2. 10 = x(0) = 6 + C(60) 3/2 C = 4(60 3/2 )

101 Παράδειγμα (συνέχεια) Μια δεξαμενή 100λ περιέχει 10κ αλατιού διαλυμένα σε 60λ νερού. ιάλυμα νερού και αλατιού πυκνότητας 0.1κ/λ εισάγεται στο δοχείο με ρυθμό 5λ το λεπτό και εξάγεται από το δοχείο με ρυθμό 3λ το λεπτό. Πόσο αλάτι θα περιέχει η δεξαμενή όταν θα έχει γεμίσει; x(t) = t 10 + C(60 + 2t) 3/2. 10 = x(0) = 6 + C(60) 3/2 C = 4(60 3/2 ) εξαμενή γεμάτη όταν t = 100, δηλ. όταν t = 20 x(20) (100) 3/

102 Παράδειγμα y = (x y + 1) 2.

103 Παράδειγμα y = (x y + 1) 2. v = x y + 1 v = 1 y, y = 1 v.

104 Παράδειγμα y = (x y + 1) 2. v = x y + 1 v = 1 y, y = 1 v. 1 v = v 2 v = 1 v v 2 dv = dx 1 2 ln v + 1 v 1 = x+c,

105 Παράδειγμα y = (x y + 1) 2. v = x y + 1 v = 1 y, y = 1 v. 1 v = v 2 v = 1 v v 2 dv = dx 1 2 ln v + 1 v 1 = x+c, v + 1 v 1 = e2x+2c v + 1 v 1 = De2x

106 Παράδειγμα y = (x y + 1) 2. v = x y + 1 v = 1 y, y = 1 v. 1 v = v 2 v = 1 v v 2 dv = dx 1 2 ln v + 1 v 1 = x+c, v + 1 v 1 = e2x+2c v + 1 v 1 = De2x x y+2 x y = De 2x και y = x, και y = x + 2.

107 Παράδειγμα y = (x y + 1) 2. v = x y + 1 v = 1 y, y = 1 v. 1 v = v 2 v = 1 v v 2 dv = dx 1 2 ln v + 1 v 1 = x+c, v + 1 v 1 = e2x+2c v + 1 v 1 = De2x x y+2 x y = De 2x και y = x, και y = x + 2. x y + 2 = (x y)de 2x y = Dxe2x x 2 De 2x 1.

108 Μαντεψιές Όταν δεις δοκίμασε yy y 2 y 2 y y 3 (cos y)y sin y (sin y)y cos y y e y e y

109 Εξισώσεις Bernoulli Μαντεψιά: v = y 1 n y + p(x)y = q(x)y n.

110 Παράδειγμα xy + y(x + 1) + xy 5 = 0, y(1) = 1. Αντικατάσταση v = y 1 5 = y 4, v = 4y 5 y y 5 4 v = y.

111 Παράδειγμα xy + y(x + 1) + xy 5 = 0, y(1) = 1. Αντικατάσταση v = y 1 5 = y 4, v = 4y 5 y y 5 4 v = y. xy + y(x + 1) + xy 5 = 0, xy 5 4 v + y(x + 1) + xy 5 = 0, x 4 v + y 4 (x + 1) + x = 0, x 4 v + v(x + 1) + x = 0, v 4(x + 1) v = 4. x

112 Παράδειγμα (συνέχεια) v 4(x + 1) v = 4. x

113 Παράδειγμα (συνέχεια) 4(x v + 1) x v = 4. ( ) 4(x + 1) r(x) = exp dx = e x 4x 4 ln(x) = e 4x x 4 = e 4x x 4.

114 Παράδειγμα (συνέχεια) 4(x v + 1) x v = 4. ( ) 4(x + 1) r(x) = exp dx = e x 4x 4 ln(x) = e 4x x 4 = e 4x x 4. [ d e 4x ] dx x 4 v = 4 e 4x x 4, e 4x x x 4 v = 4 e 4s 1 s 4 ds + 1, v = e 4x x (4 4 x 1 e 4s s 4 ds + 1 ).

115 Παράδειγμα (συνέχεια) 4(x v + 1) x v = 4. ( ) 4(x + 1) r(x) = exp dx = e x 4x 4 ln(x) = e 4x x 4 = e 4x x 4. [ d e 4x ] dx x 4 v = 4 e 4x x 4, e 4x x x 4 v = 4 e 4s 1 s 4 ds + 1, v = e 4x x (4 4 x 1 e 4s s 4 ds + 1 ). x y 4 = e 4x x (4 4 e 4s 1 s 4 ds + 1 e y x = x ( 4 x e 4s ds + 1 ) 1/4. ),

116 Ομογενείς εξισώσεις Μετασχηματισμός v = y x y = F ( y). x y = v + xv.

117 Ομογενείς εξισώσεις Μετασχηματισμός v = y x y = F ( y). x y = v + xv. v+xv = F(v) xv = F(v) v Εμμεση λύση 1 dv = ln x + C. F(v) v v F(v) v = 1 x.

118 Παράδειγμα x 2 y = y 2 + xy, y(1) = 1.

119 Παράδειγμα x 2 y = y 2 + xy, y(1) = 1. y = (y/x) 2 + y/x. Μετασχηματισμός v = y/x

120 Παράδειγμα x 2 y = y 2 + xy, y(1) = 1. y = (y/x) 2 + y/x. Μετασχηματισμός v = y/x xv = v 2 + v v = v 2,

121 Παράδειγμα x 2 y = y 2 + xy, y(1) = 1. y = (y/x) 2 + y/x. Μετασχηματισμός v = y/x xv = v 2 + v v = v 2, 1 dv = ln x + C, v2 1 v = ln x + C, v = 1 ln x + C.

122 Παράδειγμα (συνέχεια) 1 y/x = ln x + C, x y = ln x + C.

123 Παράδειγμα (συνέχεια) 1 = y(1) = 1 y/x = ln x + C, x y = ln x + C. 1 ln 1 + C = 1 C.

124 Παράδειγμα (συνέχεια) 1 = y(1) = 1 y/x = ln x + C, x y = ln x + C. y = 1 ln 1 + C = 1 C. x ln x 1.

125 Παράδειγμα (συνέχεια) 1 y/x = ln x + C, x y = ln x + C.

126 Παράδειγμα (συνέχεια) 1 = y(1) = 1 y/x = ln x + C, x y = ln x + C. 1 ln 1 + C = 1 C.

127 Παράδειγμα (συνέχεια) 1 = y(1) = 1 y/x = ln x + C, x y = ln x + C. y = 1 ln 1 + C = 1 C. x ln x 1.

128 Αυτόνομες Εξισώσεις dx dt = f(x).

129 Αυτόνομες Εξισώσεις dx dt = f(x). Μοντέλα Το πρόβλημα του καφέ dx dt = k(x A). Πληθυσμιακό μοντέλο (βακτηρίδια) dp dt = kp.

130 Αυτόνομες Εξισώσεις dx dt = f(x). Μοντέλα Το πρόβλημα του καφέ dx dt = k(x A). Πληθυσμιακό μοντέλο (βακτηρίδια) dp dt = kp. Ορισμοί Τα σημεία του x άξονα στα οποία έχουμε f(x) = 0 τα λέμε κρίσιμα σημεία. Αποτελούν λύσεις των αυτόνομων εξισώσεων και τις λέμε λύσεις ισορροπίας.

131 Παραδείγματα Σχήμα : Πληθυσμιακό μοντέλο.

132 Παραδείγματα Σχήμα : Πεδία κατευθύνσεων και γραφική παράσταση μερικών λύσεων των εξισώσεων x = 0.3(x 5) και x = 0.1x(5 x). -5

133 Ευσταθείς Λύσεις Μιά λύση (ή ένα κρίσιμο σημείο) λέγετε ευσταθής όταν μικρές διαταραχές στο x δεν οδηγούν σε ουσιαστικά διαφορετικές λύσεις για αρκετά μεγάλο t.

134 Παράδειγμα - Λογιστική Εξίσωση dx = kx(m x), dt Πληθυσμιακό μοντέλο εάν γνωρίσουμε ότι ο πληθυσμός ενός είδους δεν μπορεί να υπερβεί τον αριθμό M.

135 Παράδειγμα - Λογιστική Εξίσωση dx = kx(m x), dt Πληθυσμιακό μοντέλο εάν γνωρίσουμε ότι ο πληθυσμός ενός είδους δεν μπορεί να υπερβεί τον αριθμό M. lim t x(t) = 5 αν x(0) >0, 0 αν x(0) = 0, Υ ή αν x(0) <0.

136 ιάγραμμα Φάσης Συμπεριφορά της λύσης σε βάθος χρόνου y = 5 y = 0

137 ιάγραμμα Φάσης Συμπεριφορά της λύσης σε βάθος χρόνου y = 5 y = 0 Γενικά ασταθής ευσταθής

138 Λογιστική Εξίσωση με Κατανάλωση Μια ομάδα ανθρώπων βασίζει την επιβιωσή της εκτρέφοντας μια αγέλη ζώων

139 Λογιστική Εξίσωση με Κατανάλωση Μια ομάδα ανθρώπων βασίζει την επιβιωσή της εκτρέφοντας μια αγέλη ζώων Εστω Τα καταναλώνει με ρυθμό h ζώα τον χρόνο. x πλήθος ζώων (χιλιάδες) t χρόνος (έτη). M ελάχιστος πληθυσμός κάτω από τον οποίο δεν επιτρέπεται η κατανάλωση ζώων. k >0 σταθερά αναπαραγωγής των ζώων.

140 Λογιστική Εξίσωση με Κατανάλωση Μια ομάδα ανθρώπων βασίζει την επιβιωσή της εκτρέφοντας μια αγέλη ζώων Εστω Τα καταναλώνει με ρυθμό h ζώα τον χρόνο. x πλήθος ζώων (χιλιάδες) t χρόνος (έτη). M ελάχιστος πληθυσμός κάτω από τον οποίο δεν επιτρέπεται η κατανάλωση ζώων. k >0 σταθερά αναπαραγωγής των ζώων. dx dt = kx(m x) h.

141 Λογιστική Εξίσωση με Κατανάλωση Μια ομάδα ανθρώπων βασίζει την επιβιωσή της εκτρέφοντας μια αγέλη ζώων Εστω Τα καταναλώνει με ρυθμό h ζώα τον χρόνο. x πλήθος ζώων (χιλιάδες) t χρόνος (έτη). M ελάχιστος πληθυσμός κάτω από τον οποίο δεν επιτρέπεται η κατανάλωση ζώων. k >0 σταθερά αναπαραγωγής των ζώων. dx dt = kx(m x) h. Κρίσιμα σημεία: A, B = km± (km) 2 4hk 2k.

142 Λογιστική Εξίσωση με Κατανάλωση (h 1, 1.6) Σχήμα : Πεδία κατευθύνσεων και μερικές λύσεις των εξισώσεων x = 0.1x(8 x) 1 και x = 0.1x(8 x) 1.6.

143 Λογιστική Εξίσωση με Κατανάλωση (h 2) Σχήμα : Πεδία κατευθύνσεων και μερικές λύσεις των εξισώσεων x = 0.1x(8 x) 2.

14 Φεβρουαρίου 2014, Βόλος

14 Φεβρουαρίου 2014, Βόλος ιαφορικές Εξισώσεις Εισαγωγή Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 14 Φεβρουαρίου 2014, Βόλος ιαδικαστικά Θέματα Ο τελικός βαθμός προτείνω να υπολογισθεί

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας ιαφορικές Εξισώσεις Μετασχηματισμοί Laplace Μανόλης Βάβαλης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας Βόλος, 11 Μαΐου 2015 Περιεχόμενα Μετασχηματισμοί Laplace Ορισμός μετασχηματισμού

Διαβάστε περισσότερα

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ=αχ 2 +βχ+γ Σελίδα 1 από 10 Παραβολή ψ=αχ 2 +βχ+γ, α0 Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α0 λέγεται τετραγωνική συνάρτηση. Η παραβολή ψ = αχ 2 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Η εξίσωση Black-Scholes

Η εξίσωση Black-Scholes 8 Η εξίσωση Black-Scholes 8. Μια απλή αγορά Θεωρούμε ότι έχουμε μια αγορά που έχει μόνο δύο προϊόντα. Το ένα είναι η δυνατότητα κατάθεσης σε μια τράπεζα (ισοδύναμα, αγορά ομολόγων της τράπεζας) και το

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή: Ας πούμε και κάτι για τις δύσκολες μέρες που έρχονται Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein 1879-1955 Πηγή: http://www.cognosco.gr/gnwmika/ 1 ΚΥΚΛΙΚΟΣ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Ιστόγραμμα Παράθυρα Parzen Εξομαλυμένη Kernel Ασκήσεις 1 Μη Παραμετρικός Υπολογισμός πυκνότητας με εκτίμηση Κατά τη

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 27 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1 Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) ύο καράβια αναχωρούν από το ίδιο λιµάνι. Το ένα κινείται µε 5 Km/h προς τα νότια και το άλλο µε Km/h προς τα ανατολικά. Να εκϕράσετε

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες

2. Κατάθεσε κάποιος στην Εθνική Τράπεζα 4800 με επιτόκιο 3%. Μετά από πόσο χρόνο θα πάρει τόκο 60 ; α) 90 ημέρες β) 1,5 έτη γ) 5 μήνες δ) 24 μήνες 20 Φεβρουαρίου 2010 1. Ένας έμπορος αγόρασε 720 κιλά κρασί προς 2 το κιλό. Πρόσθεσε νερό, το πούλησε προς 2,5 το κιλό και κέρδισε 500. Το νερό που πρόσθεσε ήταν σε κιλά: α) 88 β) 56 γ) 60 δ) 65 2. Κατάθεσε

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Την ευθύνη του εκπαιδευτικού υλικού έχει ο επιστημονικός συνεργάτης των Πανεπιστημιακών Φροντιστηρίων «ΚOΛΛΙΝΤΖΑ», οικονομολόγος συγγραφέας θεμάτων ΑΣΕΠ, Παναγιώτης Βεργούρος.

Διαβάστε περισσότερα

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία 1 Εισαγωγικά 1.1 Η σ-αλγεβρα ως πληροφορία Στη θεωρία μέτρου, όταν δουλεύει κανείς σε έναν χώρο X, συνήθως έχει διαλέξει μια αρκετά μεγάλη σ-άλγεβρα στον X έτσι ώστε όλα τα σύνολα που εμφανίζονται να ανήκουν

Διαβάστε περισσότερα

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

Διανυσματικές Συναρτήσεις

Διανυσματικές Συναρτήσεις Κεφάλαιο 5 Διανυσματικές Συναρτήσεις 51 Διανυσματατικές συναρτήσεις Μια συνάρτηση με τιμές στοr n, n>1 λέγεται διανυσματική συνάρτηση Τις διανυσματικές συναρτήσεις ϑα τις συμβολίζουμε με παχειά γράμματα,

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων.

Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. A A N A B P Y T A Άρθρο στους Μιγαδικούς Αριθμούς 9 5 0 Η ανισότητα α β α±β α + β με α, β C και η χρήση της στην εύρεση ακροτάτων. Δρ. Νίκος Σωτηρόπουλος, Μαθηματικός Εισαγωγή Το άρθρο αυτό γράφεται με

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27 ιάσταση του Krull Χ. Χαραλάμπους Α.Π.Θ. Θεσσαλονίκη Ιανουάριος, 2017 Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, 2017 1 / 27 Ορισμοί Εστω R (αντιμεταθετικός) δακτύλιος. Ορισμός Η διάσταση του Krull

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

Επιχειρησιακή Ερευνα Ι

Επιχειρησιακή Ερευνα Ι Επιχειρησιακή Ερευνα Ι Μ. Ζαζάνης Κεφάλαιο 1 Τετραγωνικές μορφές στον R n και το ϑεώρημα του Taylor Ορισμός 1. Εστω a 11 a 1n A =.. a n1 a nn συμμετρικός πίνακας n n με στοιχεία στους πραγματικούς αριθμούς.

Διαβάστε περισσότερα

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0. Κεφάλαιο Συνεχείς Τυχαίες Μεταβλητές. Η εκθετική κατανομή Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση f(x) = λe λx αν x, αν x

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Bias (απόκλιση) και variance (διακύμανση) Ελεύθεροι Παράμετροι Ελεύθεροι Παράμετροι Διαίρεση dataset Μέθοδος holdout Cross Validation Bootstrap Bias (απόκλιση) και variance

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Εφαρμογές στην κίνηση Brown

Εφαρμογές στην κίνηση Brown 13 Εφαρμογές στην κίνηση Brown Σε αυτό το κεφάλαιο θέλουμε να κάνουμε για την πολυδιάστατη κίνηση Brown κάτι ανάλογο με αυτό που κάναμε στην Παράγραφο 7.2 για τη μονοδιάστατη κίνηση Brown. Δηλαδή να μελετήσουμε

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Εκτίμηση Πυκνότητας με k NN k NN vs Bayes classifier k NN vs Bayes classifier Ο κανόνας ταξινόμησης του πλησιέστερου γείτονα (k NN) lazy αλγόριθμοι O k NN ως χαλαρός

Διαβάστε περισσότερα

Η Θεωρια Αριθμων στην Εκπαιδευση

Η Θεωρια Αριθμων στην Εκπαιδευση Η Θεωρια Αριθμων στην Εκπαιδευση Καθηγητὴς Ν.Γ. Τζανάκης Εφαρμογὲς τῶν συνεχῶν κλασμάτων 1 1. Η τιμὴ τοῦ π μὲ σωστὰ τὰ 50 πρῶτα δεκαδικὰ ψηφία μετὰ τὴν ὑποδιαστολή, εἶναι 3.14159265358979323846264338327950288419716939937511.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

5.1 Μετρήσιμες συναρτήσεις

5.1 Μετρήσιμες συναρτήσεις 5 Μετρήσιμες συναρτήσεις 5.1 Μετρήσιμες συναρτήσεις Ορισμός 5.1. Εστω (Ω, F ), (E, E) μετρήσιμοι χώροι. Μια συνάρτηση f : Ω E λέγεται F /Eμετρήσιμη αν f 1 (A) F για κάθε A E. (5.1) Συμβολίζουμε το σύνολο

Διαβάστε περισσότερα

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2 12 Ο τύπος του Itô Για συνάρτηση f : R R με συνεχή παράγωγο, έχουμε d f (s) = f (s) ds που σε ολοκληρωτική μορφή σημαίνει f (b) f (a) = b a f (s) ds (12.1) για κάθε a < b. Αν επιπλέον και η g : R R έχει

Διαβάστε περισσότερα

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016

Γενικό Λύκειο Μαραθοκάμπου Σάμου. Άλγεβρα Β λυκείου. 13 Οκτώβρη 2016 Γενικό Λύκειο Μαραθοκάμπου Σάμου Άλγεβρα Β λυκείου Εργασία2 η : «Συναρτήσεις» 13 Οκτώβρη 2016 Ερωτήσεις Θεωρίας 1.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςάυξουσασεέναδιάστημα του πεδίου ορισμού της; 2.Πότελέμεότιμιασυνάρτησηfείναιγνησίωςφθίνουσασεέναδιάστημα

Διαβάστε περισσότερα

E n. (, ) Η χρονοεξαρτώµενη εξίσωση Schrödinger, έχει την µορφή ˆ

E n. (, ) Η χρονοεξαρτώµενη εξίσωση Schrödinger, έχει την µορφή ˆ Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςα(ΓΕΚα Σε ένα μονοδιάστατο κβαντικό σύστημα να δειχθεί ότι η γενική λύση της χρονοεξαρτώμενης εξίσωσης Schrödiger είναι της μορφής Ψ ( x,t c ( x e i E t, όπου τα E

Διαβάστε περισσότερα

Αναλυτικές ιδιότητες

Αναλυτικές ιδιότητες 8 Αναλυτικές ιδιότητες 8. Βαθμός συνέχειας* Ξέρουμε ότι η κίνηση Brown είναι συνεχής και θα δείξουμε αργότερα ότι είναι πουθενά διαφορίσιμη. Πόσο ομαλή είναι λοιπόν; Μια ασθενέστερη μορφή ομαλότητας είναι

Διαβάστε περισσότερα

CSE.UOI : Μεταπτυχιακό Μάθημα

CSE.UOI : Μεταπτυχιακό Μάθημα Θέματα Αλγορίθμων Αλγόριθμοι και Εφαρμογές στον Πραγματικό Κόσμο CSE.UOI : Μεταπτυχιακό Μάθημα 10η Ενότητα: Χρονικά Εξελισσόμενες ικτυακές Ροές Σπύρος Κοντογιάννης kntg@cse.ui.gr Τμήμα Μηχανικών Η/Υ &

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία

Διαβάστε περισσότερα

Κατασκευή της κίνησης Brown και απλές ιδιότητες

Κατασκευή της κίνησης Brown και απλές ιδιότητες 5 Κατασκευή της κίνησης Brown και απλές ιδιότητες 51 Ορισμός, ύπαρξη, και μοναδικότητα Ορισμός 51 Μια στοχαστική ανέλιξη { : t } ορισμένη σε έναν χώρο πιθανότητας (Ω, F, P) και με τιμές στο R λέγεται (μονοδιάστατη)

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

Συναρτήσεις. Σημερινό μάθημα

Συναρτήσεις. Σημερινό μάθημα Συναρτήσεις Σημερινό μάθημα C++ Συναρτήσεις Δήλωση συνάρτησης Σύνταξη συνάρτησης Πρότυπο συνάρτησης & συνάρτηση Αλληλο καλούμενες συναρτήσεις συναρτήσεις μαθηματικών Παράμετροι συναρτήσεων Τοπικές μεταβλητές

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο. Αλυσίδες

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ

Συντάκτης: Παναγιώτης Βεργούρος, Οικονομολόγος Συγγραφέας βιβλίων, Μικρο μακροοικονομίας διαγωνισμών ΑΣΕΠ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

This work is licensed under the Creative Commons To view a copy of this license, visit

This work is licensed under the Creative Commons To view a copy of this license, visit Εισαγωγή στις Διαφορικές Εξισώσεις... για μηχανικούς Μανόλης Βάβαλης 6 Μαΐου 4 Το κείμενο αυτό μορφοποιήθηκε σε L A TEX. Copyright c,, 4 Μανόλης Βάβαλης This work is licensed under the Creative Commons

Διαβάστε περισσότερα

Αφιερώνεται στους Μαθητές μας Άγγελος Βουλδής Γιώργος Παναγόπουλος Λευτέρης Μεντζελόπουλος

Αφιερώνεται στους Μαθητές μας Άγγελος Βουλδής Γιώργος Παναγόπουλος Λευτέρης Μεντζελόπουλος Αφιερώνεται στους Μαθητές μας Άγγελος Βουλδής Γιώργος Παναγόπουλος Λευτέρης Μεντζελόπουλος Είτε είμαστε άνθρωποι είτε είμαστε αστρική σκόνη, όλοι μαζί χορεύουμε στη μελωδία ενός αόρατου ερμηνευτή. A. Einstein

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ

ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1α ΤΑΞΙΝΟΜΗΣΗ ΟΡΓΑΝΙΣΜΩΝ Οι επιστήμονες ταξινομούν τους οργανισμούς σε ομάδες ανάλογα με τα κοινά τους χαρακτηριστικά. Τα πρώτα συστήματα ταξινόμησης βασιζόταν αποκλειστικά στα μορφολογικά

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

Martingales. 3.1 Ορισμός και παραδείγματα

Martingales. 3.1 Ορισμός και παραδείγματα 3 Martingales 3.1 Ορισμός και παραδείγματα Εστω χώρος πιθανότητας (Ω, F, P). Διήθηση σε αυτό τον χώρο λέμε μια αύξουσα ακολουθία (F n ) n 0 σ-αλγεβρών, η καθεμία από τις οποίες είναι υποσύνολο της F. Δηλαδή,

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

Ανελίξεις σε συνεχή χρόνο

Ανελίξεις σε συνεχή χρόνο 4 Ανελίξεις σε συνεχή χρόνο Σε αυτό το κεφάλαιο είναι συγκεντρωμένοι ορισμοί και αποτελέσματα από τη θεωρία των στοχαστικών ανελιξεων συνεχούς χρόνου. Με εξαίρεση την Παράγραφο 4.1, η οποία είναι εντελώς

Διαβάστε περισσότερα

Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής

Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής Αφιερώνεται στο Δάσκαλο μου Χρήστο Αλεξόπουλο, για την πολύτιμη βοήθεια που μου προσέφερε στα μαθητικά μου χρόνια Άγγελος Βουλδής Αφιερώνεται στους Δασκάλους μας, που μας βοήθησαν να φτάσουμε μέχρι εδώ

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. 2 Δεσμευμένη μέση τιμή 2.1 Ορισμός Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα. Ορισμός 2.1. Για X : Ω R τυχαία

Διαβάστε περισσότερα

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων Μιχάλης Ζαζάνης Τμήμα Στατιστικής Οικονομικό Πανεπιστήμιο Αθηνών Κεφάλαιο Αλυσίδες Markov σε Συνεχή Χρόνο Αλυσίδες Markov

Διαβάστε περισσότερα

Kατάτμηση εικόνας. Σήμερα!

Kατάτμηση εικόνας. Σήμερα! Kατάτμηση εικόνας Σήμερα! Κατωφλίωση (binarization) Καθολικό ό( (global) κατώφλι LocalΤhresholding Φωτισμός και Ανακλαστικότητα Τεχνικές ανίχνευσης ακμών Τελεστές κλίσης (gradient operators) (gradient

Διαβάστε περισσότερα

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή) Εισαωή στη Μιαδική Ανάλυση Σημειώσεις (Πρώτη Ολοκληρωμένη Γραφή) Ε. Στεφανόπουλος Τμήμα Μαθηματικών Πανεπιστήμιο Αιαίου Καρλόβασι Καλοκαίρι 26 Πρόλοος Οι σημειώσεις αυτές είναι αποτέλεσμα επεξερασίας

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα

Ευρωπαϊκά παράγωγα Ευρωπαϊκά δικαιώματα 17 Ευρωπαϊκά παράγωγα 17.1 Ευρωπαϊκά δικαιώματα Ορισμός 17.1. 1) Ευρωπαϊκό δικαίωμα αγοράς σε μία μετοχή είναι ένα συμβόλαιο που δίνει στον κάτοχό του το δικαίωμα να αγοράσει μία μετοχή από τον εκδότη

Διαβάστε περισσότερα

Το υπόδειγμα IS-LM: Εισαγωγικά

Το υπόδειγμα IS-LM: Εισαγωγικά 1/35 Το υπόδειγμα IS-LM: Εισαγωγικά Νίκος Γιαννακόπουλος Επίκουρος Καθηγητής Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2014-2015 Εαρινό Εξάμηνο Τι γνωρίζουμε; 2/35 Αγορά αγαθών και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει ΕΙΣΑΓΩΓΗ ------------------------------------------------------------------------------------- H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει αντικείμενο

Διαβάστε περισσότερα

Αλγόριθμοι & Βελτιστοποίηση

Αλγόριθμοι & Βελτιστοποίηση Αλγόριθμοι & Βελτιστοποίηση ΠΜΣ/ΕΤΥ: Μεταπτυχιακό Μάθημα 8η Ενότητα: Γραμμικός Προγραμματισμός ως Υπορουτίνα για Επίλυση Προβλημάτων Χρήστος Ζαρολιάγκης (zaro@ceid.upatras.gr) Σπύρος Κοντογιάννης (kontog@cs.uoi.gr)

Διαβάστε περισσότερα

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ

ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΛΑΔΟΣ: ΠΕ11 ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ Μάθημα: Ενόργανη Γυμναστική Χρήσιμα θεωρία στο κεφάλαιο της ενόργανης γυμναστικής για το γνωστικό αντικείμενο ΠΕ11 της Φυσικής Αγωγής από τα Πανεπιστημιακά Φροντιστήρια Κολλίντζα.

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών 1 Ο Ισχυρός Νόμος των Μεγάλων Αριθμών Στο κεφάλαιο αυτό παρουσιάζουμε ένα από τα σημαντικότερα αποτελέσματα της Θεωρίας Πιθανοτήτων, τον ισχυρό νόμο των μεγάλων αριθμών. Η διατύπωση που θα αποδείξουμε

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΙΑΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΙΑΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΔΙΑΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ Πανεπιστήμιο Πατρών Σχολή : Θετικών Επιστημών Τμήμα : Μαθηματικών Μ.Δ.Ε. : Μαθηματικά των Φυσικών και Βιομηχανικών Εφαρμογών Ακαδημαϊκό Έτος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των

Διαβάστε περισσότερα

Eισηγητής: Μουσουλή Μαρία

Eισηγητής: Μουσουλή Μαρία Eισηγητής: Μουσουλή Μαρία Τεχνική φλοπ Φορά Σκοπός της φοράς είναι να αναπτυχθεί μια ιδανική για τον κάθε αθλητή ταχύτητα και ταυτόχρονα να προετοιμάσει το πάτημα. Το είδος της φοράς του Fosbury ήτα, μια

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1.1 έως 1.3, να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΟΥ ΤΡΟΧΟΥ MAXWELL ΒΑΡΗ 01-013 Μπίλιας Κων/νος Φυσικός

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

https://github.com/kongr45gpen/ece-notes

https://github.com/kongr45gpen/ece-notes Σημειώσεις Διαφορικές Εξισώσεις https://github.com/kongr45gpen/ece-notes ο εξάμηνο, 6 Περιεχόμενα I Σεβαστιάδης 3 Διαφορική εξίσωση ης τάξης 3. Χωριζόμενες διαφορικές εξισώσεις.................................

Διαβάστε περισσότερα

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις

(3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις (3 ο ) Εξαντλητική αναζήτηση I: μεταθέσεις & υποσύνολα (4 o ) Εξαντλητική αναζήτηση II: συνδυασμοί, διατάξεις & διαμερίσεις Είναι πράγματι τα «προβλήματα» τόσο δύσκολα; Είδαμε (σύντομα) στα προηγούμενα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων 1

Αναγνώριση Προτύπων 1 Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π.

Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών. Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Δήμος Σωτήριος Υ.Δ. Εργαστήριο Λογικής & Επιστήμης Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Σ.Η.Μ.Μ.Υ. Ε.Μ.Π. Θεωρία Παιγνίων (;) αυτά είναι video παίγνια...... αυτά δεν είναι θεωρία παιγνίων

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss Κεφάλαιο 1 Πίνακες και απαλοιφή Gauss Γύρω απ το γινομένου πινάκων Κάτι σαν τυπολόγιο Αν AB = C, τότε: 1 (C) i j = (i-γραμμή A) ( j-στήλη B) Το συμβολίζει εσωτερικό γινόμενο 2 (i-γραμμή C) = k(a) ik (k-γραμμή

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016.

ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016. Αλγεβρική Γεωμετρία ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος Κεφάλαιο 1. Αλγεβρικές ποικιλότητες 1 1. Αλγεβρικά Σύνολα 1 2. Το Θεώρημα Ριζών του Hilbert 7 3. Συγγενείς Αλγεβρικές Ποικιλότητες 14 4. Πολλαπλότητα και Πολλαπλότητα

Διαβάστε περισσότερα

Το εγχειρίδιο του καλού κηπουρού

Το εγχειρίδιο του καλού κηπουρού Το εγχειρίδιο του καλού κηπουρού 1. Φροντίδα των φυτών Αφού αποφάσισες να φυτέψεις πρέπει να είσαι έτοιμος να ασχοληθείς με τα φυτά σου και να παρακολουθείς τις ανάγκες τους. Θα πρέπει να ποτίζεις όποτε

Διαβάστε περισσότερα

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ii ΔΗΜΗΤΡΗΣ ΧΕΛΙΩΤΗΣ Επίκουρος καθηγητής Τμήμα Μαθηματικών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνων Ενα δεύτερο μάθημα στις πιθανότητες Ενα δεύτερο

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΡΧΗ ΜΗΝΥΜΑΤΟΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 14 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1 5 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα