Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση"

Transcript

1 Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

2 Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη κατάσταση (αρχική), υπάρχει µία επιθυµητή κατάσταση (τελική) και διαθέσιµες ενέργειες που πρέπει να γίνουν ώστε να φτάσουµε στην επιθυµητή. Η επίλυση προβληµάτων που επιδιώκεται από την ΤΝ απαιτεί τον τυποποιηµένο και σαφή ορισµό τους. Ο ορισµός ενός προβλήµατος είναι ανεξάρτητη από την πολυπλοκότητα επίλυσής του η οποία αφορά τον αλγόριθµο αναζήτησης. Τεχνητή Νοηµοσύνη, B' Έκδοση 2

3 Κατηγορίες Προβληµάτων Πραγµατικά και πολύπλοκα προβλήµατα (real world problems): σκάκι (chess), πλανόδιος πωλητής (traveling salesperson), Ν-βασίλισσες (N-queens), σάκος (knapsack), κλπ. Απλά προβλήµατα (toy problems) κύβοι (blocks), Ν-puzzle, τρίλιζα (tic-tac-toe), λαβύρινθος (maze), πύργοι του Ανόι (Hanoi towers), κανίβαλοι και ιεραπόστολοι (missionaries and cannibals), ποτήρια (water glass) κλπ. Η µεθοδολογία που εφαρµόζεται στην αναπαράσταση και την επίλυση είναι παρόµοια και στις δύο ακραίες περιπτώσεις προβληµάτων. Τεχνητή Νοηµοσύνη, B' Έκδοση 3

4 Παραδείγµατα Απλών Προβληµάτων (1/2) κύβοι (blocks) Ν-puzzle. τρίλιζα (tic-tac-toe) λαβύρινθος (maze) Τεχνητή Νοηµοσύνη, B' Έκδοση 4

5 Παραδείγµατα Απλών Προβληµάτων (2/2) πύργοι του Ανόι (Hanoi towers) κανίβαλοι και ιεραπόστολοι (missionaries and cannibals) ποτήρια (water glass) Τεχνητή Νοηµοσύνη, B' Έκδοση 5

6 Περιγραφή Προβληµάτων H περιγραφή ενός προβλήµατος µπορεί να γίνει µε δύο βασικούς τρόπους: Περιγραφή µε Χώρο Καταστάσεων (State Space) και Περιγραφή µε Αναγωγή (Reduction). Τεχνητή Νοηµοσύνη, B' Έκδοση 6

7 Περιγραφή Προβληµάτων µε Χώρο Καταστάσεων (1/2) Ο κόσµος ενός προβλήµατος αποτελείται από τα αντικείµενα, τις ιδιότητες των αντικειµένων και τις σχέσεις που τα συνδέουν Κλειστός κόσµος (closed world). Ανοιχτός κόσµος (open world). Κατάσταση προβλήµατος Κατάσταση ενός κόσµου είναι ένα στιγµιότυπο (instance) ή φωτογραφία (snapshot) µίας συγκεκριµένης χρονικής στιγµής της εξέλιξης του κόσµου. Τεχνητή Νοηµοσύνη, B' Έκδοση 7

8 Περιγραφή Προβληµάτων µε Χώρο Καταστάσεων (2/2) Κατάσταση (state) ενός κόσµου είναι µία επαρκής αναπαράσταση του κόσµου σε µία δεδοµένη χρονική στιγµή. "Επαρκής": ιδιότητες µιας κατάστασης πρέπει να επιλεγούν µε τέτοιο τρόπο ώστε διαφορετικές τιµές των ιδιοτήτων να αντικατοπτρίζουν τις πραγµατικές διαφορές των στιγµιότυπων του κόσµου (αφαίρεσης, abstraction). Τεχνητή Νοηµοσύνη, B' Έκδοση 8

9 Παράδειγµα Ο κόσµος των κύβων Αντικείµενα Ιδιότητες Σχέσεις Κύβος Α Κύβος Α είναι ελεύθερος Κύβος Α πάνω στον κύβο Β Κύβος Β Κύβος Γ είναι ελεύθερος Κύβος Β πάνω στο Τ Κύβος Γ Τ έχει αρκετό ελεύθερο χώρο Κύβος Γ πάνω στο Τ Τ είναι Τραπέζι Κύβος Β δεν είναι ελεύθερος Κόσµος του προβλήµατος: Τρείς κύβοι και ένα τραπέζι. Μια Κατάσταση: Κύβος Α πάνω στον κύβο Β Κύβος Β πάνω στο Τ Κύβος Γ πάνω στο Τ Κύβος Α ελεύθερος Κύβος Γ ελεύθερος Άλλα χαρακτηριστικά (π.χ. χρώµα, βάρος, κλπ) είναι αδιάφορα. Τεχνητή Νοηµοσύνη, B' Έκδοση 9

10 Παράδειγµα Ιεραπόστολοι και Καννίβαλοι Αντικείµενα Ιδιότητες Σχέσεις 3 Ιεραπόστολοι Βάρκα δύο ατόµων Ιεραπόστολοι στην αριστερή όχθη 3 Κανίβαλοι Κανίβαλοι στην αριστερή όχθη Βάρκα Βάρκα στην αριστερή όχθη Αριστερή Όχθη εξιά Όχθη Τεχνητή Νοηµοσύνη, B' Έκδοση 10

11 Τελεστές Μετάβασης Τελεστής µετάβασης (transition operator) ή ενέργεια (action) είναι µια αντιστοίχηση µίας κατάστασης του κόσµου σε νέες καταστάσεις. Παράδειγµα: Στον κόσµο των κύβων, οι τελεστές µετάβασης είναι: Βάλε τον κύβο Α πάνω στον κύβο Γ. Βάλε τον κύβο Α πάνω στον κύβο Β. κλπ Στους τελεστές χρησιµοποιούµε και µεταβλητές. Παράδειγµα: Βάλε κάποιον κύβο Χ πάνω σε κάποιον κύβο Υ. Οι Προϋποθέσεις εφαρµογής (preconditions) που πρέπει να τηρούνται για να εφαρµοστεί ένας τελεστής. Η κατάσταση που προκύπτει πρέπει να είναι Έγκυρη (valid). Τεχνητή Νοηµοσύνη, B' Έκδοση 11

12 Τελεστές Μετάβασης Παράδειγµα Τελεστής: Μετέφερε δύο ιεραπόστολους από την αριστερή όχθη στη δεξιά Προϋποθέσεις: Υπάρχουν τουλάχιστον 2 ιεραπόστολοι στην αριστερή όχθη. Η βάρκα είναι στην αριστερή όχθη. Ο αριθµός των ιεραποστόλων που θα προκύψει στην αριστερή όχθη να µην είναι µικρότερος από τον αριθµό των κανιβάλων ή να µην υπάρχει άλλος ιεραπόστολος στην αριστερή όχθη. Αποτελέσµατα: Ο αριθµός των ιεραποστόλων στην αριστερή όχθη µειώνεται κατά 2. Ο αριθµός των ιεραποστόλων στην δεξιά όχθη αυξάνεται κατά 2. Η βάρκα είναι πλέον δεξιά και όχι αριστερά Τεχνητή Νοηµοσύνη, B' Έκδοση 12

13 Χώρος Καταστάσεων Χώρος καταστάσεων (state space ή domain space) ενός προβλήµατος ονοµάζεται το σύνολο όλων των έγκυρων καταστάσεων. Τεχνητή Νοηµοσύνη, B' Έκδοση 13

14 Αρχικές και Τελικές καταστάσεις Η αρχική (initial state) και τελική (final ή goal state) ή τελικές καταστάσεις εκφράζουν το δεδοµένο και το ζητούµενο αντίστοιχα. Ορισµός προβλήµατος Ένα πρόβληµα (Problem) ορίζεται ως η τετράδα P = ( I, G, T, S ) όπου: I είναι η αρχική κατάσταση, I S G είναι το σύνολο των τελικών καταστάσεων, G S T είναι το σύνολο των τελεστών µετάβασης, T: S S S είναι ο χώρος καταστάσεων. Τεχνητή Νοηµοσύνη, B' Έκδοση 14

15 Λύση προβλήµατος Λύση (Solution) σε ένα πρόβληµα (I, G, T, S), είναι µία ακολουθία από τελεστές µετάβασης t 1, t 2,...t n T µε την ιδιότητα g = t n (...(t 2 (t 1 (I)))...), όπου g G Λύση σε ένα πρόβληµα είναι η ακολουθία τελεστών που εφαρµόζονται στην αρχική κατάσταση για να προκύψει η τελική κατάσταση. Παράδειγµα: Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 ιεραπόστολους από την αριστερή στη δεξιά όχθη Μετέφερε 1 κανίβαλο από τη δεξιά στην αριστερή όχθη Μετέφερε 2 κανίβαλους από την αριστερή στη δεξιά όχθη Μετέφερε 1 ιεραπόστολο από τη δεξιά στην αριστερή όχθη Μετέφερε 1 ιεραπόστολο και 1 κανίβαλο από την αριστερή στη δεξιά όχθη Τεχνητή Νοηµοσύνη, B' Έκδοση 15

16 Κατηγορίες προβληµάτων (1/2) Κατηγοριοποίηση ανάλογα µε την ερµηνεία του όρου "λύση". Προβλήµατα όπου είναι πλήρως γνωστές οι τελικές καταστάσεις και επιδιώκεται η εύρεση µίας σειράς ενεργειών: προβλήµατα σχεδιασµού ενεργειών (planning) και προβλήµατα πλοήγησης, στρατηγικής, εφοδιαστικής, κτλ. Προβλήµατα όπου είναι γνωστές κάποιες ιδιότητες µόνο της τελικής κατάστασης και επιδιώκεται η εύρεση ενός πλήρους στιγµιότυπου της τελικής κατάστασης, προβλήµατα χρονοπρογραµµατισµού (scheduling), σταυρόλεξα, κρυπτογραφικά, κτλ. τα προβλήµατα είναι γνωστά ως προβλήµατα ικανοποίησης περιορισµών (constraint satisfaction problems). Τεχνητή Νοηµοσύνη, B' Έκδοση 16

17 Κατηγορίες προβληµάτων (2/2) Προβλήµατα στα οποία είναι γνωστές κάποιες ιδιότητες µόνο της τελικής κατάστασης και επιδιώκεται η εύρεση µίας πλήρως γνωστής τελικής κατάστασης και η σειρά ενεργειών που θα οδηγήσουν σε αυτή: προβλήµατα διαµόρφωσης (configuration). Προβλήµατα όπου είναι σχετικά εύκολο να βρεθούν λύσεις, αλλά το ζητούµενο είναι η βέλτιστη από αυτές. προβλήµατα βελτιστοποίησης, στα οποία και πάλι η τελική κατάσταση δεν είναι πλήρως γνωστή αλλά είναι γνωστά κάποια χαρακτηριστικά της. Τεχνητή Νοηµοσύνη, B' Έκδοση 17

18 Περιγραφή µε Αναγωγή (1/2) Μία ακολουθία από τελεστές ανάγουν την περιγραφή ενός προβλήµατος σε υποπροβλήµατα τα οποία είναι άµεσα επιλύσιµα, αρχέγονα (Primitive Problems). Παράδειγµα: Για να µεταφερθούν n>1 δίσκοι από τον στύλο i στο στύλο k, πρέπει: να µεταφερθούν n-1 δίσκοι από το i στο j, να µεταφερθεί 1 δίσκος από το i στο k, να µεταφερθούν n-1 δίσκοι από το j στο k. Αρχική και τελική περιγραφή προβλήµατος Τεχνητή Νοηµοσύνη, B' Έκδοση 18

19 Περιγραφή µε Αναγωγή (2/2) Αρχική Περιγραφή. Ένας Τελεστής Αναγωγής (reduction operator) ανάγει ένα πρόβληµα σε υποπροβλή- µατα. Τελική Περιγραφή. Ορισµός προβλήµατος Ένα πρόβληµα ορίζεται τυπικά ως η τετράδα P = ( ID, GD, TR, PP ) όπου ID είναι η αρχική περιγραφή, GD είναι ένα σύνολο από τελικές περιγραφές, TR είναι ένα σύνολο τελεστών αναγωγής και PP είναι ένα σύνολο από αρχέγονα προβλήµατα. Τεχνητή Νοηµοσύνη, B' Έκδοση 19

20 Αλγόριθµοι Αναζήτησης οθέντος ενός προβλήµατος µε περιγραφή στο χώρο καταστάσεων ή µε αναγωγή, στόχος είναι να βρεθεί η λύση του. Οι αλγόριθµοι που αναζητούν τη λύση σε ένα πρόβληµα ονοµάζονται αλγόριθµοι αναζήτησης (search algorithms) Η επιλογή ενός αλγορίθµου αναζήτησης για ένα συγκεκριµένο πρόβληµα είναι σηµαντική, διότι οι αλγόριθµοι αυτοί διαφέρουν µεταξύ τους σε αρκετά χαρακτηριστικά. Τεχνητή Νοηµοσύνη, B' Έκδοση 20

21 Αλγόριθµοι Αναζήτησης Τυφλοί Όνοµα Αλγορίθµου Συντοµογραφία Ελληνική Ορολογία Depth-First Search DFS Αναζήτηση Πρώτα σε Βάθος Breadth-First Search BFS Αναζήτηση Πρώτα σε Πλάτος Iterative Deepening ID Επαναληπτική Εκβάθυνση Bi-directional Search BiS Αναζήτηση ιπλής Κατεύθυνσης Branch and Bound B&B Επέκταση και Οριοθέτηση Beam Search BS Ακτινωτή Αναζήτηση Ευριστικοί Hill Climbing HC Αναρρίχηση Λόφων Best-First Search BestFS Αναζήτηση Πρώτα στο Καλύτερο A* (A-star) A* Α* (Άλφα Άστρο) Παιχνιδιών 2 ατόµων Minimax Minimax Αναζήτηση Μεγίστου-Ελαχίστου Alpha-Beta AB Άλφα-Βήτα Τεχνητή Νοηµοσύνη, B' Έκδοση 21

22 Χώρος Αναζήτησης οθέντος ενός προβλήµατος (I,G,T,S), χώρος αναζήτησης (search space) SP είναι το σύνολο όλων των καταστάσεων που είναι προσβάσιµες από την αρχική κατάσταση. Μία κατάσταση s ονοµάζεται προσβάσιµη (accessible) αν υπάρχει µια ακολουθία τελεστών µετάβασης t 1,t 2,...t k T τέτοια ώστε s=t k (...(t 2 (t 1 (I)))...). O χώρος αναζήτησης είναι υποσύνολο του χώρου καταστάσεων, δηλαδή SP S. Ένας αλγόριθµος αναζήτησης δεν µειώνει τον χώρο αναζήτησης (που είναι δεδοµένος) αλλά καθορίζει τον αριθµό των καταστάσεων που επισκέπτεται. Τεχνητή Νοηµοσύνη, B' Έκδοση 22

23 Χώρος Αναζήτησης ως ένδρο Αναζήτησης (1/2) Ο χώρος αναζήτησης µπορεί να αναπαρασταθεί µε γράφο. Τµήµα ένδρου Κόµβος (Node) Ρίζα (Root) Φύλλο (Tip, Leaf) ή Τερµατικός κόµβος Κλαδί (Branch) Λύση (Solution) Επέκταση (Expansion) Παράγοντας ιακλάδωσης (Branching Factor) Αναπαράσταση Κατάσταση Αρχική Κατάσταση Τελική Κατάσταση ή Αδιέξοδο (Dead Node), δηλαδή κατάσταση στην οποία δεν µπορεί να εφαρµοστεί κανένας τελεστής µετάβασης. Τελεστής Μετάβασης που µετατρέπει µια κατάσταση-γονέα (Parent State) σε µία άλλη κατάσταση-παιδί (Child State). Μονοπάτι (Path) που ενώνει την αρχική µε µία τελική κατάσταση Η διαδικασία παραγωγής όλων των καταστάσεων-παιδιών ενός κόµβου. Ο αριθµός των καταστάσεων-παιδιών που προκύπτουν από την επέκταση µιας κατάστασης. Επειδή δεν είναι σταθερός αριθµός, αναφέρεται και ως Μέσος Παράγοντας ιακλάδωσης (Average Branching Factor). Τεχνητή Νοηµοσύνη, B' Έκδοση 23

24 Χώρος Αναζήτησης ως ένδρο Αναζήτησης (2/2) Είναι πάντα εφικτό να µετατραπεί ο γράφος σε δένδρο αναζήτησης (search tree), το οποίο όµως µπορεί να έχει µονοπάτια απείρου µήκους. Το φαινόµενο της εκθετικής αύξησης του αριθµού των κόµβων του δένδρου ονοµάζεται συνδυαστική έκρηξη (combinatorial explosion). Τεχνητή Νοηµοσύνη, B' Έκδοση 24

25 Χαρακτηριστικά Αλγορίθµων (1/2) Ένας αλγόριθµος είναι µία αυστηρά καθορισµένη ακολουθία βηµάτων-εντολών που επιδιώκει να λύσει ένα πρόβληµα. οθέντος ενός προβλήµατος P=(I,G,T,S) και µετά την εφαρµογή κάποιου αλγορίθµου στο χώρο αναζήτησής του, προκύπτει το επιλυµένο πρόβληµα (solved problem), το οποίο ορίζεται ως µία τετράδα P s =(V,A,F,G s ), όπου: V είναι το σύνολο των καταστάσεων που εξέτασε ο αλγόριθµος αναζήτησης, A είναι ο αλγόριθµος που χρησιµοποιήθηκε, F είναι το σύνολο των λύσεων που βρέθηκαν, και G s είναι το σύνολο των τελικών καταστάσεων που εξετάστηκαν. Ο αριθµός των καταστάσεων που περιέχει το V και η σχέση του µε το χώρο καταστάσεων S ενός προβλήµατος και τον χώρο αναζήτησης SP, είναι ένα από τα χαρακτηριστικά της αποδοτικότητας του αλγορίθµου. Τεχνητή Νοηµοσύνη, B' Έκδοση 25

26 Χαρακτηριστικά Αλγορίθµων (2/2) Ένας αλγόριθµος ονοµάζεται εξαντλητικός (exhaustive) όταν το σύνολο των καταστάσεων που εξετάζει ο αλγόριθµος για να βρει τις απαιτούµενες λύσεις είναι ίσο µε το χώρο αναζήτησης, δηλαδή V=SP. Ένας αλγόριθµος δεν λύνει πάντα κάποιο πρόβληµα, έστω και αν υπάρχει κάποια λύση. Τότε τα σύνολα G s και F είναι κενά. Ένας αλγόριθµος αναζήτησης ονοµάζεται πλήρης (complete) αν εγγυάται ότι θα βρει µία λύση για οποιαδήποτε τελική κατάσταση, αν τέτοια λύση υπάρχει. Σε αντίθετη περίπτωση, ο αλγόριθµος ονοµάζεται µη-πλήρης (incomplete). Μία λύση ονοµάζεται βέλτιστη (optimal) αν οδηγεί στην καλύτερη, σύµφωνα µε τη διάταξη, τελική κατάσταση. Όταν δεν υπάρχει διάταξη, µία λύση ονοµάζεται βέλτιστη αν είναι η συντοµότερη (shortest). Ένας αλγόριθµος αναζήτησης καλείται αποδεκτός (admissible) αν εγγυάται ότι θα βρει τη βέλτιστη λύση, αν µια τέτοια λύση υπάρχει. Τεχνητή Νοηµοσύνη, B' Έκδοση 26

27 ιαδικασία Επιλογής Αλγορίθµου Αναζήτησης Η επιλογή ενός αλγορίθµου βασίζεται στα εξής κριτήρια: αριθµός των καταστάσεων που αυτός επισκέπτεται δυνατότητα εύρεσης λύσεων εφόσον αυτές υπάρχουν αριθµός των λύσεων ποιότητα των λύσεων αποδοτικότητά του σε χρόνο αποδοτικότητά του σε χώρο (µνήµη) ευκολία υλοποίησής του κλάδεµα Κλάδεµα ή αποκοπή καταστάσεων (pruning) του χώρου αναζήτησης είναι η διαδικασία κατά την οποία ο αλγόριθµος απορρίπτει, κάτω από ορισµένες συνθήκες, κάποιες καταστάσεις και µαζί µε αυτές όλο το υποδένδρο που εκτυλίσσεται κάτω από τις καταστάσεις αυτές. Τεχνητή Νοηµοσύνη, B' Έκδοση 27

28 Γενικός Αλγόριθµος Αναζήτησης Οι αλγόριθµοι αναζήτησης χρησιµοποιούν κοινές δοµές δεδοµένων: Μέτωπο της αναζήτησης (search frontier) ενός αλγορίθµου είναι η λίστα των καταστάσεων που ο αλγόριθµος έχει ήδη επισκεφτεί, αλλά δεν έχουν ακόµη επεκταθεί. Κλειστό σύνολο (closed set) ενός αλγορίθµου αναζήτησης είναι το σύνολο όλων των καταστάσεων που έχουν ήδη επεκταθεί. Τεχνητή Νοηµοσύνη, B' Έκδοση 28

29 Γενικός Αλγόριθµος Αναζήτησης 1. Βάλε την αρχική κατάσταση στο µέτωπο της αναζήτησης. 2. Αν το µέτωπο αναζήτησης είναι άδειο τότε σταµάτησε. 3. Πάρε την πρώτη σε σειρά κατάσταση του µετώπου της αναζήτησης. 4. Αν είναι η κατάσταση αυτή µέρος του κλειστού συνόλου τότε πήγαινε στο βήµα Αν είναι η κατάσταση αυτή τελική κατάσταση τότε τύπωσε τη λύση και πήγαινε στο βήµα Εφάρµοσε τους τελεστές µετάβασης για να παράγεις τις καταστάσεις-παιδιά. 7. Βάλε τις νέες καταστάσεις-παιδιά στο µέτωπο της αναζήτησης. 8. Κλάδεψε τις καταστάσεις που δε χρειάζονται (σύµφωνα µε κάποιο κριτήριο), βγάζοντάς τες από το µέτωπο της αναζήτησης. 9. Κάνε αναδιάταξη στο µέτωπο της αναζήτησης (σύµφωνα µε κάποιο κριτήριο). 10. Βάλε την κατάσταση-γονέα στο κλειστό σύνολο. 11. Πήγαινε στο βήµα 2. Τεχνητή Νοηµοσύνη, B' Έκδοση 29

30 Γενικός Αλγόριθµος (ψευδοκώδικας) algorithm general(initialstate, FinalState) begin Closed ; Frontier <InitialState>; CurrentState First(Frontier); while CurrentState FinalState do Frontier delete(currentstate,frontier); if CurrentState ClosedSet then begin Next Expand(CurrentState); Frontier insert(next,frontier); Frontier prune(frontier); Frontier reorder(frontier); Closed Closed {CurrentState}; end; if Frontier= then return failure; CurrentState First(Frontier); endwhile; end. Τεχνητή Νοηµοσύνη, B' Έκδοση 30

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων:

Επίλυση Προβληµάτων. ! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. ! Χαρακτηριστικά αλγορίθµων: Επίλυση Προβληµάτων! Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.! Χαρακτηριστικά αλγορίθµων: # Αποδοτικότητα (efficiency) σε µνήµηκαιχρόνο, # Πολυπλοκότητα (complexity), # Πληρότητα

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Περιγραφή Προβλημάτων Διαισθητικά, σε ένα πρόβλημα υπάρχει μια δεδομένη κατάσταση

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΑΚΤΟΡΩΝ ΠΕΡΙΓΡΑΦΗ ΠΡΟΒΛΗΜΑΤΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΛΥΣΗΣ Καραγιώργου Σοφία Γενικά Περί Πρακτόρων Με το όρο πράκτορα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Ευριστικής Αναζήτησης Πολλές φορές η τυφλή αναζήτηση δεν επαρκεί

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων

Διαβάστε περισσότερα

Επίλυση προβλημάτων με αναζήτηση

Επίλυση προβλημάτων με αναζήτηση Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Κεφάλαιο 4. Αλγόριθµοι Ευριστικής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 4. Αλγόριθµοι Ευριστικής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 4 Αλγόριθµοι Ευριστικής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Ευριστικής Αναζήτησης Εισαγωγικά (/2) Ο χώρος αναζήτησης

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν με παραδειγματικές περιπτώσεις οι θεμελιώδεις έννοιες για τον ορισμό ενός προβλήματος και η επίλυσή του μέσω αλγόριθμων αναζήτησης,

Διαβάστε περισσότερα

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search) Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 2: Αναζήτηση (Search) Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΒΕΛΤΙΣΤΗΣ ΛΥΣΗΣ ΑΛΓΟΡΙΘΜΟΙ ΕΥΡΕΣΗΣ ΛΥΣΗΣ ΣΕ ΠΑΙΓΝΙΑ ΔΥΟ ΑΝΤΙΠΑΛΩΝ Καραγιώργου

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ικανοποίηση Περιορισμών Κατηγορία προβλημάτων στα οποία είναι γνωστές μερικές

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Παίγνια Δύο Αντιπάλων Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται

Διαβάστε περισσότερα

Αλγόριθμοι Ευρετικής Αναζήτησης

Αλγόριθμοι Ευρετικής Αναζήτησης Τεχνητή Νοημοσύνη Αλγόριθμοι Ευρετικής Αναζήτησης Εισαγωγικά (/) 05 Αλγόριθμοι Ευρετικής Αναζήτησης (Heuristic Search Algorithms) Ο χώρος αναζήτησης συνήθως αυξάνεται εκθετικά. Απαιτείται πληροφορία για

Διαβάστε περισσότερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων

Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

Διαβάστε περισσότερα

Επίλυση προβληµάτων µε αναζήτηση

Επίλυση προβληµάτων µε αναζήτηση Επίλυση προβληµάτων µε αναζήτηση Πράκτορες επίλυσης προβληµάτων (1/2) ιατύπωση στόχου: Σύνολο καταστάσεων του κόσµου ιατύπωση προβλήµατος Επιλογή επιπέδου λεπτοµέρειας (αφαίρεση) 3-2 Πράκτορες επίλυσης

Διαβάστε περισσότερα

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1 Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή

Διαβάστε περισσότερα

Το πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals)

Το πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals) Το πρόβληµα των ιεραποστόλων και κανιβάλων (missionaries and cannibals) Αρχικά είναι όλοι στην αριστερή όχθη initial_state(state(left(3,3),right(0,0), boat_left)). Σκοπός είναι να µεταφερθούν όλοι µε ασφάλεια

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Branch and Bound. Branch and Bound

Branch and Bound. Branch and Bound Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Μέθοδος επίλυσης προβληµάτων ακέραιου γραµµικού προγραµµατισµού Προσπαθούµε να αποφύγουµε την εξαντλητική αναζήτηση Μέθοδος επίλυσης προβληµάτων

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Δατσέρης Γιάννης ΑΜ: 1280 Επιβλέπων καθηγητής Τριανταφυλλίδης

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης! Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Ντετερµινιστικά

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών

Ε ανάληψη. Προβλήµατα ικανο οίησης εριορισµών. ορισµός και χαρακτηριστικά Ε ίλυση ροβληµάτων ικανο οίησης εριορισµών ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση µε Αντι αλότητα Adversarial Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Προβλήµατα ικανο οίησης εριορισµών ορισµός και

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη

Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη Ασκήσεις ανακεφαλαίωσης στο μάθημα Τεχνητή Νοημοσύνη Τμήμα Μηχανικών Πληροφορικής ΤΕ (ΤΕΙ Ηπείρου) Τυφλή αναζήτηση Δίνεται το ακόλουθο κατευθυνόμενο γράφημα 1. Ο κόμβος αφετηρία είναι ο Α και ο κόμβος

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς

Αναζήτηση (Search) Τµήµα Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Αναζήτηση (Search) 1 Αλγόριθµοι και Πολυπλοκότητα n Ας υποθέσουµε ότι έχουµε δύο διαφορετικούς αλγόριθµους για την επίλυση ενός προβλήµατος. Πως θα βρούµε ποιος είναι ο καλύτερος? g Ποιος τρέχει πιο γρήγορα?

Διαβάστε περισσότερα

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 2

ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ 2 Version 1.5 (16/03/2017) Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP

1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1 ΠΡΟΒΛΗΜΑΤΑ ΤΝ ΚΑΙ LISP 1.1 Αναζήτηση και Στρατηγικές Αναζήτησης Ένας τρόπος επίλυσης προβληµάτων µε µεθόδους Τεχνητής Νοηµοσύνης (ΤΝ) είναι η αναζήτηση λύσης (search). Σύµφωνα µ αυτήν, ένα πρόβληµα παριστάνεται

Διαβάστε περισσότερα

ιαφοροεξελικτικός Αλγόριθµος... 56

ιαφοροεξελικτικός Αλγόριθµος... 56 1 2 3 Περιεχόµενα ΚΕΦΑΛΑΙΟ 1 Η ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ... 6 1.1. Εισαγωγή... 6 1.2 Βασικές έννοιες γύρω από την Τεχνητή Νοηµοσύνη... 8 1.2.1. Ορισµός της Νοηµοσύνης... 8 1.2.2. Ορισµός της Tεχνητής Nοηµοσύνης...

Διαβάστε περισσότερα

Προγραμματισμός Ι (ΗΥ120)

Προγραμματισμός Ι (ΗΥ120) Προγραμματισμός Ι (ΗΥ120) Διάλεξη 19: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρείς θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνων μέγεθος, σε μια από τις τρείς

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Κεφάλαιο 7 : Είδη, Τεχνικές, και Περιβάλλοντα Προγραµµατισµού

Κεφάλαιο 7 : Είδη, Τεχνικές, και Περιβάλλοντα Προγραµµατισµού ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 7 : Είδη, Τεχνικές, και Περιβάλλοντα Προγραµµατισµού ( Απαντήσεις & Λύσεις Βιβλίου) 1. Σκοποί κεφαλαίου Κύκλος ανάπτυξης προγράµµατος Κατηγορίες γλωσσών προγραµµατισµού

Διαβάστε περισσότερα

Προβλήματα Ικανοποίησης Περιορισμών

Προβλήματα Ικανοποίησης Περιορισμών Προβλήματα Ικανοποίησης Περιορισμών (Επιπλέον Διαφάνειες) Μανόλης Κουμπαράκης Τεχνητή Νοημοσύνη 1 Περιεχόμενα Παραδείγματα CSP Παράδειγμα εκτέλεσης του αλγόριθμου ΒΤ Sudoku k-consistency Η έννοια της αποσύνθεσης

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα

Διδάσκων: Κωνσταντίνος Κώστα Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Κλάσεις Πολυπλοκότητας

Κλάσεις Πολυπλοκότητας Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν

Διαβάστε περισσότερα

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Τυπικός ορισμός και επίλυση προβλημάτων με την χρήση του search.py (Ιεραπόστολοι & Κανίβαλοι) Γαρμπής Γιώργος

Τυπικός ορισμός και επίλυση προβλημάτων με την χρήση του search.py (Ιεραπόστολοι & Κανίβαλοι) Γαρμπής Γιώργος Τυπικός ορισμός και επίλυση προβλημάτων με την χρήση του search.py (Ιεραπόστολοι & Κανίβαλοι) Γαρμπής Γιώργος ggarbis@di.uoa.gr 21 Νοεμβρίου 2011 Πως ορίζουμε τυπικά ένα πρόβλημα; Αρχική Κατάσταση: Από

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις εδοµένων

ΗΥ360 Αρχεία και Βάσεις εδοµένων ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Tutorial B-Trees, B+Trees Μπαριτάκης Παύλος 2018-2019 Ιδιότητες B-trees Χρήση για μείωση των προσπελάσεων στον δίσκο Επέκταση των Binary Search Trees

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα