Τεχνικές Προβλέψεων. Προβλέψεις
|
|
- Τιτάνος Καλαμογδάρτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις - lesson@fsu.gr
2 Πρόβλεψη Η μεγαλύτερη πρόκληση στην ανάλυση χρονοσειρών είναι η πρόβλεψη, δηλαδή πώς η ακολουθία των παρατηρήσεων θα συνεχιστεί στο μέλλον. Το ζητούμενο είναι να ακολουθεί μια διαδικασία που θα εξασφαλίσει ότι θα παραχθούν όσο τον δυνατόν πιο ακριβείς προβλέψεις, αξιοποιώντας στο έπακρο όλη την διαθέσιμη ιστορική πληροφορία.
3 Είδη Προβλέψεων Στατιστική Πρόβλεψη Κριτική Πρόβλεψη Πρόβλεψη Προϋπολογισμού Τελική Πρόβλεψη
4 Είδη Προβλέψεων Στατιστική Πρόβλεψη Κριτική Πρόβλεψη Πρόβλεψη Προϋπολογισμο ύ Τελική Πρόβλεψη Είδη Προβλέψεων
5 Στατιστική Πρόβλεψη Data Statistical Forecast Forecast Διαθέσιμη Ιστορική Πληροφορία (συνήθως επεξεργασμένη και εξομαλυμένη) Στατιστική Μέθοδος Πρόβλεψης (μαύρο κουτί για τους managers) Στατιστική Πρόβλεψη (δείχνει πως θα συνεχιστεί η ακολουθία των παρατηρήσεων στο μέλλον)
6 Στατιστική Πρόβλεψη Πλεονεκτήματα Άμεσα εφαρμόσιμες Σχετικά ακριβείς (δεδομένων και των διαστημάτων εμπιστοσύνης) Δεν προϋποθέτουν τεχνικές και στατιστικές γνώσεις προκειμένου να παραχθούν οι ζητούμενες προβλέψεις (όταν χρησιμοποιούνται σαν black box από τους managers) Απαιτούν ελάχιστο χρόνο και λίγους υπολογιστικούς πόρους
7 Στατιστική Πρόβλεψη Μειονεκτήματα Προϋποθέτουν ότι το πρότυπο (συμπεριφορά) της δεδομένης χρονοσειράς θα συνεχιστεί στο μέλλον, γεγονός που δεν γίνεται πάντα Δεν λαμβάνουν υπόψη ειδικά γεγονότα και ενέργειες που ενδέχεται να πραγματοποιηθούν (πχ. διαφημίσεις, αθλητικά συμβάντα) Αρκετές στατιστικές μέθοδοι, προκειμένου να παράγουν προβλέψεις, απαιτούν αρκετές παρατηρήσεις (ιστορικά δεδομένα)
8 Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Naive Η πιο απλή στατιστική μέθοδος. Δεν παράγει ακριβείς προβλέψεις αλλά πολλές φορές χρησιμοποιείται ως benchmark για άλλες μεθόδους. Η πρόβλεψη θεωρείται πως είναι ίση με την τελευταία παρατήρηση της διαθέσιμης χρονοσειράς. F(t+1)=Y(t)
9 Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Μέθοδοι Εκθετικής Εξομάλυνσης Αναπτύχθηκαν τις αρχές της δεκαετίας του 50. Από τότε έγιναν από τις πιο δημοφιλείς μεθόδους προβλέψεων μεταξύ των επιχειρηματιών κυρίως λόγω της ευκολίας τους, της ελάχιστης απαίτησης σε υπολογιστικό χρόνο και την ύπαρξη σχετικά λίγων παρατηρήσεων προκειμένου να παράγουν προβλέψεις. Οι μέθοδοι εξομάλυνσης είναι κατάλληλες για βραχυπρόθεσμες προβλέψεις ενός μεγάλου όγκου χρονοσειρών. Αποδίδουν καλύτερα σε δεδομένα που παρουσιάζουν στασιμότητα ή μικρό ρυθμό ανάπτυξης ή μείωσης ως προς το χρόνο. Κυριότερες μέθοδοι εξομάλυνσης: Simple Exponential Smoothing Holt Damped Winter
10 Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Linear & Exponential Trend Στη στατιστική, η ανάλυση της παλινδρόμησης μελετά τη σχέση μεταξύ μιας εξαρτημένης μεταβλητής (μεταβλητή αντίδρασης/ανταπόκρισης) με συγκεκριμένες ανεξάρτητες μεταβλητές (επεξηγηματικές μεταβλητές). Οι μέθοδοι γραμμικής και εκθετικής τάσης είναι κατάλληλες για την παραγωγή μακροπρόθεσμων προβλέψεων.
11 Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Multiple Regression
12 Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Μέθοδος Theta Η μέθοδος πρόβλεψης Theta βασίζεται στην τροποποίηση των τοπικών καμπυλοτήτων της χρονοσειράς. Η αρχική χρονοσειρά αποσυντίθεται σε δύο ή περισσότερες γραμμές Theta. Κάθε μία από αυτές προεκτείνεται ξεχωριστά και οι προβλέψεις τους συνδυάζονται.
13 Averaging Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Αναφέρεται στο συνδυασμό 2 ή και περισσότερων απλών στατιστικών μεθόδων πρόβλεψης σε ίσα ή άνισα βάρη. Η επιλογή των μεθόδων που θα συμμετέχουν (όπως και τα βάρη τους) καθορίζεται από τα ιδιαίτερα χαρακτηριστικά της κάθε μεθόδου, όπως και τα χαρακτηριστικά της εκάστοτε χρονοσειράς. Μεγάλο ρόλο παίζει επίσης και ο ορίζοντας πρόβλεψης. Επειδή μία μέθοδος δίνει μικρότερα σφάλματα από μία άλλη (MAPE ή MSE) αυτό δεν σημαίνει πως οποιοσδήποτε συνδυασμός τους θα έχει σφάλματα το ΜΟ των σφαλμάτων των δύο περιόδων. Οπότε τελικά ένας συνδυασμός μεθόδων μπορεί γενικά να οδηγήσει σε καλύτερες προβλέψεις.
14 Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Expert Methods Αναφέρονται σε έξυπνες μεθόδους που υπάρχουν συνήθως ενσωματωμένες στα συστήματα προβλέψεων και, βασιζόμενες στην ελαχιστοποίηση ενός δείκτη σφάλματος στο μοντέλο πρόβλεψης, επιλέγουν μία (η συνδυασμό μεθόδων) μέθοδο ως βέλτιστη. Είναι κατάλληλες για batch forecasting. Δεν είναι κατά κανόνα η καλύτερη μέθοδος πρόβλεψης, καθώς η χρήση κάποιου άλλου στατιστικού δείκτη για τη μέτρηση του σφάλματος μπορεί να μας έδινε διαφορετικά αποτελέσματα.
15 Στατιστική Πρόβλεψη Μέθοδος Διακοπτόμενης Ζήτησης Croston Forecasting Method Εφαρμόζεται σε περιπτώσεις όπου τα δεδομένα περιέχουν πολλά μηδενικά, δηλαδή η ζήτηση δεν είναι συνεχής αλλά διακοπτόμενη. Τέτοια μορφή μπορεί να έχουν για παράδειγμα τα δεδομένα από αποθήκες ανατλλακτικών. Demand Forecast = (Volume Forecast) / (Interval Forecast) where: (Interval Forecast) = the exponentially smoothed (or moving average) inter-demand interval, updated only if demand occurs in period (Volume Forecast) = the exponentially smoothed (or moving average) size of demand, updated only if demand occurs in period
16 ARIMA Στατιστική Πρόβλεψη Κυριότερες Στατιστικές Μέθοδοι Πρόβλεψης Τα ολοκληρωμένα αυτοπαλινδρομικά μοντέλα κινητού μέσου όρου (AutoRegressive- Integrated-Moving Average) είναι στοχαστικά μαθηματικά μοντέλα με τα οποία προσπαθούμε να περιγράψουμε τη διαχρονική εξέλιξη κάποιου φυσικού μεγέθους. Δεδομένου ότι για την πλειοψηφία των φυσικών μεγεθών είναι αδύνατη η πλήρης γνώση και καταγραφή όλων των παραγόντων που επηρεάζουν την εξέλιξη τους στο χρόνο, είναι πολύ δύσκολη η διαχρονική περιγραφή του μεγέθους από ένα ντετερμινιστικό μοντέλο. Από την άλλη μεριά, η εξάρτηση τέτοιων μεγεθών από μη ντετερμινιστικούς παράγοντες (π.χ. καιρός, τυχαία γεγονότα) καθιστά δυνατή την περιγραφή της διαχρονικής τους εξέλιξης από ένα στοχαστικό μοντέλο, με το οποίο μπορεί να υπολογιστεί η πιθανότητα με την οποία η τιμή του μεγέθους βρίσκεται σε κάποιο διάστημα. Τα στοχαστικά μοντέλα περιέχουν τον τυχαίο παράγοντα (τυχαίο σφάλμα ή σφάλμα πρόβλεψης), τις τιμές του μεγέθους οι οποίες εμφανίστηκαν σε προηγούμενες χρονικές στιγμές και ίσως κάποιους άλλους στοχαστικούς παράγοντες. Το μοντέλο που προκύπτει είναι ένας γραμμικός συνδυασμός των παραπάνω ποσοτήτων.
17 Στατιστική Πρόβλεψη Σύγχρονες Μέθοδοι Πρόβλεψης Νευρωνικά Δίκτυα (Neural Networks) Τα νευρωνικά δίκτυα χρειάζονται αφενός αρκετά δεδομένα (προκειμένου να εκπαιδευτεί το δίκτυο) και αφετέρου είναι συνήθως χρονοβόρα. Παράγουν αρκετά ακριβείς προβλέψεις, ανάλογα πάντα με την εκάστοτε εφαρμογή. Εχούν όμως και αρκετούς επικριτές.
18 Κριτική Πρόβλεψη Οι κριτικές μέθοδοι πρόβλεψης δεν έχουν τις ίδιες απαιτήσεις σε δεδομένα με τις στατιστικές μεθόδους. Τα δεδομένα των μεθόδων αυτών αποτελούν προϊόν διαίσθησης, κρίσης και συσσωρευμένης γνώσης. Οι κριτικές μέθοδοι είναι αυτές που χρησιμοποιούνται συχνά σε επιχειρήσεις και οργανισμούς. Στις κριτικές μεθόδους η πρόβλεψη μπορεί να βασίζεται είτε στις γνώσεις και την κρίση ενός ατόμου (ατομικές μέθοδοι) είτε να προκύπτει από την ανταλλαγή και το συνδυασμό απόψεων των μελών κάποιας επιτροπής (μέθοδοι επιτροπής).
19 Κριτική Πρόβλεψη Μπορεί να λάβει υπόψιν ειδικά γεγονότα και ενέργειες Έχει τη δυνατότητα να αντισταθμίζει ανεπάρκειες και ελλείψεις στα ιστορικά δεδομένα Είναι κατάλληλη όταν θίγονται ηθικά ζητήματα που υπερισχύουν των οικονιμικών ή τεχνολογικών παραγόντων Επιτρέπουν την επεξεργασία της πρόβλεψης σε περιπτώσεις όπου οι διευθυντές τις επιχείρησης επιθυμούν να έχουν έλεγχο στο προϊόν του οποίου η ζήτηση θα προβλεφθεί Μπορεί να παράγει πιο αποδεκτές προβλέψεις Πολύπλοκες στατιστικές μέθοδοι, που δεν είναι ξεκάθαρο τι κάνουν, αντιμετωπίζονται συχνά με δυσπιστία
20 Κριτική Πρόβλεψη Το μεγαλύτερο πρόβλημα των κριτκών προβλέψεων είναι η προκατάληψη, δηλαδή η έμφυτη τάση των ανθρώπων να παρουσιάζονται αισιόδοξοι ή απαισιόδοξοι.
21 Κριτική Πρόβλεψη Συμπερασματικά, Στατιστικές και Κριτικές Προβλέψεις είναι συνήθως συμπληρωματικές: Οι άνθρωποι προσαρμόζονται ευκολότερα και μπορούν να λάβουν υπόψην τους γεγονότα εκτός προτύπου χρονοσειράς, αλλά είναι ασυνεπείς και παρουσιάζουν αυξημένη προκατάληψη Οι στατιστικές μέθοδοι είναι αυστηρές αλλά συνεπείς, και δύνανται να αντιμετωπίσουν μεγάλο όγκο πληροφορίας, πολύ γρήγορα.
22 Κριτική Πρόβλεψη Μέθοδος Delphi Απλή Κρίση Μέθοδος Delphi Αναλογίες & Δομημένες αναλογίες
23 Κριτική Πρόβλεψη Forecast by Hand
24 Πρόβλεψη Προϋπολογισμού (Στόχου) Αναφέρεται στην πρόβλεψη του διευθυντή ανάπτυξης Δεδομένου ενός καθορισμένου ετήσιου ρυθμού ανάπτυξης (growth rate), καθορίζεται ο επιθυμητός ρυθμός ανάπτυξης και οι προβλέψεις προσαρμόζονται ανάλογα Πρόκειται περισσότερο για wish-future-status παρά για πραγματική πορεία της χρονοσειράς και ακριβή πρόβλεψη Περιέχει αρκετή αισιοδοξία και μεροληψία (biased) και συνήθως μεγάλα σφάλματα Καθορίζει τους στόχους της επιχείρησης και ωθεί την πολιτική ανάπτυξης προς αυτή την κατεύθυνση
25 Τελική Πρόβλεψη Αναφέρεται στην τελική πρόβλεψη που θα επιλεχθεί ώστε να γίνει εν συνεχεία ο στρατηγικός σχεδιασμός της επιχείρησης και ο σχεδιασμός της παραγωγής για τον ορίζοντα πρόβλεψης Η Τελική Πρόβλεψη καθορίζεται από την διοίκηση της κάθε μονάδας της επιχείρησης ως συνάρτηση των υπολοίπων κατηγοριών πρόβλεψης (Στατιστική, Κριτική και Προϋπολογισμού) Επίσης, η Τελική Πρόβλεψη έχει χαρακτηριστικά κριτικής πρόβλεψεις, δεδομένου ότι επί της τελικής επιλογής μπορούν να πραγματοποιηθούν αλλαγές και τροποποιήσεις βάσει πληροφοριών της διοίκησης και οι οποίες θα οδηγήσουν σε ακριβέστερες προβλέψεις
26 Ορίζοντας Πρόβλεψης Σπάνια χρειαζόμαστε να προβλέψουμε μόνο την αμέσως επόμενη παρατήρηση της χρονοσειράς μας. Στην πράξη θα μας ζητείται να δώσουμε προβλέψεις για αρκετές περιόδους στο μέλλον Ο ορίζοντας πρόβλεψης είναι ο δείκτης που δείχνει πόσες παρατηρήσεις τις χρονοσειράς χρειαζόμαστε να προβλέψουμε Ανάλογα την τιμή του ορίζοντα πρόβλεψης, επιλέγεται και η κατάλληλη στατιστική μέθοδος πρόβλεψης, καθώς ως γνωστόν, δεν ενδείκνυνται όλες οι μέθοδοι για βραχυπρόθεσμη ή αντίστοιχα μακροπρόθεσμη πρόβλεψη
27 Ορίζοντας Πρόβλεψης Βραχυπρόθεσμη πρόβλεψη (Inventory - Σχεδιασμός Αποθήκης) Συνήθως ορίζοντας πρόβλεψης <3 περιόδους Μεσοπρόθεσμη πρόβλεψη (Budget Οικονομικός Σχεδιασμός) Συνήθως ορίζοντας πρόβλεψης ~1+ οικονομικό έτος (δλδ 12-15, αν αναφερόμαστε σε μηνιαία δεδομένα) Μακροπρόθεσμη πρόβλεψη (Long Term Σχεδιασμός Επενδύσεων και Ανάπτυξης) Συνήθως ορίζοντας πρόβλεψης 3 έτη
28 Διαστήματα Εμπιστοσύνης Ορισμός Στη Στατιστική, το διάστημα εμπιστοσύνης (Confidence Interval CI) είναι ένα διάστημα εκτίμησης μιας παραμέτρου. Αντί να εκτιμούμε την παράμετρο με μία μόνο τιμή, δίνουμε μαζί και το διάστημα πιθανότητας για την παράμετρο αυτή. Συνεπώς, τα διαστήματα εμπιστοσύνης χρησιμοποιούνται για υποδείξουν την εγκυρότητα της παραμέτρου που θέλουμε να προβλέψουμε. Η πιθανότητα της τιμής παραμέτρου να συμπεριλαμβάνεται από τα διαστήματα εμπιστοσύνης καθορίζεται από το επίπεδο εμπιστοσύνης (παράμετρος εμπιστοσύνης). Αυξάνοντας το επιθυμητό επίπεδο, το διάστημα εμπιστοσύνης «πλαταίνει».
29 Διαστήματα Εμπιστοσύνης Για παράδειγμα, ένα διάστημα εμπιστοσύνης μπορεί να χρησιμοποιηθεί για να περιγράψει την εγκυρότητα των αποτελεσμάτων μιας δημοσκόπησης. Σε μια δημοσκόπηση για την πρόθεση ψήφου, το αποτέλεσμα θα μπορούσε να είναι 40% των ερωτηθέντων για ένα κόμμα. Ένα διάστημα εμπιστοσύνης 95% θα έδινε πως η πρόθεση ψήφου για το κόμμα αυτό θα μπορύσε να είναι 36%-44% στο σύνολο του πληθυσμού. Το αποτέλεσμα μιας δημοσκόπησης με μικρά διαστήματα εμπιστοσύνης είναι πιο έγκυρη από μια δημοσκόπηση με μεγάλα διαστήματα εμπιστοσύνης. Ένας από τους κύριους παράγοντες που επηρεάζουν αυτό το εύρος στην περίπτωση των δημοσκοπήσεων είναι το μέγεθος του δείγματος των ερωτηθέντων.
30 Διαστήματα Εμπιστοσύνης Τρόπος Υπολογισμού Confidence t 99% % % % % 1.28 Όπου F είναι ο γραμμικός πίνακας των υπολογισμένων βάσει του μοντέλου σημειακών προβλέψεων, t είναι η παράμετρος εμπιστοσύνης, RMSE είναι η ρίζα του μέσου τετραγωνικού σφάλματος και n είναι το σύνολο των διαθέσιμων παρατηρήσεων.
31 Διαστήματα Εμπιστοσύνης Pythia
32 Η διαδικασία της πρόβλεψης στην επιχείρηση Επιχείρηση Παντελόνια Πουκάμισα Μπλούζες Πα1 Πο1 Μ1 Πα2 Πο2 Μ2 Πα3 Πο3 Μ3 Πα4 Πο4 Μ4 Πα5 Πο5 Πο6
33 Η διαδικασία της πρόβλεψης στην Πρόβλεψη Προϊόντος επιχείρηση
34 Η διαδικασία της πρόβλεψης στην επιχείρηση Πρόβλεψη Κατηγορίας/Τμήματος
35 Η διαδικασία της πρόβλεψης στην επιχείρηση Πρόβλεψη Επιχείρησης
36 Η διαδικασία της πρόβλεψης στην επιχείρηση
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Εισαγωγή στις Μεθόδους Προβλέψεων Διάλεξη 5
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Εισαγωγή στις Μεθόδους Προβλέψεων Διάλεξη 5 Περιεχόμενα Ορισμοί
Τεχνικές Προβλέψεων. 3η Ενότητα Προβλέψεις (Μέρος 2 ο )
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & StrategyUnit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 2 ο ) http://www.fsu.gr
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
Εισαγωγή στις Μεθόδους Προβλέψεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Εισαγωγή στις Μεθόδους Προβλέψεων Πρόβλεψη 02 Η μεγαλύτερη
Συστήματα Λήψης Αποφάσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Συστήματα Λήψης Αποφάσεων 3η Ενότητα Προβλέψεις http://www.fsu.gr
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Επιλογή Μεθόδου Συνδυασμός Μεθόδου Διάλεξη 10
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Επιλογή Μεθόδου Συνδυασμός Μεθόδου Διάλεξη 10 Επιλογή κατάλληλης
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & StrategyUnit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς. -
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΤΙ ΕIΝΑΙ ΠΡΟΒΛΕΨΕΙΣ; Διαδικασία εκτίμησης μελλοντικών καταστάσεων βασιζόμενη συνήθως σε ιστορικά στοιχεία
ΤΙ ΕIΝΑΙ ΠΡΟΒΛΕΨΕΙΣ; Διαδικασία εκτίμησης μελλοντικών καταστάσεων βασιζόμενη συνήθως σε ιστορικά στοιχεία Πρόβλεψη μελλοντικών γεγονότων για: Σχεδιασμό, Οργάνωση και Έλεγχο των πόρων Λήψη επιχειρηματικών
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Κριτική Πρόβλεψη Διάλεξη 11
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Κριτική Πρόβλεψη Διάλεξη 11 Στατιστική Πρόβλεψη 01 Κριτική
Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr
Τεχνικές Προβλέψεων. 3η Ενότητα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα http://www.fsu.gr - lesson@fsu.gr
ΠΥΘΙΑ 2η ΕΚΔΟΣΗ. Μονάδα Προβλέψεων και Στρατηγικής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών
ΠΥΘΙΑ 2η ΕΚΔΟΣΗ Επιχειρησιακές Προβλέψεις Σύστημα Υποστήριξης Μονάδα Προβλέψεων και Στρατηγικής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών http://www.fsu.gr
1 η Ενότητα Εισαγωγικά στοιχεία προβλέψεων. -
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 1 η Ενότητα Εισαγωγικά στοιχεία προβλέψεων
Τεχνικές Προβλέψεων Προετοιμασία Χρονοσειράς Data and Adjustments
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία Χρονοσειράς Data and Adjustments
Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2 Αποσύνθεση (Decomposition)
Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση και Μέθοδοι Προβλέψεων Διάλεξη 2 Αποσύνθεση (Decomposition)
Τεχνικές Προβλέψεων. 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Intermittent Demand Διάλεξη 8
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Intermittent Demand Διάλεξη 8 Αίτια Δημιουργίας 01 Η διακοπτόμενη
ΧΡΟΝΟΣΕΙΡΕΣ. Διαχείριση Πληροφοριών
ΧΡΟΝΟΣΕΙΡΕΣ Μία χρονοσειρά είναι ένα σύνολο παρατηρήσεων πάνω σε μία ποσοτική μεταβλητή που συγκεντρώνονται με το πέρασμα του χρόνου. Πρόκειται για δεδομένα πάνω στη συμπεριφορά μιας ή πολλών μεταβλητών
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Data and Adjustments Διάλεξη 5
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Data and Adjustments Διάλεξη 5 Περιεχόμενα Example for the
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Intermittent Demand Διάλεξη 7η
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Intermittent Demand Διάλεξη 7η Αίτια Δημιουργίας 01 Η διακοπτόμενη
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit Τεχνικές Προβλέψεων 2 η Ενότητα http://www.fsu.gr -
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
Εισαγωγή στην Εκτιμητική
Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Παρακολούθηση Χρονοσειράς Διάλεξη 11
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Παρακολούθηση Χρονοσειράς Διάλεξη 11 Παρακολούθηση (1 από
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Αποσύνθεση Χρονοσειράς Διάλεξη 2
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Αποσύνθεση Χρονοσειράς Διάλεξη 2 Αποσύνθεση (Decomposition)
Τεχνικές Προβλέψεων. Ενημερωτικό Μαθήματος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Ενημερωτικό Μαθήματος http://www.fsu.gr
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Προγραμματισμός Ζήτησης και Προμηθειών της ΕΑ. Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης 1
Προγραμματισμός Ζήτησης και Προμηθειών της ΕΑ Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης 1 4. Πρόβλεψη Ζήτησης στην ΕΑ Δημοκρίτειο Πανεπιστήμιο, Τμήμα Μηχανικών Παραγωγής & Διοίκησης
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Μέθοδος Theta Διαγωνισμοί Προβλέψεων Διάλεξη 9
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Μέθοδος Theta Διαγωνισμοί Προβλέψεων Διάλεξη 9 Το Μοντέλο
5. ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΚΙΝΗΤΟΥΣ ΜΕΣΟΥΣ
5. ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΚΙΝΗΤΟΥΣ ΜΕΣΟΥΣ Κατά την επιλογή της μεθόδου πρόβλεψης, μια καλή στρατηγική αξιολόγησής της περιλαμβάνει το εξής βήματα: (α) Επιλογή της μεθόδου πρόβλεψης με βάση τη διαίσθηση του αρμόδιου
Analyze/Forecasting/Create Models
(εκδ 11) (εκδ 11) Σχολή Κοινωνικών Επιστημών Τμήμα Οικονομικών Επιστημών 24 Οκτωβρίου 2014 1 / 12 Εισαγωγή (εκδ 11) 1 2 2 / 12 ΧΣ (εκδ 11) ΧΣ μέσω υποδειγμάτων ARIM A/SARIM A Αϕου δημιουργήσουμε τον χώρο
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
Τεχνικές Προβλέψεων. Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προβλέψεις http://www.fsu.gr - lesson@fsu.gr
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις
Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ
ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
ΕΠΙΧΕΙΡΗΣΙΑΚΕΣ ΠΡΟΒΛΕΨΕΙΣ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Ι - ΠΡΟΒΛΕΨΕΙΣ ΚΑΙ ΣΥΓΧΡΟΝΗ ΔΙΟΙΚΗΣΗ....................................17 1.1 Προβλέψεις - Τεχνικές προβλέψεων και διοίκηση................................17 1.2 Τεχνικές προβλέψεων
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
3η Ενότητα Προβλέψεις
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Ενημερωτικό Μαθήματος Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Ενημερωτικό Μαθήματος Διάλεξη 1 Γενικά Στοιχεία Διάλεξη 1
1.2 Απλός Κινητός Μέσος (Simple -equally-weighted- Moving Average)
Μέθοδοι Εξομάλυνσης Οι διαδικασίες της εξομάλυνσης (smoohig και της παρεμβολής (ierpolaio αποτελούν ένα περίπλοκο πεδίο έρευνας και γνώσης και έχουν άμεση πρακτική εφαρμογή στις οικονομικές επιστήμες..
Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση
Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ
Οικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΔΙΑΧΕΙΡΙΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Ενημερωτικό Μαθήματος Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Ενημερωτικό Μαθήματος Διάλεξη 1 Γενικά Στοιχεία Διάλεξη 1
Πανεπιστήμιο Πειραιά Διατμηματικό Μεταπτυχιακό Πρόγραμμα Σπουδών στη Βιομηχανική Διοίκηση & Τεχνολογία
Πανεπιστήμιο Πειραιά Διατμηματικό Μεταπτυχιακό Πρόγραμμα Σπουδών στη Βιομηχανική Διοίκηση & Τεχνολογία Κατεύθυνση Logistics ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Μέθοδοι πρόβλεψης της ζήτησης Εφαρμογή σε δεδομένα ζήτησης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Συστημάτων Προβλέψεων & Προοπτικής Forecasting System Unit Τεχνικές Προβλέψεων 1 η Ενότητα http://fsu.ece.ntua.gr
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis)
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) Δρ Ιωάννης Δημόπουλος Καθηγητής Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας Τι είναι η χρονολογική σειρά Χρονολογική σειρά ή Χρονοσειρά
ΠΡΟΕΚΛΟΓΙΚΟ ΒΑΡΟΜΕΤΡΟ
ΠΡΟΕΚΛΟΓΙΚΟ ΒΑΡΟΜΕΤΡΟ Εκτίμηση εκλογικού αποτελέσματος Βουλευτικών εκλογών 4 ης Οκτωβρίου 2009 Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών Η ταυτότητα των ερευνών, στις οποίες στηρίζεται η παρούσα
Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
ΠΟΛΙΤΙΚΟ ΒΑΡΟΜΕΤΡΟ. Φεβρουάριος Μηνιαία εκτίμηση εκλογικής επιρροής. Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών
ΠΟΛΙΤΙΚΟ ΒΑΡΟΜΕΤΡΟ Φεβρουάριος 2010 Μηνιαία εκτίμηση εκλογικής επιρροής Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών Η ταυτότητα της έρευνας, στην οποία στηρίζεται η τρέχουσα μηνιαία εκτίμηση της
Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Ενημερωτικό Μαθήματος Διάλεξη 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Ενημερωτικό Μαθήματος Διάλεξη 1 Γενικά Στοιχεία Διάλεξη 1
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Επιλογή Χαρτοφυλακίου Επενδύσεων με Χρήση Μεθόδων Προβλέψεων μη Σταθερού Επιπέδου
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Επιλογή Χαρτοφυλακίου Επενδύσεων με Χρήση Μεθόδων Προβλέψεων
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα
Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα
ΔΙΑΛΕΞΗ8 η : Μέθοδοι και τεχνικές πρόβλεψης ζήτησης
Διοίκηση Λειτουργιών ΔΙΑΛΕΞΗ8 η : Μέθοδοι και τεχνικές πρόβλεψης ζήτησης Δρ. Β. Ζεϊμπέκης (vzeimp@fme.aegean.gr) Τμήμα Μηχανικών Οικονομίας & Διοίκησης Πολυτεχνική Σχολή, Πανεπιστήμιο Αιγαίου Copyright
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA
ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ ERSA ΜΕΛΟΣ ΤΗΣ ΔΙΕΘΝΟΥΣ ΚΑΙ ΕΥΡΩΠΑΪΚΗΣ ΕΤΑΙΡΕΙΑΣ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΕΠΙΣΤΗΜΗΣ (RSAI, ERSA) Οικονομική Κρίση και Πολιτικές Ανάπτυξης και Συνοχής 10ο Τακτικό Επιστημονικό
Ανάλυση και Πρόβλεψη Χρονοσειρών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Ανάλυση και Πρόβλεψη Χρονοσειρών Διπλωματική εργασία της Γεωργίας Μαργιά
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ-ΔΕΥΤΕΡΟ-ΣΤΑΣΙΜΟΤΗΤΑ- ΕΠΟΧΙΚΟΤΗΤΑ-ΚΥΚΛΙΚΗ ΤΑΣΗ ΧΡΗΣΙΜΟΙΟΡΙΣΜΟΙ Χρονολογική Σειρά (χρονοσειρά)
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
Ανάλυση χρονοσειρών ΚΕΦΑΛΑΙΟ 8. Εισαγωγή
ΚΕΦΑΛΑΙΟ 8 Ανάλυση χρονοσειρών Εισαγωγή Η ανάλυση χρονοσειρών αποσκοπεί στην ανεύρεση των χαρακτηριστικών εκείνων που συµβάλουν στην κατανόηση της ιστορικής συµπεριφοράς µιας µεταβλητής και επιτρέπουν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΠΟΛΙΤΙΚΟ ΒΑΡΟΜΕΤΡΟ. Μάιος Μηνιαία εκτίμηση εκλογικής επιρροής. Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών
ΠΟΛΙΤΙΚΟ ΒΑΡΟΜΕΤΡΟ Μάιος 2009 Μηνιαία εκτίμηση εκλογικής επιρροής Με βάση τη μεθοδολογία ανάλυσης χρονολογικών σειρών Η ταυτότητα της έρευνας, στην οποία στηρίζεται η τρέχουσα μηνιαία εκτίμηση της εκλογικής
Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών
Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Οργάνωση και Διοίκηση Πωλήσεων
Οργάνωση και Διοίκηση Πωλήσεων Ενότητα 4: Η ΠΡΟΒΛΕΨΗ ΠΩΛΗΣΕΩΝ Αθανασιάδης Αναστάσιος Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και Οικονομία Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΣΥΝΘΕΤΑ ΜΟΝΤΕΛΑ. Αριθμητικός Μέσος Εξομάλυνση Μοντελοποίηση. Συνδυασμός κάποιου μοντέλου και εξομάλυνσης. Διαχείριση Πληροφοριών 10.
ΣΥΝΘΕΤΑ ΜΟΝΤΕΛΑ Αριθμητικός Μέσος Εξομάλυνση Μοντελοποίηση Συνδυασμός κάποιου μοντέλου και εξομάλυνσης 10.1 ΑΡΙΘΜΗΤΙΚΟΣ ΜΕΣΟΣ Βασική έννοια στη Στατιστική Σημαντική για την κατανόηση προβλέψεων που βασίζονται
«Μεθοδολογία Πρόβλεψης Ζήτησης Προϊόντων Εταιρείας Καλλυντικών»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΔΠΜΣ «ΤΕΧΝΟ-ΟΙΚΟΝΟΜΙΚΑ ΣΥΣΤΗΜΑΤΑ» «Μεθοδολογία Πρόβλεψης Ζήτησης Προϊόντων Εταιρείας Καλλυντικών» Μεταπτυχιακή
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
Διπλωματική Εργασία «Τεχνικές Πρόβλεψης Ζήτησης και Αποθεματική Πολιτική»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΑΝΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ Διπλωματική Εργασία «Τεχνικές Πρόβλεψης Ζήτησης
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα
1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ
ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές)
Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230) Περιγραφή
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ. Σημειώσεις Πανεπιστημιακών Παραδόσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 07 ΚΕΦΑΛΑΙΟ ΧΡΟΝΟΣΕΙΡΕΣ- ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. ΟΡΙΣΜΟΣ