21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου"

Transcript

1 Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ A Ε B Ζ Η Γ K Θ Δ Ι

2 Ορισμός Ένα (μη κατευθυνόμενο) γράφημα (non directed graph) Γ, είναι μία δυάδα από σύνολα Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο V είναι το σύνολο κορυφών του γραφήματος, και Ε το σύνολο των ακμών του γραφήματος. Κάθε ακμή ε του γραφήματος (ε Ε), συνδέει δύο κορυφές και του συνόλου V. Μία τέτοια ακμή συμβολίζεται ε=(, ) ή ε=(, ).

3 Ορισμός Ένα κατευθυνόμενο γράφημα (directed graph) Γ, αποτελείται από δύο σύνολα, Ε και V και συμβολίζεται με Γ=(Ε,V). Το σύνολο V είναι το σύνολο κορυφών του γραφήματος, και Ε το σύνολο των ακμών του γραφήματος. Κάθε ακμή ε στο Ε σχετίζεται με ένα διατεταγμένο σύνολο κορυφών,. Μία τέτοια ακμή συμβολίζεται ε=(, ) και συμβολίζει μία ακμή από την κορυφή στην κορυφή. V 1 V 2 V 3 V 4 V 5 V 6

4 Ορισμός Μία ακμή ε=(, ) σε κατευθυνόμενο ή μη γράφημα λέγεται ότι εφάπτεται (incident on) των κορυφών και. Οι κορυφές v1 και v2 λέγονται γειτονικές ή διαδοχικές (adjacent). Ορισμός Εάν σε ένα μη κατευθυνόμενο γράφημα Γ υπάρχουν περισσότερες από μια ακμές που συνδέουν δύο κορυφές και, τότε οι ακμές αυτές καλούνται παράλληλες (parallel edges). Ορισμός Ένα γράφημα Γ δίχως ανακυκλώσεις και παράλληλες ακμές καλείται απλό γράφημα (simple graph). Μία κορυφή στην οποία δεν εφάπτεται καμία ακμή καλείται μεμονωμένη κορυφή (isolated vertex).

5 e 3 e 4 e 1 e 2 e 5 v1

6 Ειδικές κατηγορίες γραφημάτων Ορισμός Ένα γράφημα Γ καλείται πλήρες με ν κορυφές (complete with ν vertices), και συμβολίζεται Κν, εάν είναι απλό με ν κορυφές και για κάθε ζευγάρι διαφορετικών κορυφών, V, υπάρχει μία ακμή στο Ε με e=(, ). Κ 3 Κ 5

7 Ορισμός Ένα γράφημα Γ=(V,E) καλείται διχοτομίσιμο (bipartite graph) εάν το σύνολο των κορυφών του μπορεί να διαμεριστεί σε δύο σύνολα V1 και V2 τέτοια ώστε κάθε ακμή e στο Ε εφάπτεται σε μία κορυφή του V1 και σε μια του V2. Παράδειγμα (α) Παράδειγμα διχοτομίσιμου γραφήματος με V1=(,, ) και V2=(v 4, ) είναι αυτό του σχήματος 4.6(α). Σημειώστε ότι η ακμή (v1,v5) δεν υπάρχει. v 4 v 4 (α) (β)

8 Ορισμός Πλήρες και διχοτομίσιμο γράφημα με ν και μ κορυφές (complete and bipartite with ν and μ vertices), συμβολίζεται ως Κ ν,μ, είναι ένα διχοτομίσιμο γράφημα, το σύνολο κορυφών του οποίου διαμερίζεται σε δύο σύνολα κορυφών: V1, με ν κορυφές και V2 με μ κορυφές, τέτοια ώστε για κάθε ζεύγος κορυφών (v1, v2), με v1 V1 και v2 V2, υπάρχει μία ακμή που εφάπτεται σε αυτές. Παράδειγμα πλήρους και διχοτομίσιμου γραφήματος Κ2,4 με δύο και τέσσερις κορυφές φαίνεται στο σχήμα 4.7: v 6 v 4 Παράδειγμα πλήρους και διχοτομίσιμου γραφήματος

9 Να καθοριστεί ποια από τα γραφήματα του σχήματος 4.8 είναι διχοτομίσιμα. Σε περίπτωση που είναι διχοτομίσιμα, να ορίσετε τη διαμέριση του συνόλου των κορυφών. v v 4 v v 6 v 7 v 9 Γ1 Γ2

10 Μονοπάτι (path) Ρ μήκους ν από μία κορυφή v 0 σε μια κορυφή v n σε γράφημα Γ=(V,E), v 0,v n V, καλείται μία ακολουθία από ν+1 κορυφές και ν ακμές, όπου οι ακμές εναλλάσσονται των κορυφών ξεκινώντας από την κορυφή v 0 και καταλήγοντας στην κορυφή v n. Δηλαδή, Ρ=(v 0,e 1,,e 2,,...,e n,v n ), όπου κάθε ακμή e i εφάπτεται των κορυφών v i 1, v i, με 1 i n.

11 Το μονοπάτι (v1,e 1, v2,e 2, v3,e 3, v4,e 4, v2) στο παρακάτω γράφημα είναι ένα μονοπάτι μήκους 4 από την κορυφή v1 στην κορυφή v2. e 1 e 2 e 3 e 4 v 4 e 5 e 6 v 7 e 8 e 7 v 6

12 Ένα γράφημα Γ=(V,E) καλείται συνδεόμενο (connected graph) εάν για κάθε ζευγάρι κορυφών, στο V υπάρχει ένα μονοπάτι από τη στη. Παράδειγμα To γράφημα Γ1 του παράτω σχήματος είναι συνδεόμενο, ενώ τo γράφημα Γ2 είναι μη συνδεόμενο διότι δεν υπάρχει μονοπάτι από τη κορυφή v2 στη κορυφή v5. v 4 v 6 Γ 1 Γ 2

13 Έστω Γ=(V,E) ένα γράφημα. Το γράφημα Γʹ=(Vʹ,Eʹ) καλείται υπό γράφημα (subgraph) του Γ εάν, Vʹ V, Eʹ E και για κάθε e Εʹ, η e εφάπτεται σε δύο κορυφές που ανήκουν στο Vʹ. Τα γραφήματα που απεικονίζονται παράτω είναι υπο γραφήματα του γραφήματος Γ2 παραπάνω. v 4 v 6 v 6

14 Έστω Γ=(V,E) ένα γράφημα, και v μία κορυφή του Γ. Το υπό γράφημα του Γ που αποτελείται από όλες τις ακμές και κορυφές που ανήκουν σε οποιοδήποτε μονοπάτι που ξεκινάει από την v, καλείται τμήμα του γραφήματος (part of the graph) Γ που περιέχει τη v.

15 Ειδικού τύπου μονοπάτια Απλό μονοπάτι (simple path) σε γράφημα Γ καλείται μονοπάτι δίχως επαναλαμβανόμενες κορυφές. Κύκλος (cycle) σε γράφημα Γ είναι μονοπάτι δίχως επαναλαμβανόμενες ακμές, όπου η αρχική και η τελική κορυφές συμπίπτουν. Απλός κύκλος (simple cycle) σε γράφημα Γ είναι κύκλος δίχως επαναλαμβανόμενες κορυφές (εκτός βέβαια της αρχικής και τελικής κορυφής).

16 Η ακολουθία Fibonacci, όπως έχει αναφερθεί, ορίζεται ως εξής: f1= 1 f2= 2 fn= fn 1 + f n 2, n 3. Να δειχθεί ότι ο αριθμός των μονοπατιών από τη v1 στη v1 μήκους ν στο γράφημα του παρακάτω σχήματος, είναι ίσος με τον ν οστό αριθμό Fibonacci fν.

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Οι γέφυρες του ποταμού... Pregel (Konigsberg) Οι γέφυρες του ποταμού... Pregel (Konigsberg) Β Δ Β Δ Γ Γ Κύκλος του Euler (Euler cycle) είναι κύκλος σε γράφημα Γ που περιέχει κάθε κορυφή του γραφήματος, και κάθε ακμή αυτού ακριβώς μία φορά. Για γράφημα

Διαβάστε περισσότερα

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) ΣΥΝΔΕΤΙΚΑ ΔΕΝΤΡΑ Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον) δέντρο (spanning tree) του Γ εάν αυτό είναι δέντρο και περιέχει όλες τις κορυφές του Γ. Παράδειγμα. Στο παρακάτω

Διαβάστε περισσότερα

Σχέσεις και ιδιότητές τους

Σχέσεις και ιδιότητές τους Σχέσεις και ιδιότητές τους Διμελής (binary) σχέση Σ από σύνολο Χ σε σύνολο Υ είναι ένα υποσύνολο του καρτεσιανού γινομένου Χ Υ. Αν (χ,ψ) Σ, λέμε ότι το χ σχετίζεται με το ψ και σημειώνουμε χσψ. Στην περίπτωση

Διαβάστε περισσότερα

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή. Mαθηματικό σύστημα Ένα μαθηματικό σύστημα αποτελείται από αξιώματα, ορισμούς, μη καθορισμένες έννοιες και θεωρήματα. Η Ευκλείδειος γεωμετρία αποτελεί ένα

Διαβάστε περισσότερα

{ i f i == 0 and p > 0

{ i f i == 0 and p > 0 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Διδάσκων: Ε. Μαρκάκης, Φθινοπωρινό εξάμηνο 014-015 Λύσεις 1ης Σειράς Ασκήσεων

Διαβάστε περισσότερα

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» HY 118α «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ» ΣΚΗΣΕΙΣ ΠΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΙΣΤΩΝ εώργιος Φρ. εωργακόπουλος ΜΕΡΟΣ (1) ασικά στοιχεία της θεωρίας συνόλων. Π. ΚΡΗΤΗΣ ΤΜ. ΕΠ. ΥΠΟΛΟΙΣΤΩΝ «ΔΙΚΡΙΤ ΜΘΗΜΤΙΚ». Φ. εωργακόπουλος

Διαβάστε περισσότερα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα Τα βιβλία διακριτών μαθηματικών του Γ.Β. Η/Υ με επεξεργαστή Pentium και χωρητικότητα

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Καταμερισμός καταχωρητών. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Καταμερισμός καταχωρητών Νικόλαος Καββαδίας nkavv@uop.gr 01 Δεκεμβρίου 2010 Γενικά για τον καταμερισμό καταχωρητών Καταμερισμός καταχωρητών (register allocation): βελτιστοποίηση μεταγλωττιστή

Διαβάστε περισσότερα

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια.

Ταξινόμηση των μοντέλων διασποράς ατμοσφαιρικών ρύπων βασισμένη σε μαθηματικά κριτήρια. ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Ταξινόμηη των μοντέλων διαποράς ατμοφαιρικών ρύπων βαιμένη ε μαθηματικά κριτήρια. Μοντέλο Ελεριανά μοντέλα (Elerian) Λαγκρατζιανά μοντέλα (Lagrangian) Επιπρόθετος διαχωριμός Μοντέλα

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0, Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Στατιστικής Εισαγωγή στην Επιχειρησιακή Ερευνα Εαρινό Εξάμηνο 2015 Μ. Ζαζάνης Πρόβλημα 1. Να διατυπώσετε το παρακάτω παίγνιο μηδενικού αθροίσματος ως πρόβλημα γραμμικού

Διαβάστε περισσότερα

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις» ( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «πεικονίσεις» 1. ΣΧΕΣΕΙΣ: το σκεπτικό κι ο ορισμός. Τ σύνολ νπριστούν ιδιότητες μεμονωμένων στοιχείων: δεδομένου συνόλου S, κι ενός στοιχείου σ, είνι δυντόν είτε σ S είτε

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελικές έννοιες της επιστήμης του υπολογισμού ΑΣΚΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργκόπουλος μέρος Α Εισγωγή, κι η σική θεωρί των πεπερσμένων

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Τετάρτη 23 Μαΐου 2012 Εκφωήσεις και Λύσεις

Διαβάστε περισσότερα

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή.

ΣΤΟ ΦΑΡΜΑΚΕΙΟ. Με την πιστοποίηση του έχει πρόσβαση στο περιβάλλον του φαρμακείου που παρέχει η εφαρμογή. ΣΤΟ ΦΑΡΜΑΚΕΙΟ Ο ασθενής έχοντας μαζί του το βιβλιάριο υγείας του και την τυπωμένη συνταγή από τον ιατρό, η οποία αναγράφει τον μοναδικό κωδικό της, πάει στο φαρμακείο. Το φαρμακείο αφού ταυτοποιήσει το

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2012-13 Πρώτη Γραπτή Εργασία Εισαγωγή στους υπολογιστές Μαθηματικά

Διαβάστε περισσότερα

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης

Συγκέντρωση Κίνησης. 6.1. Εισαγωγή. 6.2. Στατική Συγκέντρωση Κίνησης Συγκέντρωση Κίνησης 6.1. Εισαγωγή Σε ένα οπτικό WDM δίκτυο, οι κόμβοι κορμού επικοινωνούν μεταξύ τους και ανταλλάσουν πληροφορία μέσω των lightpaths. Ένα WDM δίκτυο κορμού είναι υπεύθυνο για την εγκατάσταση

Διαβάστε περισσότερα

Εκφωνήσεις και Λύσεις των Θεμάτων

Εκφωνήσεις και Λύσεις των Θεμάτων ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Δευτέρα 8 Μαΐου 0 Εκφωνήσεις και Λύσεις των Θεμάτων

Διαβάστε περισσότερα

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading

Κληρονομικότητα. Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading Κληρονομικότητα Σήμερα! Κλάση Βάσης Παράγωγη κλάση Απλή κληρονομικότητα Protected δεδομένα Constructors & Destructors overloading 2 1 Κλάση Βάση/Παράγωγη Τα διάφορα αντικείμενα μπορούν να έχουν μεταξύ

Διαβάστε περισσότερα

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο.

Μονάδες 5 1.2.α. Να γράψετε στο τετράδιό σας τον παρακάτω πίνακα σωστά συµπληρωµένο. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΧΗΜΕΙΑ - ΒΙΟΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94. ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.

Διαβάστε περισσότερα

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν

Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν 1 1. Αποδοχή κληρονομίας Έννοια. Η αποδοχή της κληρονομίας αποτελεί δικαίωμα του κληρονόμου, άρα δεν μπορεί να ασκηθεί από τους δανειστές του κληρονόμου, τον εκτελεστή της διαθήκης, τον κηδεμόνα ή εκκαθαριστή

Διαβάστε περισσότερα

(elementary graph algorithms)

(elementary graph algorithms) (elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ

ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑ: ΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή.

ΣΤΟ ΙΑΤΡΕΙΟ. Με την πιστοποίηση του αποκτά πρόσβαση στο περιβάλλον του ιατρού που παρέχει η εφαρμογή. ΣΤΟ ΙΑΤΡΕΙΟ Ο ιατρός αφού διαπιστώσει εάν το πρόσωπο που προσέρχεται για εξέταση είναι το ίδιο με αυτό που εικονίζεται στο βιβλιάριο υγείας και ελέγξει ότι είναι ασφαλιστικά ενήμερο (όπως ακριβώς γίνεται

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις Αναγνώριση Προτύπων Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις 1 Λόγος Πιθανοφάνειας Ας υποθέσουμε ότι θέλουμε να ταξινομήσουμε

Διαβάστε περισσότερα

Βελτίωση Εικόνας. Σήμερα!

Βελτίωση Εικόνας. Σήμερα! Βελτίωση Εικόνας Σήμερα! Υποβάθμιση εικόνας Τεχνικές Βελτίωσης Restoration (Αποκατάσταση) Τροποποίηση ιστογράμματος Ολίσθηση ιστογράμματος Διάταση (stretching) Ισοστάθμιση του ιστογράμματος (histogram

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΑΣΤΙΚΟ ΔΙΚΑΙΟ Διδάσκων : Βασίλειος Σταματόπουλος, Δικηγόρος, Δ.Μ.Σ. Συνάντηση 4 η ΕΝΟΧΕΣ ΔΙΑΖΕΥΚΤΙΚΕΣ Εννοιολογική προσέγγιση. Διαζευκτική είναι η ενοχή που έχει ως αντικείμενο δύο ή περισσότερες

Διαβάστε περισσότερα

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να

- 1 - Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή αγαθών, ορισμένες φορές, είναι δύσκολο να - 1 - Ο παράξενος πραματευτής Ανθολόγιο Ε & Στ τάξης: 277-279 Οικονομικές έννοιες Ανταλλαγή Αντιπραγματισμός Εμπόριο Ερωτήσεις Ποιοι κερδίζουν από το εμπόριο αγαθών και υπηρεσιών; Γιατί η άμεση ανταλλαγή

Διαβάστε περισσότερα

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές 10 Ανεξαρτησία 10.1 Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές Στην παράγραφο αυτή δουλεύουμε σε χώρο πιθανότητας (Ω, F, P). Δίνουμε καταρχάς τον ορισμό της ανεξαρτησίας για ενδεχόμενα,

Διαβάστε περισσότερα

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983

ΑΣΕΠ 2000 ΑΣΕΠ 2000 Εμπορική Τράπεζα 1983 Υπουργείο Κοιν. Υπηρ. 1983 20 Φεβρουαρίου 2010 ΑΣΕΠ 2000 1. Η δεξαμενή βενζίνης ενός πρατηρίου υγρών καυσίμων είναι γεμάτη κατά τα 8/9. Κατά τη διάρκεια μιας εβδομάδας το πρατήριο διέθεσε τα 3/4 της βενζίνης αυτής και έμειναν 4000

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Πανεπιστήμιο Αθηνών Μαθηματικά Πληροφορικής Ηλίας Κουτσουπιάς Αθήνα, Οκτώβριος 2009 Περιεχόμενα Περιεχόμενα 1 Σύνολα... 5 ΆλλαΣύμβολα... 6 1 Υποθέσεις και Θεωρήματα 9 1.1 Παρατήρηση-Υπόθεση-Απόδειξη...

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών.

ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών. ΘΕΩΡΙ ΣΥΝΟΛΩΝ: μια σύνοψη των θεμελιακών χαρακτηριστικών. 1. ΣΥΝΟΛ: το σκεπτικό. σύνολο = πολλά στοιχεία ως «ένα», ως «μία» ολότητα. τα στοιχεία ανήκουν στο σύνολο, ή είναι μέλη του συνόλου το σύνολο περιέχει

Διαβάστε περισσότερα

Projects για το εργαστήριο. των Βάσεων Δεδομένων

Projects για το εργαστήριο. των Βάσεων Δεδομένων Projects για το εργαστήριο των Βάσεων Δεδομένων Θεσσαλονίκη, Νοέμβριος Δεκέμβριος 2013 1. Το πολυκατάστημα Το πολυκατάστημα έχει ένα σύνολο από εργαζομένους. Κάθε εργαζόμενος χαρακτηρίζεται από έναν κωδικό

Διαβάστε περισσότερα

Μελέτη και Υλοποίηση Αλγορίθμων Κατάταξης

Μελέτη και Υλοποίηση Αλγορίθμων Κατάταξης Μελέτη και Υλοποίηση Αλγορίθμων Κατάταξης σε Διμερή Γραφήματα arxiv:1507.05214v1 [cs.ir] 18 Jul 2015 Διπλωματική Εργασία της Αντωνίας Κορμπά Τμήμα, Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Πατρών Πάτρα,

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κωνσταντίνος Α. Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό

Διαβάστε περισσότερα

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0, Άλγεβρα Β Λυκείου - Πολυώνυμα: Θεωρία, Μεθοδολογία και Λυμένες ασκήσεις Κώστας Ράπτης Μάιος 2011 Μέρος I Πολυώνυμα 1 Πολυώνυμα 1.1 Στοιχεία ϑεωρίας Καλούμε μονώνυμο του x κάθε παράσταση της μορφήςαx ν,

Διαβάστε περισσότερα

Θεµελίωση Γενετικών Αλγορίθµων

Θεµελίωση Γενετικών Αλγορίθµων Θεµελίωση Γενετικών Αλγορίθµων Σηµερινό Μάθηµα Προβληµατισµοί Σχήµατα Τάξη Οριστικό Μήκος ΘεώρηµατωνΣχηµάτων Υπόθεση δοµικών Στοιχείων Πλάνη 1 Προβληµατισµοί Τι προβλέψεις µπορούν να γίνουν για τη χρονική

Διαβάστε περισσότερα

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2

Pointers. Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 Pointers 1 Σημερινό Μάθημα! Χρήση pointer Τελεστής * Τελεστής & Γενικοί δείκτες Ανάκληση Δέσμευση μνήμης new / delete Pointer σε αντικείμενο 2 1 Μνήμη μεταβλητών Κάθε μεταβλητή έχει διεύθυνση Δεν χρειάζεται

Διαβάστε περισσότερα

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου, 2006 Ώρα: 10:30-13:00 Οδηγίες: 1) Το δοκίµιο αποτελείται από τρία (3) µέρη µε σύνολο δώδεκα (12) θέµατα. 2) Επιτρέπεται

Διαβάστε περισσότερα

Γέννηση ενδιάμεσης αναπαράστασης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Τύποι IR. Άποψη του μεταγλωττιστή από την πλευρά της IR.

Γέννηση ενδιάμεσης αναπαράστασης. Προηγμένα Θέματα Θεωρητικής Πληροφορικής. Τύποι IR. Άποψη του μεταγλωττιστή από την πλευρά της IR. Η έννοια της ενδιάμεσης αναπαράστασης Προηγμένα Θέματα Θεωρητικής Πληροφορικής Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 17 Μαρτίου 2010 Ενδιάμεση αναπαράσταση (IR: intermediate

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ

ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΜΑΘΗΜΑ: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ-ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate Κατηγορίες οφέλους και κόστους που προέρχονται από τις δημόσιες δαπάνες Για την αξιολόγηση

Διαβάστε περισσότερα

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό.

ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. 1 ΘΕΜΑ: Διαφορές εσωτερικού εξωτερικού δανεισμού. Η διαχρονική κατανομή του βάρους από το δημόσιο δανεισμό. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, Οικονομολόγος, MSc, PhD Candidate, εισηγητής Φροντιστηρίων

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate

ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ. Μορφές δημόσιου δανεισμού. Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate ΠΡΟΤΕΙΝΟΜΕΝΟ ΘΕΜΑ Μορφές δημόσιου δανεισμού Σύνταξη: Παπαδόπουλος Θεοχάρης, Οικονομολόγος, MSc, PhD Candidate 1 Ανάλογα με την πηγή προελεύσεως των πόρων Με βάση το κριτήριο αυτό, ο δανεισμός διακρίνεται

Διαβάστε περισσότερα

2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα)

2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα) 2. Δίκτυα Πολυπλεξίας Μήκους Κύματος (WDM Δίκτυα) Η πολυπλεξία μήκους κύματος (WDM πολυπλεξία) παρέχει συμβατότητα μεταξύ του εύρους ζώνης του οπτικού μέσου οπτική ίνα και του εύρους ζώνης του τερματικού

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Πρόβλημα Μετάδοσης Πακέτων Δύο κόμβοι, A και B, επικοινωνούν μέσω ενός δικτύου store & forward. Ο κόμβος Α συνδέεται στο δίκτυο μέσω ζεύξης 10Mbps, ενώ ο κόμβος B συνδέεται μέσω

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2011-12 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS

Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS Η ΓΕΩΜΕΤΡΙΑ ΤΩΝ FRACTALS ΕΛΕΝΗ ΤΑΝΤΟΥΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΗΣ ΤΣΟΛΟΜΥΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΑΜΟΣ 2009 Στην μητέρα μου που μπορεί και με ανέχεται ακόμα,

Διαβάστε περισσότερα

Αναγνώριση Προτύπων 1

Αναγνώριση Προτύπων 1 Αναγνώριση Προτύπων 1 Σημερινό Μάθημα Βασικό σύστημα αναγνώρισης προτύπων Προβλήματα Πρόβλεψης Χαρακτηριστικά και Πρότυπα Ταξινομητές Classifiers Προσεγγίσεις Αναγνώρισης Προτύπων Κύκλος σχεδίασης Συστήματος

Διαβάστε περισσότερα

Αρτιες και περιττές συναρτήσεις

Αρτιες και περιττές συναρτήσεις Μελέτη Συναρτήσεων: άρτιες, περιττές συναρτήσεις - μονοτονία - ακρότατα Κώστας Ράπτης Άρτιες και περιττές συναρτήσεις Ὁι ψυχολόγοι κάνουν λόγο για δύο επίπεδα συλλογιστικής και μνήμης: το αρχαϊκό και το

Διαβάστε περισσότερα

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. Γεωργακόπουλος.

HY 280. θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Γεώργιος Φρ. Γεωργακόπουλος. HY 280 «ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΟΥ» θεμελιακές έννοιες της επιστήμης του υπολογισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Γεώργιος Φρ. Γεωργακόπουλος Μέρος B Βασικά στοιχεία περί ασυμφραστικών γραμματικών

Διαβάστε περισσότερα

Κείµενο διδαγµένο Κείµενο από το πρωτότυπο

Κείµενο διδαγµένο Κείµενο από το πρωτότυπο ΤΡΙΤΗ 29 ΙΟΥΝΙΟΥ 1999 ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Κείµενο διδαγµένο Κείµενο από το πρωτότυπο Θουκυδίδη Ιστορία Γ, 70 Καὶ (ἦν γὰρ Πειθίας ἐθελοπρόξενός τε τῶν Ἀθηναίων καὶ τοῦ δήµου προειστήκει)

Διαβάστε περισσότερα

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Τρίτη, 05 Ιουνίου 2001 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα Αναγνώριση Προτύπων Σημερινό Μάθημα Η κατάρα της διαστατικότητας Μείωση διαστάσεων εξαγωγή χαρακτηριστικών επιλογή χαρακτηριστικών Αναπαράσταση έναντι Κατηγοριοποίησης Ανάλυση Κυρίων Συνιστωσών PCA Γραμμική

Διαβάστε περισσότερα

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή

Μητροπολιτικά Οπτικά Δίκτυα. 11.1. Εισαγωγή Μητροπολιτικά Οπτικά Δίκτυα 11.1. Εισαγωγή Τα τηλεπικοινωνιακά δίκτυα είναι διαιρεμένα σε μια ιεραρχία τριών επιπέδων: Στα δίκτυα πρόσβασης, τα μητροπολιτικά δίκτυα και τα δίκτυα κορμού. Τα δίκτυα κορμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ

ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ ΜΑΘΗΜΑ: ΕΜΠΟΡΙΚΟ ΔΙΚΑΙΟ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο επιτελείο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΟΜΑΔΑ Α Για τις προτάσεις Α1 μέχρι και Α6 να

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ : ΕΞΙ

Διαβάστε περισσότερα

ΕΚΠΑ, ΠΡΟΓΡΑΜΜΑ ΝΑΥΤΙΛΟΣ

ΕΚΠΑ, ΠΡΟΓΡΑΜΜΑ ΝΑΥΤΙΛΟΣ ΣΧΟΛΙΑ Οι κληρούχοι συντάκτες της αίτησης και οι εμπλεκόμενοι Πτολεμαϊκοί αξιωματούχοι Η αίτηση υποβάλλεται από δύο κληρούχους ιππείς, το Μακεδόνα Αντίμαχο, γιο του Αριστομήδη, και το Θράκα Ηρακλείδη,

Διαβάστε περισσότερα

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη

1. Σε περίπτωση κατά την οποία η τιμή ενός αγαθού μειωθεί κατά 2% και η ζητούμενη Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υ- πουργείου Οικονομικών και στοχεύοντας στην όσο το δυνατό πληρέστερη

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΜΕΤΡΙΚΗΣ

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΜΕΤΡΙΚΗΣ ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΜΕΤΡΙΚΗΣ ΣΥΜΒΟΛΑ ΠΡΟΣΩΔΙΑΣ μακρό: βραχύ: άλογο ή αδιάφορο στοιχείο (anceps): Χ BΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΠΡΟΣΩΔΙΑΣ 1) Μια συλλαβή θεωρείται βραχεία για το μέτρο (φύσει βραχεία) όταν καλύπτεται

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου

Πανεπιστήμιο Πειραιώς. Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Πανεπιστήμιο Πειραιώς Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Πρόγραμμα Μεταπτυχιακών Σπουδών Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Παραμετρικά Μοντέλα Επιβίωσης που προκύπτουν από μεταβολές

Διαβάστε περισσότερα

Ψηφιακή Εικόνα. Σημερινό μάθημα!

Ψηφιακή Εικόνα. Σημερινό μάθημα! Ψηφιακή Εικόνα Σημερινό μάθημα! Ψηφιακή Εικόνα Αναλογική εικόνα Ψηφιοποίηση (digitalization) Δειγματοληψία Κβαντισμός Δυαδικές δ έ (Binary) εικόνες Ψηφιακή εικόνα & οθόνη Η/Υ 1 Ψηφιακή Εικόνα Μια ακίνητη

Διαβάστε περισσότερα

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10

Φροντιστήριο 2: Ανάλυση Αλγόριθμου. Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Φροντιστήριο 2: Ανάλυση Αλγόριθμου Εκλογής Προέδρου με O(nlogn) μηνύματα Νικόλας Νικολάου ΕΠΛ432: Κατανεμημένοι Αλγόριθμοι 1 / 10 Περιγραφικός Αλγόριθμος Αρχικά στείλε μήνυμα εξερεύνησης προς τα δεξιά

Διαβάστε περισσότερα

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ Α. Επειδή βλέπουμε κάθε πόλη κράτος να είναι ένα είδος κοινότητας και κάθε κοινότητα να έχει συσταθεί για χάρη κάποιου

Διαβάστε περισσότερα

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης 7 Μεγάλες αποκλίσεις* 7. Η έννοια της μεγάλης απόκλισης Εστω (X ανεξάρτητες και ισόνομες τυχαίες μεταβλητές ώστε P(X = = P(X = = /2 και S = k= X k το άθροισμα των πρώτων από αυτές. Ο νόμος των μεγάλων

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Μούλου Ευγενία ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΡΧΕΙΑ Ο πιο γνωστός τρόπος οργάνωσης δεδομένων με τη χρήση ηλεκτρονικών υπολογιστών είναι σε αρχεία. Ένα αρχείο μπορούμε να το χαρακτηρίσουμε σαν ένα σύνολο που αποτελείται από οργανωμένα

Διαβάστε περισσότερα

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133

ÅéêïóéäùäåêÜåäñïí. www.mathematica.gr. Ìáèçìáôéêü Äåëôßï. Ôåý ïò 13ï. Ïêôþâñéïò 2014 ISSN: 2241-7133 ÅéêïóéäùäåêÜåäñïí Ìáèçìáôéêü Äåëôßï Ôåý ïò 3ï Ïêôþâñéïò 04 www.mathematica.gr ISSN: 4-733 Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή

Διαβάστε περισσότερα

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ

Μεταγλωττιστές ΙΙ. nkavv@uop.gr. Γέννηση ενδιάμεσης αναπαράστασης. 10 Νοεμβρίου 2010. Νικόλαος Καββαδίας nkavv@uop.gr Μεταγλωττιστές ΙΙ Μεταγλωττιστές ΙΙ Γέννηση ενδιάμεσης αναπαράστασης Νικόλαος Καββαδίας nkavv@uop.gr 10 Νοεμβρίου 2010 Η έννοια της ενδιάμεσης αναπαράστασης Ενδιάμεση αναπαράσταση (IR: intermediate representation): απλοποιημένη,

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του mathematica.gr. Μετατροπές

Διαβάστε περισσότερα

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης

Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης. (β) Η απόλυτη υπεραξία. Αγορά και πώληση της εργασιακής δύναμης Ημέρα 4 η (α) Αγορά και πώληση της εργασιακής δύναμης (β) Η απόλυτη υπεραξία Αγορά και πώληση της εργασιακής δύναμης Στο κεφάλαιο για την αγορά και την πώληση της εργατικής δύναμης (ελληνική έκδοση: τόμος

Διαβάστε περισσότερα

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20

Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 A Πανεπιστήμιο Αιγαίου Σχολή Επιστημών της ιοίκησης Τμήμα Μηχανικών Οικονομίας και ιοίκησης Εργαστήριο Στατιστικής Ελεγχος Στατιστικών Υποθέσεων με τη χρήση του στατιστικού προγραμμάτος SPSS v. 20 26Επιμέλεια:

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης

Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Ημέρα 3 η. (α) Aπό την εργασιακή διαδικασία στη διαδικασία παραγωγής (β) Αξία του προϊόντος και αξία της εργασιακής δύναμης Η εργασιακή διαδικασία και τα στοιχεία της. Η κοινωνική επικύρωση των ιδιωτικών

Διαβάστε περισσότερα

Συμπληρωματικές σημειώσεις στις Ασκήσεις

Συμπληρωματικές σημειώσεις στις Ασκήσεις Άσκηση 1 Συμπληρωματικές σημειώσεις στις Ασκήσεις 30-4-2010 Στο δυναμόμετρο μονάδα μέτρησης της δύναμης είναι το 1 kp ή 1 kgr * η οποία είναι μονάδα βάρους ίση με 9.80665 Ν. Το kp ορίζεται έτσι ώστε η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ: ΕΡΩΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Tα Πανεπιστημιακά Φροντιστήρια «ΚΟΛΛΙΝΤΖΑ» προετοιμάζοντας σε ολιγομελείς ομίλους τους υποψήφιους για τον επικείμενο διαγωνισμό του Υπουργείου Οικονομικών, με κορυφαίο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1

ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 ΑΣΚΗΣΕΙΣ 2014 15 ΔΙΚΤΥΑ ΠΡΟΣΒΑΣΗΣ ΑΣΚΗΣΗ 1 Ένας χρήστης μιας PDH μισθωμένης γραμμής χρησιμοποιεί μια συσκευή πρόσβασης που υλοποιεί τη στοίβα ΑΤΜ/Ε1. α) Ποιος είναι ο μέγιστος υποστηριζόμενος ρυθμός (σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ

ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΜΑΘΗΜΑ: ΓΕΝΙΚΟ ΔΙΟΙΚΗΤΙΚΟ ΔΙΚΑΙΟ ΔΙΚΑΣΤΩΝ ΕΠΙΜΕΛΕΙΑ : Γεώργιος Κ. Πατρίκιος, Δικηγόρος, ΜΔΕ Δημοσίου Δικαίου, Υπ. Διδάκτωρ Νομικής Σχολής Πανεπιστημίου Αθηνών. ΘΕΜΑΤΙΚΗ : Η αρμοδιότητα των διοικητικών

Διαβάστε περισσότερα

Κεφάλαιο 1 ο Ανθρώπινος σκελετός

Κεφάλαιο 1 ο Ανθρώπινος σκελετός Κεφάλαιο 1 ο Ανθρώπινος σκελετός 1.1 Εισαγωγή στη Βιολογία των Οστών Νωρίς στην αύξηση του ανθρώπινου γονιμοποιημένου ωαρίου τα διαιρούμενα κύτταρα σχηματίζουν τρεις διακριτές περιοχές, τα οποία στα ενήλικα

Διαβάστε περισσότερα

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι:

3. Με βάση τη βραχυχρόνια καμπύλη Phillips η σχέση πληθωρισμού και ανεργίας είναι: 1. Σε περίπτωση που το κράτος φορολογεί τους πολίτες το διαθέσιμο εισόδημα του κάθε ατόμου είναι: α) το σύνολο του εισοδήματός του β) το σύνολο του εισοδήματός του, αφού προηγουμένως αφαιρέσουμε τους φόρους

Διαβάστε περισσότερα

Α) Ανάλογα με τη φύση των κονδυλίων που περιλαμβάνουν οι προϋπολογισμοί διακρίνονται σε:

Α) Ανάλογα με τη φύση των κονδυλίων που περιλαμβάνουν οι προϋπολογισμοί διακρίνονται σε: Ο διαγωνισμός της Εθνικής Σχολής Δημόσιας Διοίκησης προϋποθέτει, ως γνωστόν, συνδυασμό συνδυαστικής γνώσης της εξεταστέας ύλης και θεμάτων πολιτικής και οικονομικής επικαιρότητας. Tα Πανεπιστημιακά Φροντιστήρια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ HMEΡΟΜΗΝΙΑ ΔΗΜΟΣΙΕΥΣΗΣ: 4 ΑΠΡΙΛΙΟΥ: ΩΡΑ 10μ.μ Τα παρακάτω θέματα δημοσιεύονται αποκλειστικά και μόνο για όσους υποψήφιους του φροντιστηρίου μας δεν κατάφεραν να προσέλθουν στα επαναληπτικά μαθήματα που

Διαβάστε περισσότερα

ΑΠΑΡΙΘΜΗΣΗ ΠΡΟΤΥΠΩΝ ΣΕ ΜΟΝΟΠΑΤΙΑ DYCK ΚΑΙ GRAND DYCK

ΑΠΑΡΙΘΜΗΣΗ ΠΡΟΤΥΠΩΝ ΣΕ ΜΟΝΟΠΑΤΙΑ DYCK ΚΑΙ GRAND DYCK ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΑΠΑΡΙΘΜΗΣΗ ΠΡΟΤΥΠΩΝ ΣΕ ΜΟΝΟΠΑΤΙΑ DYCK ΚΑΙ GRAND DYCK ΚΩΝ/ΝΟΣ Β. ΜΑΝΕΣ ΠΕΙΡΑΙΑΣ 2014 Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Διατριβή για

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ και ΚΑΤΑΜΕΤΡΗΣΗ ΘΕΜΕΛΙΑΚΩΝ ΣΥΝ ΥΑΣΤΙΚΩΝ ΜΟΡΦΩΝ

ΟΡΙΣΜΟΣ και ΚΑΤΑΜΕΤΡΗΣΗ ΘΕΜΕΛΙΑΚΩΝ ΣΥΝ ΥΑΣΤΙΚΩΝ ΜΟΡΦΩΝ ΟΡΙΣΜΟΣ και ΚΤΜΤΡΗΣΗ ΘΜΛΙΚΩΝ ΣΥΝ ΥΣΤΙΚΩΝ ΜΟΡΦΩΝ. ΣΥΝΥΣΤΙΚΣ ΜΟΡΦΣ: η μορφολογία. Όλες οι συνδυαστικές μορφές που θα εξετάσουμε είναι διαφόρων ειδών συναρτήσεις. Οι «παράμετροι» που παραλλάσονται είναι οι

Διαβάστε περισσότερα

Για να καταρτιστεί έγκυρα μια δικαιοπραξία απαιτούνται οι εξής προϋποθέσεις:

Για να καταρτιστεί έγκυρα μια δικαιοπραξία απαιτούνται οι εξής προϋποθέσεις: Για να καταρτιστεί έγκυρα μια δικαιοπραξία απαιτούνται οι εξής προϋποθέσεις: α) Δήλωση βουλήσεως. β) Ικανότητα για δικαιοπραξία. γ) Συμφωνία μεταξύ δηλώσεως και βουλήσεως. δ) Τήρηση του απαιτούμενου τύπου.

Διαβάστε περισσότερα

Παράδειγμα. «Κεφάλαιο» «Περιουσία» «Περιουσία» Οικονομική επιστήμη «μέσων», «ανάγκες» «αγαθά» Επιχειρήσεων.

Παράδειγμα. «Κεφάλαιο» «Περιουσία» «Περιουσία» Οικονομική επιστήμη «μέσων», «ανάγκες» «αγαθά» Επιχειρήσεων. (ΜΕΡΟΣ ΠΡΩΤΟ) Οικονομική μονάδα είναι ο συστηματικός συνδυασμός των συντελεστών της παραγωγής (φύση, εργασία, κεφάλαιο) με τον οποίο αποσκοπείται η παραγωγή αγαθών ή η προσφορά υπηρεσιών για την κάλυψη

Διαβάστε περισσότερα

ΤΙΜΕΣ DISNEYLAND RESORT PARIS

ΤΙΜΕΣ DISNEYLAND RESORT PARIS ΤΙΜΕΣ DISNEYLAND RESORT PARIS 09 Νοεµβρίου 2009 01 Απριλίου 2010 DISNEYLAND 4 3 2 1 4 3 2 1 4 3 2 1 CHD ΠΑΚΕΤΟ 2N/3Μ 350 419 558 973 392 475 641 1140 491 607 840 1538 117 ΠΑΚΕΤΟ 3N/4Μ 464 562 760 1353

Διαβάστε περισσότερα

ΕΚΘΕΣΕΙΣ ΑΠΟΛΟΓΙΣΜΟΥ

ΕΚΘΕΣΕΙΣ ΑΠΟΛΟΓΙΣΜΟΥ ΕΚΘΕΣΕΙΣ ΑΠΟΛΟΓΙΣΜΟΥ ΥΠΟΒΟΛΗ ΑΠΟΔΟΧΗ ΑΞΙΟΛΟΓΗΣΗ Αθήνα, 16 Οκτωβρίου 2009 Παναγιάρη Μαρία, Πολυμερή Σχέδια «Μεταφορά Καινοτομίας» ΥΠΟΒΟΛΗ ΕΚΘΕΣΕΩΝ ΑΠΟΛΟΓΙΣΜΟΥ (1) ΠΟΤΕ; Στη μέση της υλοποίησης (άρθρο V

Διαβάστε περισσότερα

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ

ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ 1 ΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΥΣΤΗΜΑ Οι τάξεις της Β και Γ Λυκείου είναι χωρισμένες σε τρείς Κατευθύνσεις Θεωρητική, Θετική, Τεχνολογική Οι Σχολές είναι ταξινομημένες σε πέντε επιστημονικά πεδία 1 ο ΕΠΙΣΤΗΜΟΝΙΚΟ

Διαβάστε περισσότερα

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός

Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Παναγόπουλος Γιώργος Φυσικός gior.panagopoulos@gmail.com Βουλδής Άγγελος Φυσικός angelos_vouldis@hotmail.com Μεντζελόπουλος Λευτέρης Φυσικός MSc Περιβαλλοντολογία

Διαβάστε περισσότερα

Γλώσσες Περιγραφής Υλικού Ι

Γλώσσες Περιγραφής Υλικού Ι Γλώσσες Περιγραφής Υλικού Ι Μηχανές πεπερασμένων καταστάσεων Νικόλαος Καββαδίας nkavv@uop.gr 24 Απριλίου 2012 Σκιαγράφηση της διάλεξης Μηχανές πεπερασμένων καταστάσεων (FSM: Finite-State Machine) Ορισμός

Διαβάστε περισσότερα

Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1

Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1 Εγκύκλιος Ε.Φ.Ο.Τ. 2013/1 Θέμα : Βαθμολογούμενοι Αγώνες, Τρόπος Βαθμολόγησης. Οι βαθμολογούμενοι αγώνες για το έτος 2013 είναι οι κάτωθι : - Πανελλήνιο Πρωτάθλημα 2x18μ. - Ανοιχτό Πρωτάθλημα 2x70μ. για

Διαβάστε περισσότερα

Αντικειμενοστραφής. Προγραμματισμού

Αντικειμενοστραφής. Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Σημερινό μάθημα Μειονεκτήματα Δομημένου Προγραμματισμού Αντικειμενοστραφής προγραμματισμός Ορισμοί Κλάσεις Αντικείμεναμ Χαρακτηριστικά ΑΠ C++ Class 1 Δομημένος Προγραμματισμός

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΜΕΤΑΦΟΡΩΝ Ε Π Ε Ι Γ Ο Ν /ΝΣΗ ΤΕΧΝΟΛΟΓΙΑΣ ΟΧΗΜΑΤΩΝ

ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΜΕΤΑΦΟΡΩΝ Ε Π Ε Ι Γ Ο Ν /ΝΣΗ ΤΕΧΝΟΛΟΓΙΑΣ ΟΧΗΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Αθήνα 24 / 5 / 2006 ΥΠΟΥΡΓΕΙΟ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΜΕΤΑΦΟΡΩΝ Ε Π Ε Ι Γ Ο Ν /ΝΣΗ ΤΕΧΝΟΛΟΓΙΑΣ ΟΧΗΜΑΤΩΝ Αριθ.Πρωτ. /ΝΣΗ ΕΜΠΟΡΕΥΜΑΤΙΚΩΝ ΜΕΤΑΦΟΡΩΝ /ΝΣΗ ΕΠΙΒΑΤΙΚΏΝ ΜΕΤΑΦΟΡΩΝ

Διαβάστε περισσότερα

Σελίδα 49. το Ντουβάρι

Σελίδα 49. το Ντουβάρι Σελίδα 49 το Ντουβάρι Σελίδα 50 ΝΤΟΥΒΑΡΙ Ι Η θέση Ντουβάρι Ι, βρίσκεται στη Χ.Θ 7+750 7+850 (σχ. 1), όπου ήδη διαφαίνονταν στην επιφάνεια ογκόλιθοι, θραύσματα κεραμίδων και κεραμική όταν το σκαπτικό μηχάνημα

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ

ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΟΡΓΑΝΩΣΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΚΡΑΤΟΥΣ ΘΕΜΑ: Η ΔΙΟΙΚΗΤΙΚΗ ΟΡΓΑΝΩΣΗ ΤΟΥ ΕΛΛΗΝΙΚΟΥ ΚΡΑΤΟΥΣ Ο ΙΕΡΑΡΧΙΚΟΣ ΕΛΕΓΧΟΣ ΚΑΙ Η ΔΙΟΙΚΗΤΙΚΗ ΕΠΟΠΤΕΙΑ Σύνταξη: Ηλίας Κουβαράς, Δικηγόρος L.L.M., Υπ. Διδάκτωρ Δημοσίου Δικαίου

Διαβάστε περισσότερα