Ευφυείς Τεχνολογίες Πράκτορες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ευφυείς Τεχνολογίες Πράκτορες"

Transcript

1 Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα πλαίσια της Τεχνητής Νοημοσύνης (ΤΝ). Πως αναπαρίσταται ένα πρόβλημα με τη μορφή του χώρου καταστάσεων Το ρόλο που παίζουν οι αλγόριθμοι αναζήτησης ως μία γενική τεχνική επίλυσης προβλημάτων Ποιοι είναι οι τρόποι αναπαράστασης γνώσης που σχετίζονται με ένα πρόβλημα και ποιος ο ρόλος της συλλογιστικής για την παραγωγή νέας γνώσης 2 1

2 Η ύλη της ενότητας 2 Περιγραφή Προβλημάτων Ανοιχτός και κλειστός κόσμος προβλήματος Χώρος καταστάσεων - Χώρος αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αλγόριθμοι ευρετικής αναζήτησης Μέθοδοι αναπαράστασης γνώσης Συλλογιστική Παράρτημα: Γράφοι και Προβλήματα γράφων 3 Περιγραφή Προβλήματος Γιαναγίνειδυνατήηεπίλυσηενόςπροβλήματος στην Τεχνητή Νοημοσύνη (ΤΝ) απαιτείται ένας τυποποιημένος και σαφής ορισμός Θεωρούμε ότι ένα πρόβλημα μπορεί να οριστεί αν: Υπάρχει μια δεδομένη αρχική κατάσταση Υπάρχει μια επιθυμητή τελική κατάσταση Είναι γνωστές κάποιες ενέργειες που πρέπει να γίνουν για να προκύψει η επιθυμητή κατάσταση 4 2

3 Ενδεικτικά Προβλήματα Τριάρα (ti-t-to) 8 puzzl (N-puzzl) 5 Ενδεικτικά Προβλήματα (1) Ο κόσμος των κύβων 6 3

4 Ενδεικτικά Προβλήματα Η σκούπα Root που καθαρίζει τα δύο δωμάτια Α και Β 7 Ενδεικτικά Προβλήματα Ιεραπόστολοι και Κανίβαλοι Στην όχθη ενός ποταμού βρίσκονται 3 ιεραπόστολοι και 3 κανίβαλοι, οι οποίοι επιθυμούν να το διασχίσουν για να βρεθούν στην άλλη όχθη Στη διάθεσή του έχουν 1 βάρκα που χωράει το πολύ 2 άτομα Αν σε κάποια όχθη βρεθούν περισσότεροι κανίβαλοι τρώνε τους ιεραπόστολους! 8 4

5 Το Πρόβλημα του ταξιδεύοντος εμπόρου Οδικός Χάρτης Β. Ελλάδας 9 Φλώρινα Καστοριά Γρεβενά Κοζάνη Ιωάννινα 155 Έδεσσα 44 Βέροια Γράφημα Πόλεων Καρδίτσα Κιλκίς Κατερίνη Λάρισα Σέρρες Θεσσαλονίκη 62 Δράμα Πολύγυρος 89 Καβάλα Ξάνθη 52 Αποστάσεις από το Το Πρόβλημα του ταξιδεύοντος εμπόρου 50 Κομοτηνή 55 Αλεξανδρούπολη Ένας έμπορος πρέπει να επισκεφτεί όλες τις πόλεις της Β. Ελλάδας κάνοντας τα λιγότερα δυνατά χιλιόμετρα 10 5

6 Κόσμος ενός προβλήματος Ο Κόσμος ενός προβλήματος (prolm worl) ορίζεται από τα αντικείμενα (ή τις οντότητες) που τον αποτελούν, τις ιδιότητες των αντικειμένων και τις σχέσεις που τα συνδέουν. Ο Κόσμος ενός προβλήματος χαρακτηρίζεται ως κλειστός (los worl) όταν κανένα νέο αντικείμενο, ιδιότητα ή σχέση δεν μπορεί να προστεθεί ή να αφαιρεθεί. [είναι στατικός] Σε αντίθετη περίπτωση χαρακτηρίζεται ως ανοιχτός (opn worl). [Η περιγραφή του προβλήματος μπορεί να αλλάζει δυναμικά] 11 Ορισμός Προβλήματος με Χώρο Καταστάσεων (1) Κατάσταση ενός κόσμου προβλήματος είναι ένα στιγμιότυπο (instn) που παράγεται σε μία χρονική στιγμή κατά την εξέλιξη του κόσμου. Οι καταστάσεις ενός κόσμου συνδέονται μεταξύ τους με την έννοια ότι από μία κατάσταση, κατά την επόμενη χρονική στιγμή, μπορούν να προκύψουν μία ή περισσότερες καταστάσεις Θεωρούμε ότι μία κατάσταση προκύπτει από μία άλλη με την εφαρμογή ενός τελεστή μετάβασης (trnsition oprtor) 12 6

7 Ορισμός Προβλήματος με Χώρο Καταστάσεων (2) Ένα πρόβλημα P ορίζεται ως μία τετράδα P={S,I,T,G},όπου: S είναι ο χώρος καταστάσεων (το σύνολο όλων των καταστάσεων) Ι είναι μία αρχική κατάσταση (ανήκει στο S) Τ είναι το σύνολο των τελεστών μετάβασης G είναι το σύνολο των τελικών καταστάσεων (υποσύνολο του S) Λύση ενός προβλήματος P={S,I,T,G}είναι μία ακολουθία από τελεστές μετάβασης <t1, t2,t3,...,tn> ώστε να ισχύει: g=tn(... t2(t1(i))...) όπου g μία τελική κατάσταση του συνόλου G 13 Χώρος Αναζήτησης ενός Προβλήματος Δοθέντος ενός προβλήματος P={S,I,T,G}, Χώρος Αναζήτησης (Srh Sp) SPείναιτοσύνολοόλων των καταστάσεων που είναι προσβάσιμες από την αρχική κατάσταση I. Ο χώρος αναζήτησης είναι υποσύνολο του χώρου καταστάσεων, καθώς το σύνολο SP εξαρτάται από την αρχική κατάσταση I ενώ το S όχι. 14 7

8 Χώρος Καταστάσεων (1) Ο Χώρος Καταστάσεων του προβλήματος «ιεραπόστολοι & κανίβαλοι 15 Χώρος Καταστάσεων (2) Ο Χώρος Καταστάσεων του προβλήματος «της σκούπας Root» 16 8

9 Περιγραφή προβλήματος με αναγωγή Μία ακολουθία από τελεστές ανάγουν συνεχώς τα προβλήματα σε άλλα «απλούστερα» έως ότου τα υπο-προβλήματα που προκύπτουν τελικά να είναι άμεσα επιλύσιμα. Παράδειγμα οι Πύργοι του Hnoi: Ένας αριθμός δίσκων σε φθίνουσα διάταξη βρίσκονται σε ένα στύλο και πρέπει να μεταφερθούν σε έναν άλλο με την ίδια διάταξη με τους εξής περιορισμούς: Επιτρέπεται να μετακινείται ένας δίσκος τη φορά Δεν επιτρέπεται η τοποθέτηση μεγαλύτερου δίσκου σε μικρότερο Ένα τρίτος στύλος μπορεί να χρησιμοποιηθεί ως βοηθητικός 17 Περιγραφή προβλήματος με αναγωγή Η λύση του προβλήματος «Πύργοι του Hnoi» 18 9

10 Αλγόριθμοι Αναζήτησης ΥπάρχουνπολλάπροβλήματατηςΤΝγιαταοποίαδενμπορείνα μας δοθεί ένας ειδικός αλγόριθμος για τη λύση τους, αλλά μόνο μία περιγραφή της λύσης. Στην περίπτωση αυτή πρέπει να ψάξουμε να βρούμε τη λύση! Πολλά προβλήματα της ΤΝ μπορούν να αναπαρασταθούν αφαιρετικά με τη βοήθεια ενός γραφήματος. Στην περίπτωση αυτή η επίλυση του προβλήματος ταυτίζεται με την αναζήτηση ενός μονοπατιού του γραφήματος Στις περισσότερες περιπτώσεις ξεκινούμε από έναν αρχικό κόμβο και αναζητούμε το μονοπάτι που θα μας οδηγήσει σε έναν κόμβο στόχο 19 Αλγόριθμοι Αναζήτησης Η γενική ιδέα (1): Δοθέντος ενός γράφου, ενός αρχικού κόμβου και ενός κόμβου στόχου : Εξερευνούμε επαυξανόμενα μονοπάτια από τον αρχικό κόμβο Διατηρούμε ένα σύνολο-μέτωπο (frontir st) από κόμβους που πρόκειται να εξερευνήσουμε άμεσα. Καθώς η αναζήτηση προχωρά το σύνολο-μέτωπο επεκτείνεται μέχρις ότου βρεθούμε στον κόμβο στόχο. Ο τρόπος που επεκτείνουμε και επεξεργαζόμαστε το σύνολο-μέτωπο καθορίζει τη στρατηγική της αναζήτησης 20 10

11 Δέντρο Αναζήτησης (OR Δέντρο) Για τις ανάγκες των αλγορίθμων ό χώρος αναζήτησης μπορεί να αναπαρασταθεί με τη βοήθεια ενός OR Δέντρου 21 Δέντρο Αναζήτησης (OR Δέντρο) Η μετατροπή ενός γράφου σε δέντρο αναζήτησης είναι πάντα εφικτή, εμπεριέχει όμως τον κίνδυνο το δέντρο να αποκτήσει κλαδιά με άπειρο μήκος (συνδυαστική έκρηξη!) 22 11

12 OR Δέντρο της Σκούπας Root 23 Αλγόριθμοι Αναζήτησης Η γενική ιδέα (2): σύνολο μέτωπο αρχικός κόμβος κόμβος στόχος κόμβοι που έχουμε επισκεφτεί κόμβοι που δεν έχουμε επισκεφτεί 24 ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΡΑΚΤΟΡΕΣ Δ. ΣΤΑΜΑΤΗΣ 12

13 Γενικός Αλγόριθμος Αναζήτησης 25 Γενικός Αλγόριθμος Αναζήτησης 26 13

14 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται όταν δεν έχουμε επαρκείς πληροφορίες που να μας επιτρέπουν την «έξυπνη» εκτίμηση των επόμενων καταστάσεων ενός προβλήματος. 27 ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΡΑΚΤΟΡΕΣ Δ. ΣΤΑΜΑΤΗΣ Αλγόριθμος Πρώτα σε βάθος (fs) Ο αλγόριθμος πρώτα-σε-βάθος επιλέγει να επεκτείνει το σύνολο-μέτωπο με την κατάσταση που βρίσκεται πιο βαθιά στο δέντρο αναζήτησης

15 Αλγόριθμος Πρώτα σε βάθος (fs) 29 Αλγόριθμος Πρώτα σε πλάτος (fs) Ο αλγόριθμος πρώτα σε πλάτος επιλέγει να επεκτείνει το σύνολο-μέτωπο με όλες τις καταστάσεις που βρίσκονται στο ίδιο βάθος και μετά προχώρα σε καταστάσεις μεγαλύτερου επιπέδου 30 15

16 Αλγόριθμος Πρώτα σε πλάτος 31 Αλγόριθμοι Ευρετικής Αναζήτησης Μία ευρετική τεχνική βασίζεται σε κριτήρια με βάση τα οποία μπορούμε να επιλέξουμε ανάμεσα σε πολλές επιλογές την πιο αποτελεσματική, η οποία θα μας οδηγήσει στο στόχο μας. Συνήθως η ευρετική τεχνική υλοποιείται με μία ευρετική συνάρτηση. Μία ευρετική τεχνική: Βελτιώνει την αποτελεσματικότητα της διαδικασίας αναζήτησης, ενδεχομένως θυσιάζοντας την πληρότητα των λύσεων Δεν διασφαλίζει ότι θα βρούμε τη βέλτιστη λύση αλλά σχεδόν πάντα βρίσκει μία ικανοποιητική λύση 32 16

17 Αλγόριθμοι Ευρετικής Αναζήτησης Αλγόριθμοι Αναζήτησης με αντίπαλο (π.χ. παιχνίδια 2 παικτών) 33 Ευρετικές συναρτήσεις (1) Παράδειγμα: Τριάρα (ti-t-to) Η καλύτερη θέση είναι στο κέντρο γιατί πιθανολογούνται 4 περιπτώσεις για τη νίκη 34 17

18 Ευρετικές συναρτήσεις (2) Παράδειγμα: Το πρόβλημα του λαβυρίνθου 35 Ευρετικές συναρτήσεις (3) Παράδειγμα: Το 15-puzzl 36 18

19 Αλγόριθμος Πρώτα στο καλύτερο (stfs) Ο αλγόριθμος πρώτα στο καλύτερο επεκτείνει το σύνολο-μέτωπο με βάση τον «καλύτερο» κόμβο, τον κόμβο δηλαδή που ήδη υπάρχει στο συνολο-μέτωπο και η ευρετική συνάρτηση του δίνει την καλύτερη τιμή. 37 Αλγόριθμος Α* Ο αλγόριθμος Α* είναι ειδική περίπτωση του Bstfs, κατά την οποία η ευρετική συνάρτηση F(S) για κάθε κόμβο S ορίζεται σε συνδυασμό με την πραγματική απόσταση που έχει διανυθεί και την εκτίμηση της απόστασης μέχρι τον κόμβο στόχο: F(S) = g(s) + h(s) g(s) δίνει την πραγματική απόσταση του κόμβου S από τον αρχικό h(s) είναι η ευρετική συνάρτηση που δίνει την εκτίμηση της απόστασης του κόμβου S από τον κόμβο στόχο

20 Αναπαράσταση Γνώσης ΤΝ = Αναπαράσταση Γνώσης + Συλλογιστική (AI = Knowlg Rprsnttion + Rsoning) Συλλογιστική: Το να παράγουμε πληροφορία που υπονοείται από άλλες πληροφορίες που ήδη υπάρχουν (και έχουν αναπαρασταθεί με κάποια μορφή). Αναπαράσταση γνώσης: Οι μορφές αναπαράστασης γνώσης είναι χρήσιμες όταν μπορούμε να δράσουμε επί αυτών συλλογιστικά 39 Λογική Μαθηματική Λογική Λογική με χρόνο Κατηγορηματικός Λογισμός 1 ης τάξης Λογικός Προγραμματισμός prnt(kosts, nikos). prnt(imitr, nikos). prnt(kosts, ntonis). prnt(nikos, ynn). prnt(nikos, vsilis). grnprnt(x,y) <= prnt(x,z), prnt(z,y). 40 ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΠΡΑΚΤΟΡΕΣ Δ. ΣΤΑΜΑΤΗΣ 20

21 Συστήματα κανόνων 41 Συστήματα κανόνων Ορθή συλλογιστική A (is tru) B (is tru) if A thn C if B n C thn D 42 21

22 Συστήματα κανόνων Ανάστροφη συλλογιστική A (is tru) B (is tru) if A thn C if B n C thn D 43 Σημασιολογικά Δίκτυα Το σημασιολογικό δίκτυο είναι μία απλή σχηματική μέθοδος αναπαράστασης γνώσης που βασίζεται σε ένα κατευθυνόμενο γράφο στον οποίο: Οι κόμβοι αναπαριστούν αντικείμενα, έννοιες και συμβάντα Οι ακμές αναπαριστούν διμελείς σχέσεις ανάμεσα στους κόμβους 44 22

23 Σημασιολογικά Δίκτυα Smnti Ntwork y Collins n Quillin 45 Πλαίσια (Frms) Ένα πλαίσιο αποτελεί μία δυναμική αναπαράσταση μίας έννοιας. Αποτελείται από πεδία (slots) τα οποία δηλώνουν ιδιότητες ανάμεσα σε αντικείμενα. Μερικά πεδία μπορεί να δημιουργούνται αυτόματα και άλλα μπορεί αρχικά να είναι κενά για να πάρουν τιμή όταν αυτή γίνει γνωστή. Μερικά πεδία μπορεί να είναι σύνδεσμοι σε άλλα πλαίσια

24 Πλαίσια (Frms) 47 W Links Stt prolms Brth-First Srh (BFS) Erik Dmin, MIT Opn Courss Dpth-First Srh (DFS), Topologil Sort Erik Dmin, MIT Opn Courss How Googl mks improvmnts to its srh lgorithm Shortst Pth using Dijkstr's Algorithm Computtionl Complxity

25 ΠΑΡΑΡΤΗΜΑ Γραφήματα (Grphs) Προβλήματα που βασίζονται σε γράφους 49 Γράφημα (Grph) Oρισμός 1: Έστω το μη κενό και πεπερασμένο σύνολο V με n διακεκριμένα στοιχεία V = {v 1, v 2,..., v n }, και E ένα σύνολο με m 0 με μη-διατεταγμένα ζεύγη ij = {v i, v j }, i =/= j, στοιχείων του V. Τότε το διατεταγμένο ζεύγος G = (V,E) ονομάζεται μη κατευθυνόμενο γράφημα (unirt grph) ή απλώς γράφημα. f 50 25

26 Μη κατευθυνόμενο γράφημα Στο παράδειγμα: G = (V, E) με: V = {,,, f,, }, και E = { {, }, {, }, {, f}, {, }, {, }, {, }, {f, } } f 51 Τάξη γραφήματος Oρισμός 2: Τάξη (orr) ενός γραφήματος ονομάζεται το πλήθος των κορυφών του, ενώ μέγεθος (siz) ονομάζεται το πλήθος των ακμών του. Στο παράδειγμα η orr = 6 και siz = 7 f 52 26

27 Διπλανές κορυφές γραφήματος Oρισμός 3: Δύο κορυφές v i, v j ονομάζονται διπλανές (jnt) όταν υπάρχει ακμή ij = {v i,v j }, i =/= j που να τις έχει άκρα. Δύο κορυφές που δεν είναι διπλανές ονομάζονται ανεξάρτητες ( inpnnt). Στο παράδειγμα οι και είναι διπλανές ενώ οι και ανεξάρτητες f 53 Βαθμός κορυφής ενός γραφήματος Oρισμός 4: Βαθμός (gr) μιας κορυφής ονομάζεται το πλήθος των διπλανών κορυφών της, ή αλλιώς το πλήθος των ακμών που πρόσκεινται στην κορυφή. Μια κορυφή ονομάζεται άρτια ή περιττή ανάλογα με το αν ο βαθμός της είναι άρτιος ή περιττός Στο παράδειγμα η είναι άρτια και ο βαθμός της είναι 4 f 54 27

28 Τερματική κορυφή γραφήματος Oρισμός 5: Μία κορυφή v i ονομάζεται τερματική κορυφή (n vrtx) αν gr(v i ) = 1. Στο παράδειγμα η κορυφή είναι τερματική f 55 Απομονωμένη κορυφή γραφήματος Oρισμός 6: Μία κορυφή v i ονομάζεται απομονωμένη (isolt), αν ο βαθμός της gr(v i ) = 0 Στο παράδειγμα η κορυφή είναι απομονωμένη f 56 28

29 Πλήρες Γράφημα (Grphs) Oρισμός 7: Ένα γράφημα ονομάζεται πλήρες (omplt grph) όταν περιλαμβάνει όλους τους δυνατούς συνδυασμούς ακμών ανάμεσα στις κορυφές του. Παρατήρηση: Δεν αποτελεί συνηθισμένη περίπτωση! f 57 Κατευθυνόμενο Γράφημα (Dirt Grph) Oρισμός 8: Έστω το μη κενό και πεπερασμένο σύνολο V με n διακεκριμένα στοιχεία V = {v 1, v 2,..., v n }, και E ένα σύνολο με m 0 με διατεταγμένα ζεύγη ij = {v i, v j }, i =/= j, στοιχείων του V. Τότε το διατεταγμένο ζεύγος DG = (V,E) ονομάζεται κατευθυνόμενο γράφημα (irt grph). f 58 29

30 Περίπατος γραφήματος Oρισμός 9: Ονομάζουμε περίπατο (wlk) σε ένα γράφημα G μία ακολουθία κορυφών του γραφήματος, της μορφής W = <v 0, v 1, v 2,..., v n > και λέμε ότι έχει μήκος n. Στο παράδειγμα: W = <,,,,, > με μήκος 5 f 59 Μονοπάτι γραφήματος Oρισμός 10: Ονομάζουμε μονοπάτι (pth) σε ένα γράφημα G μία ακολουθία κορυφών του γραφήματος, της μορφής P= <v 0, v 1, v 2,..., v n >που είναι περίπατος στον οποίο καμία κορυφή δεν επαναλαμβάνεται Στο παράδειγμα: P = <,,, > με μήκος 3 f 60 30

31 Παραδείγματα Γραφημάτων: Δίκτυα Υπολογιστών 61 Παραδείγματα Γραφημάτων: Κοινωνικά δίκτυα 62 31

32 Κοινωνικά δίκτυα 63 Πίνακας διπλανών κορυφών Αναπαράσταση γραφήματος Έστω ένα κατευθυνόμενο γράφημα με n κορυφές, οι οποίες μπορούν να αριθμηθούν με διακριτές συνεχόμενες τιμές. Η αναπαράστασή του μπορεί να γίνει με τη βοήθεια ενός δισδιάστατου πίνακα D με διαστάσεις n x n, στον οποίο: η θέση του πίνακα (i,j) δηλώνει την ύπαρξη ή όχι ακμής D(i,j)=1, αν υπάρχει η ακμή, D(i,j)=0, αν δεν υπάρχει D = Αρίθμηση κορυφών: >0, >1, >2, >3, >

33 Λίστες διπλανών κορυφών Αναπαράσταση γραφήματος Έστω ένα κατευθυνόμενο γράφημα με n κορυφές, οι οποίες μπορούν να αριθμηθούν με διακριτές συνεχόμενες τιμές. Η αναπαράστασή του μπορεί να γίνει με τη βοήθεια ενός μονοδιάστατου πίνακα συνδεδεμένων λιστών: η θέση i του πίνακα αντιστοιχεί στον κόμβο i το περιεχόμενο του πίνακα στη θέση i είναι η λίστα των κόμβων που συνδέονται με τον i Αρίθμηση κορυφών: >0, >1, >2, >3, > Επίλυση προβλήματος γραφήματος Αναζητούμε ένα μονοπάτι το οποίο να ξεκινάει από έναν κόμβο Χ (κόμβος αρχή) και να καταλήγει σε έναν κόμβο Υ (κόμβος στόχος). Αντίστοιχα μπορεί να αναζητούμε έναν περίπατο ο οποίος να ξεκινάει από έναν κόμβο Χ (κόμβος αρχή) και να καταλήγει σε έναν κόμβο Υ (κόμβος στόχος). Το γενικότερο πρόβλημα μπορεί να περιλαμβάνει: 1. θετικούς περιορισμούς (πρέπει οπωσδήποτε να περάσουμε από κάποιους κόμβους). 2. Αρνητικούς περιορισμούς (πρέπει οπωσδήποτε να αποφύγουμε κάποιους κόμβους). 3. Πρέπει να λάβουμε υπόψη μας τα βάρη σύνδεσης των κόμβων (προβλήματα ελαχιστοποίησης ή μεγιστοποίησης 66 33

34 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Στόχος μας είναι να επισκεφτούμε όλους τους κόμβους του γραφήματος Παράδειγμα: Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Ξεκινώντας από έναν κόμβο i: επισκεπτόμαστε τον κόμβο i επισκεπτόμαστε αναδρομικά κάθε κόμβο που συνδέεται με τον κόμβο i με την προϋπόθεση ότι δεν τον έχουμε ήδη επισκεφθεί. 67 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: 1 f g h 68 34

35 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: 1 f 2 g h 69 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: 1 3 f 2 g h 70 35

36 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: 1 3 f 2 g 4 h 71 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: 1 3 f 2 5 g 4 h 72 36

37 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: 1 3 f g 4 h 73 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: f g 4 h 74 37

38 Αλγόριθμοι Επίσκεψης κόμβων γραφήματος Αλγόριθμος «πρώτα σε βάθος» (pth first srh) Σειρά επίσκεψης των κόμβων: f g 4 h 75 38

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs) Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Γραφήµατα (Grphs) http://tos.it.tith.gr/~mos/thing_gr.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ Γράφημα (Grph) Oρισμός 1: Έστω το µη

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 9 - Δημοσθένης Σταμάτης Τμήμα Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 9 - Δημοσθένης Σταμάτης  Τμήμα Πληροφορικής Γλώσσες & Τεχνικές 4 ο Εξάμηνο - Ενότητα 9 - Προβλήματα που βασίζονται σε γράφους Δημοσθένης Σταμάτης http://www.it.tith.gr/~mos Τμήμα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ To Πρόβλημα της Αναζήτησης του Θησαυρού

Διαβάστε περισσότερα

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων ο Εξάµηνο Γραφήµατα (Grps) ttp://tos.it.tit.r/~mos/tin_gr.tml Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ Γράφημα (Grp) Oρισμός : Έστω το µη κενό και πεπερασµένο

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

ΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΙΚΤΗ ΚΟ-Β-3: ΕΛΞΗ ΠΟΛΕΩΝ

ΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΙΚΤΗ ΚΟ-Β-3: ΕΛΞΗ ΠΟΛΕΩΝ ΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΕΙΚΤΗ ΚΟ-Β-3: ΕΛΞΗ ΠΟΛΕΩΝ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης προσδιορίζει, µε τη χρήση ενός µοντέλου βαρύτητας, τη δυνητική έλξη ανάµεσα στα αστικά κέντρα και τις πρωτεύουσες Νοµών της

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Γλώσσες & Τεχνικές 4 ο Εξάμηνο - Ενότητα 1 - Εισαγωγή στην Τεχνητή Νοημοσύνη Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Τμήμα Πληροφορικής A.T.E.I. ΘΕΣΣΑΛΟΝΙΚΗΣ Rethinking University Teaching!!!

Διαβάστε περισσότερα

Διερεύνηση γραφήματος

Διερεύνηση γραφήματος Διερεύνηση γραφήματος Διερεύνηση γραφήματος Ένας αλγόριθμος διερεύνησης γραφήματος επισκέπτεται τους κόμβους του γραφήματος με μια καθορισμένη στρατηγική, π.χ. κατά εύρος ή κατά βάθος. Καθοδική διερεύνηση

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

(elementary graph algorithms)

(elementary graph algorithms) (elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή

Διαβάστε περισσότερα

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ

Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET10: ΜΕΤΑΒΟΛΗ ΠΛΗΘΥΣΜΟΥ ΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET10: ΜΕΤΑΒΟΛΗ ΠΛΗΘΥΣΜΟΥ ΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης προσδιορίζει το μόνιμο πληθυσμό και τη μεταβολή του ανά αστικό κέντρο (οικισμοί άνω των 10.000 κατοίκων) και πρωτεύουσα Νομού της Ζώνης IV. Η

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν με παραδειγματικές περιπτώσεις οι θεμελιώδεις έννοιες για τον ορισμό ενός προβλήματος και η επίλυσή του μέσω αλγόριθμων αναζήτησης,

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Πώς θα έρθετε: Χάρτης χιλιομετρικών αποστάσεων: http://vivl-livad.voi.sch.gr/greek/livadeia/apostaseis.htm

Πώς θα έρθετε: Χάρτης χιλιομετρικών αποστάσεων: http://vivl-livad.voi.sch.gr/greek/livadeia/apostaseis.htm Ημερίδα με θέμα: Συνεργασίες λαϊκών βιβλιοθηκών - Εργαλεία, πρότυπα και συλλογικοί κατάλογοι" Παρασκευή 24 Νοεμβρίου 2006 Ώρα: 9.00 Λιβαδειά, Συνεδριακό Κέντρο Κρύας Χάρτης χιλιομετρικών αποστάσεων: http://vivl-livad.voi.sch.gr/greek/livadeia/apostaseis.htm

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET11: ΤΑΞΙΝΟΜΗΣΗ ΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET11: ΤΑΞΙΝΟΜΗΣΗ ΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης προσδιορίζει την ταξινόμηση (α) όλων των αστικών κέντρων και των πρωτευουσών των νομών της Ζώνης IV κατά πληθυσμιακό μέγεθος, (β) των αστικών

Διαβάστε περισσότερα

Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 17, Πέμπτη Αθήνα, Θεσσαλονίκη

Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 17, Πέμπτη Αθήνα, Θεσσαλονίκη Σημείωση: Οι ημερομηνίες ενδέχεται να αλλάξουν και να προστεθούν νέες. 3, Πέμπτη Θεσσαλονίκη 4, Παρασκευή Αθήνα 10, Πέμπτη Θεσσαλονίκη 11, Παρασκευή Αθήνα 17, Πέμπτη Αθήνα, Θεσσαλονίκη Ιανουάριος 18, Παρασκευή

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Αφαίρεση δεδόμενων Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΓΡΑΦΗΜΑΤΩΝ... 2 1.1.1 Ορισμός και ιδιότητες γραφημάτων... 2 1.1.2 Δέντρα... 7 1.2 ΑΠΟΘΗΚΕΥΣΗ ΓΡΑΦΩΝ ΚΑΙ ΔΙΚΤΥΩΝ... 11 1.2.1 Μήτρα πρόσπτωσης κόμβων τόξων...

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων: Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΟ ΔΙΚΤΥΟ ΣΥΜΒΕΒΛΗΜΕΝΩΝ ΙΑΤΡΩΝ

ΠΑΝΕΛΛΑΔΙΚΟ ΔΙΚΤΥΟ ΣΥΜΒΕΒΛΗΜΕΝΩΝ ΙΑΤΡΩΝ ΟΡΙΖΩΝ Ασφαλιστική Α.Ε.Γ.Α Λεωφόρος Αμαλίας 26α, 105 57, Αθήνα Τηλ: +30 210 32 27 932-6, FAX: +30 210 32 25 540 Α.Φ.Μ: 094019480, Δ.Ο.Υ: ΦΑΕ ΑΘΗΝΩΝ Email: life@orizonins.gr ΠΑΝΕΛΛΑΔΙΚΟ ΔΙΚΤΥΟ ΣΥΜΒΕΒΛΗΜΕΝΩΝ

Διαβάστε περισσότερα

Η εμπειρία του Παρατηρητηρίου της Εγνατίας Οδού

Η εμπειρία του Παρατηρητηρίου της Εγνατίας Οδού ΗΜΕΡΙΔΑ: «Παρατηρητήριο κοινωνικοοικονομικών μεγεθών και αστικών δεικτών Habitat», URBAN II Η Κομοτηνή στον 21ο αιώνα: Παρακολουθώντας το σήμερα Σχεδιάζοντας το αύριο B. Φούρκας Η εμπειρία του Παρατηρητηρίου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

6η Διάλεξη Διάσχιση Γράφων και Δέντρων ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Αποτελέσματα Μετρήσεων. Ονομαστική ταχύτητα (Mbps) Υψηλότερο 95% (Μbps) Πακέτο 1. Λήψη 24,00 20,51 15,11 18,24. Αποστολή 1,00 0,87 0,78 0,83.

Αποτελέσματα Μετρήσεων. Ονομαστική ταχύτητα (Mbps) Υψηλότερο 95% (Μbps) Πακέτο 1. Λήψη 24,00 20,51 15,11 18,24. Αποστολή 1,00 0,87 0,78 0,83. Δείκτης Ποιότητας Β01: Ταχύτητα Μετάδοσης στο Τμήμα Συγκέντρωσης του Δικτύου Πρόσβασης και στο Δίκτυο Κορμού Τύπος Υπηρεσίας Ημερ/νία έναρξης ολική Δήμοι σε μερική Αριθμός πακέτων Κατεύθυνση δεδομένων

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 Θεωρία γράφων / γραφήµατα 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,

Διαβάστε περισσότερα

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET11: ΤΑΞΙΝΟΜΗΣΗ ΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ

ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ SET11: ΤΑΞΙΝΟΜΗΣΗ ΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΔΕΛΤΙΟ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΕΙΚΤΗ ΟΡΙΣΜΟΣ - ΣΚΟΠΙΜΟΤΗΤΑ Ο δείκτης προσδιορίζει την ταξινόμηση (α) όλων των αστικών κέντρων και των πρωτευουσών των νομών της Ζώνης IV κατά πληθυσμιακό μέγεθος, (β) των αστικών

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών

Διαβάστε περισσότερα

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1 Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας. ΠΡΟΛΟΓΟΣ Το βιβλίο «Δικτυακή Βελτιστοποίηση» γράφτηκε με κύριο στόχο να καλύψει τις ανάγκες της διδασκαλίας του μαθήματος «Δικτυακός Προγραμματισμός», που διδάσκεται στο Τμήμα Εφαρμοσμένης Πληροφορικής,

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΕΠΙΤΡΟΠΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ

ΥΠΗΡΕΣΙΕΣ ΕΠΙΤΡΟΠΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ 28 ΥΠΗΡΕΣΙΕΣ ΕΠΙΤΡΟΠΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ Υ Π Ο Υ Ρ Γ Ε Ι Ο Μ Α Κ Ε Δ Ο Ν Ι Α Σ - Θ Ρ Α Κ Η Σ (ΠΡΩΗΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΜΑΚΕΔΟΝΙΑΣ - ΘΡΑΚΗΣ) ΔΙΟΙΚΗΤΗΡΙΟ - Τ.Κ. 541 23 ΘΕΣΣΑΛΟΝΙΚΗ FAX 2310-271783 FAX 2310-279440

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΕΠΙΤΡΟΠΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ

ΥΠΗΡΕΣΙΕΣ ΕΠΙΤΡΟΠΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ 32 ΥΠΗΡΕΣΙΕΣ ΕΠΙΤΡΟΠΩΝ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ Υ Π Ο Υ Ρ Γ Ε Ι Ο ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ (ΠΡΩΗΝ ΥΠΟΥΡΓΕΙΟ ΜΑΚΕΔΟΝΙΑΣ - ΘΡΑΚΗΣ) (ΠΡΩΗΝ ΓΕΝΙΚΗ ΜΑΚΕΔΟΝΙΑΣ - ΘΡΑΚΗΣ) ΔΙΟΙΚΗΤΗΡΙΟ - Τ.Κ. 541 23 ΘΕΣΣΑΛΟΝΙΚΗ

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91 Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Αλγόριθµοι Γραφηµάτων

Αλγόριθµοι Γραφηµάτων Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση

Διαβάστε περισσότερα

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 3: Δένδρα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

για NP-Δύσκολα Προβλήματα

για NP-Δύσκολα Προβλήματα Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα