Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή"

Transcript

1 Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα ο χρόνος και ο χώρος που απαιτείται για την λύση τους μέσω αναζήτησης είναι απαγορευτικά μεγάλος και αυξάνει τουλάχιστον εκθετικά με το μέγεθος του προβλήματος.

2 Εισαγωγή Παράδειγμα: κρυφός συνδυασμός μιας ηλεκτρονικής κλειδαριάς που δέχεται ως κλειδί έναν αριθμό με 2 ψηφία έχουμε να ψάξουμε (δοκιμάσουμε) 100 συνδυασμούς. Αν η κάθε δοκιμή χρειάζεται 1 δευτερόλεπτο τότε θέλουμε 1 min και 40sec. Αν όμως το κλειδί αποτελείται από 4 ψηφία τότε πρέπει να ψάξουμε συνδυασμούς το οποίο μπορεί να μας πάρει μέχρι και 2 ώρες και 45 λεπτά. με 8 ψηφία; πάνω από 3 χρόνια στην χειρότερη περίπτωση. Εισαγωγή βλέπουμε την εκθετική αύξηση της πολυπλοκότητας που παρουσιάζουν πολλά προβλήματα. για μικρά μεγέθη προβλημάτων ή για πολύ απλά προβλήματα μπορούμε να χρησιμοποιήσουμε τυφλή αναζήτηση. αλλοιώς χρησιμοποιούμε extra πληροφορία. Αν για παράδειγμα, ξέραμε ότι αυτός που όρισε το κλειδί βάζει ως κλειδιά ημερομηνίες γεννήσεως συγγενικών του προσώπων τότε θα χρειαζόταν να δοκιμάσουμε πολύ λίγους συνδυασμούς (ευριστικός τρόπος). εξαρτάται από το πρόβλημα

3 Μισθοφόροι και κανίβαλοι A B cannibal cannibal cannibal missionary missionary missionary Μισθοφόροι και κανίβαλοι Έχουμε στην όχθη ενός ποταμού 3 μισθοφόρους και 3 κανίβαλους και μία βάρκα που χωράει το πολύ 2 άτομα. Περιορισμοί δεν υπάρχει κανένας τρόπος να περάσει κάποιος το ποτάμι πάρα μόνο με την βάρκα η βάρκα δεν μπορεί να μετακινηθεί παρά μόνο αν υπάρχει κάποιος μέσα. Ζητείται ένα σχέδιο μετακινήσεων με βάση το οποίο θα περάσουν το ποτάμι και οι μισθοφόροι και οι κανίβαλοι με τον επιπλέον περιορισμό ότι ποτέ δεν πρέπει σε μία όχθη να υπάρχουν μισθοφόροι, ο αριθμός των οποίων να είναι μικρότερος από τον αριθμό των κανιβάλων σε εκείνη την όχθη.

4 Σπαζοκεφαλιά Σπαζοκεφαλιά Έχουμε έναν πίνακα 3 x 3 (9 θέσεων). Η μία θέση του πίνακα είναι κενή ενώ στις άλλες υπάρχει κάποιος από τους αριθμούς 1 μέχρι 8. Ο κάθε αριθμός εμφανίζεται ακριβώς μία φορά. Στον πίνακα αυτόν επιτρέπονται οι μετακινήσεις των αριθμών με τον εξής τρόπο: ένας αριθμός μπορεί να μετακινηθεί μόνο οριζόντια ή κάθετα κατά μία θέση κάθε φορά εφόσον η θέση στην οποία θα μετακινηθεί ήταν προηγουμένως άδεια. Δεδομένου μίας αρχικής διάταξης ζητείται να γίνουν οι κατάλληλες κινήσεις έτσι ώστε ο πίνακας να φτάσει στην τελική του μορφή

5 Ο κόσμος των κύβων A B C A B C Ο κόσμος των κύβων Έχουμε πάνω σε ένα τραπέζι 3 κύβους ιδίου μεγέθους: Α, B, C. Αρχικά έχουμε τον κύβο C πάνω στον κύβο Α ενώ ο κύβος B βρίσκεται μόνος του πάνω στο τραπέζι. Κάθε φορά μπορούμε να μετακινήσουμε ένα μόνο κύβο και να τον τοποθετήσουμε πάνω στο τραπέζι ή πάνω σε κάποιο άλλο κύβο ο οποίος όμως δεν πρέπει να έχει άλλον κύβο πάνω του (πρέπει να είναι ο πάνω κύβος). Δεν μπορούμε να μετακινήσουμε τους κύβους που έχουν κάποιον άλλο κύβο πάνω τους. Ζητείται ένα σχέδιο κινήσεων έτσι ώστε να καταλήξουμε να έχουμε τον κύβο C πάνω στο τραπέζι, τον B πάνω στο C και τον Α πάνω στο Β.

6 Το πρόβλημα του πλανόδιου πωλητή C C1 C2 C3 C4 C5 C6 C7 B C8 C10 F C9 C12 A C13 C11 D C14 C15 E Το πρόβλημα του πλανόδιου πωλητή Έχουμε ένα σύνολο από πόλεις οι οποίες συνδέονται με διάφορους δρόμους μεταξύ τους. Για κάθε τέτοιο δρόμο ξέρουμε το μήκος του. Ένας πλανόδιος πωλητής θέλει να περάσει από όλες αυτές τις πόλεις. Ζητείται η σειρά με την οποία πρέπει να επισκεφτεί τις πόλεις ο πλανόδιος πωλητής έτσι ώστε από κάθε πόλη να περάσει ακριβώς μία φορά, να καταλήξει στην πόλη από την οποία ξεκίνησε και να κάνει τα ελάχιστα δυνατά χιλιόμετρα.

7 Επιλογή οδικής διαδρομής Δεδομένου ενός οδικού χάρτη που περιέχει πόλεις, δρόμους και χιλιομετρικές αποστάσεις για τους δρόμους, ζητείται να βρεθεί ο συντομότερος δρόμος που συνδέει δύο δεδομένες πόλεις. 150 ΙΩΑΝΝΙΝΑ ΤΡΙΚΑΛΑ ΗΓΟΥΜΕΝΙΤΣΑ ΑΡΤΑ ΚΟΖΑΝΗ 50 ΚΑΤΕΡΙΝΗ ΛΑΡΙΣΑ 60 ΒΟΛΟΣ ΦΑΡΣΑΛΑ 92 ΛΑΜΙΑ 120 ΔΕΛΦΟΙ ΑΙΓΙΟ 80 ΑΘΗΝΑ ΠΑΤΡΑ ΚΟΡΙΝΘΟΣ 75 ΝΑΥΠΛΙΟ Τα 12 νομίσματα Μας δίνονται 12 νομίσματα ένα από τα οποία είναι κάλπικο Στην διάθεση μας έχουμε μία ζυγαριά με την οποία μπορούμε να κάνουμε το πολύ 3 ζυγίσεις. Σε κάθε ζύγιση μπορούμε να συγκρίνουμε δύο ομάδες νομισμάτων και να δούμε πια ομάδα είναι βαρύτερη ή αν οι δύο ομάδες έχουν το ίδιο βάρος. Ζητείται ένα σχέδιο ζυγίσεων το οποίο βρίσκει σε κάθε περίπτωση ποιο είναι το κάλπικο νόμισμα.

8 Οι 8 βασίλισσες Έχουμε μία άδεια σκακιέρα και 8 βασίλισσες Ζητείται να τοποθετήσουμε τις βασίλισσες πάνω στην σκακιέρα έτσι ώστε καμία βασίλισσα να μην απειλεί κάποια άλλη. Αυτή είναι μία αποτυχημένη απόπειρα λύσης του προβλήματος: στην κυρίως λευκή διαγώνιο υπάρχουν 2 βασίλισσες. Κατηγοριοποίηση προβλημάτων Η λύση μπορεί να είναι απλώς μια τελική κατάσταση ή μπορεί να είναι το μονοπάτι προς κάποια τελική κατάσταση. Μπορεί να ψάχνουμε για την καλύτερη λύση ή απλώς για μια λύση. Η αρχική γνώση μπορεί να αρκεί ή μπορεί να μην αρκεί για να βρούμε μια λύση - εξωτερικοί παράγοντες μπορεί να επηρεάζουν τις επιλογές που έχουμε ή τα αποτελέσματα των πράξεων μας.

9 Επίλυση μέσω αναζήτησης Περιγραφή του προβλήματος ώς πρόβλημα αναζήτησης Μοντελοποίηση καταστάσεων Μοντελοποίηση μεταβάσεων Ορισμός αρχικής κατάστασης Ορισμός μεθόδου αναγνώρισης τελικών καταστάσεων Επιλογή αλγορίθμου αναζήτησης Παράδειγμα μοντελοποίησης Μισθοφόροι και κανίβαλοι: (M,K,O) Μεταβάσεις:» (x, y, Α) (x-1, y, B) αν x > 0.» (x, y, Α) (x-2, y, B) αν x > 1.» (x, y, Α) (x, y-1, B) αν y > 0.» (x, y, Α) (x, y-2, B) αν y > 1.» (x, y, Α) (x-1, y-1, B) αν x > 0 και y > 0.» (x, y, B) (x+1, y, A) αν x < 3.»... Αρχική κατάσταση: (3,3,Α) Τελική κατάσταση: (0,0,Β)

10 Γράφος καταστάσεων Περιγράφει των χώρο αναζήτησης και όλες τις δυνατές μεταβάσεις B E A C D Δέντρο αναζήτησης Το γενικό δέντρο αναζήτησης περιέχει όλα τα δυνατά μονοπάτια που μπορούν να ακολουθήσουν οι αλγόριθμοι αναζήτησης A C B D C E A D C B A

11 Παράδειγμα - Μισθ. Και Κανίβαλοι δέντρο αναζήτησης 3, 3, A 3, 2, B 3, 1, B 2, 2, B 1, 3, B 2, 3, B 3, 3, A 3, 2, A 3, 3, A 2, 3, A 3, 2, A 3, 3, A , 1, B 3, 0, B 2, 1, B 1, 2, B 2, 2, B Παράδειγμα - Μισθ. Και Κανίβαλοι 3, 3, A 3, 1, B 3, 2, B 2, 2, B 2, 3, B 1, 3, B 3, 2, A 1, 2, B 2, 3, A 3, 0, B 2, 1, B 2, 0, B Γράφος καταστάσεων 3, 1, A 1, 1, B 2, 1, A 1, 3, A 1, 2, A 2, 2, A 1, 1, A 0, 2, B 0, 3, A 0, 1, B 0, 2, A 0, 0, B

12 Μείωση Προβλημάτων Αντί να λύσουμε όλο το πρόβλημα συνολικά το διασπάμε σε μικρότερα υπο-προβλήματα και λύνουμε αυτά ανεξάρτητα (Divide and conquer). Χρειάζεται ανάλογη μοντελοποίηση- δεν είναι πάντα δυνατό και εξαρτάται από την φύση του προβλήματος. Για παράδειγμα έχουμε να βρούμε μία διαδρομή που να ενώνει την Αθήνα με την Θεσσαλονίκη. Το πρόβλημα αυτό μπορούμε να το διασπάσουμε σε δύο προβλήματα: Αθήνα - Λάρισα και Λάρισα - Θεσσαλονίκη. Στο τέλος ενώνουμε τις δύο λύσεις Όταν χρησιμοποιούμε την τακτική μείωσης των προβλημάτων τα δέντρα αναζήτησης παίρνουν την μορφή δέντρων AND-OR Μείωση προβλήματος (χάρτης) βρες διαδρομή Αθήνα - Θεσσαλονίκη Κόμβος OR... βρες διαδρομή Αθήνα - Θεσσαλονίκη μέσω Λάρισας βρες διαδρομή Αθήνα - Θεσσαλονίκη μέσω Τρικάλα Κόμβοι AND βρες διαδρομή Αθήνα - Λάρισα βρες διαδρομή Λάρισα - Θεσσαλονίκη βρες διαδρομή Αθήνα - Τρίκαλα βρες διαδρομή Τρίκαλα - Θεσσαλονίκη Κόμβοι OR βρες διαδρομή Αθήνα - Τρίκαλα μέσω Δελφούς βρες διαδρομή Αθήνα - Τρίκαλα μέσω Φάρσαλα βρες διαδρομή Αθήνα - Τρίκαλα μέσω Λάρισας Κόμβοι AND

13 Αλγόριθμοι αναζήτησης Τυφλή αναζήτηση αναζήτηση κατα πλάτος, κατα βάθος, σταδιακής εκβάθυνσης μέθοδος αναρρίχησης, περιορισμένης δέσμης αναζήτηση με βάση το κόστος αμφίδρομη αναζήτηση Πληροφορημένη αναζήτηση Άπληστη αναζήτηση, Α* Ενδιαφέρουν πλήρεις αλγόριθμοι (βρίσκουν λύση) Πάντα τη βέλτιστη; Το παράδειγμα που θα χρησιμοποιούμε A 0 B 2 D 7 F 13 G 8 I 22 J 27 K 10 M 22 M 107 N 16 R 16 T U V X Y Z

14 Αναζήτηση κατα πλάτος Αλγόριθμος: 1. Δημιούργησε μία ουρά (queue) που αρχικά έχει τη ρίζα (root). 2. Έως ότου η ουρά είναι άδεια ή ο στόχος έχει βρεθεί, έλεγξε αν το πρώτο στοιχείο είναι ο στόχος. 2α. Αν είναι μην κάνεις τίποτα. 2β. Αν δεν είναι, τότε: - βγάλε το πρώτο στοιχείο - βάλε τα παιδιά του πρώτου στοιχείου πίσω στην ουρά 3. Αν έχει βρεθεί ο στόχος, τότε έχουμε επιτυχία, αλλιώς, αποτυχία. Αναζήτηση κατα πλάτος Πλήρης, δεν είναι σίγουρο αν θα βρεί τη βέλτιστη λύση - Ο(b m ) χώρου και χρόνου A 0 1 B D 7 F G 8 6 I 22 J 27 K 10 M 22 M 107 N 16 R 16 T U V X Y Z

15 Αναζήτηση κατα βάθος Αλγόριθμος: 1. Δημιούργησε μία ουρά (queue) που αρχικά έχει τη ρίζα (root). 2. Έως ότου η ουρά είναι άδεια ή ο στόχος έχει βρεθεί, έλεγξε αν το πρώτο στοιχείο είναι ο στόχος. 2α. Αν είναι μην κάνεις τίποτα. 2β. Αν δεν είναι, τότε: - βγάλε το πρώτο στοιχείο - βάλε τα παιδιά του πρώτου στοιχείου μπροστά στην ουρά 3. Αν έχει βρεθεί ο στόχος, τότε έχουμε επιτυχία, αλλιώς, αποτυχία. Αναζήτηση κατα βάθος Δεν είναι πλήρης (εγκλωβισμός), δεν είναι σίγουρο ότι θα βρεί πρώτα τη βέλτιστη, Ο(bm) χώρος - O(b m ) χρόνος A 0 1 B 2 2 D 7 F 13 3 G 8 5 I 22 J 27 K M 22 M 107 N 16 R 16 8 T U V X Y Z

16 Μέθοδος αναρρίχησης (Hill Climbing) Παραλλαγή της αναζήτησης κατά βάθος Σε κάθε βήμα διαλέγει τον καλύτερο απόγονο του τρέχοντα κόμβου χωρίς να κρατάει τους εναλλακτικούς δρόμους (ταξινομούμε με βάση την συνάρτηση d(s) τα παιδιά του κάθε κόμβου) Προβλήματα της μεθόδου Δεν βρίσκει πάντα λύση d(s) είναι σταθερή στην εκτέλεση τοπικά βέλτιστη λύση (local minima) Μέθοδος αναρρίχησης Παραλλαγή της αναζήτησης κατά βάθος που βρίσκει λύση όταν και η κατά βάθος βρίσκει 1. Δημιούργησε μία ουρά (queue) που αρχικά έχει τη ρίζα (root). 2. Έως ότου η ουρά είναι άδεια ή ο στόχος έχει βρεθεί, έλεγξε αν το πρώτο στοιχείο είναι ο στόχος. 2α. Αν είναι μην κάνεις τίποτα. 2β. Αν δεν είναι, τότε: - βγάλε το πρώτο στοιχείο - ταξινόμησε τα παιδιά του πρώτου στοιχείου και βάλε τα μπροστά στην ουρά 3. Αν έχει βρεθεί ο στόχος, τότε έχουμε επιτυχία, αλλιώς, αποτυχία.

17 Μέθοδος αναρρίχησης Ο(bm) χώρος - O(b m ) χρόνος A 0 1 B 2 2 D 7 F 13 G 8 3 I 22 J 27 K 10 4 M 22 M 107 N 16 R 16 5 T U V X Y Z Μέθοδος σταδιακής εκβάθυνσης Συνδυάζει την αναζήτηση κατά πλάτος με την κατά βάθος. Διατηρεί την ιδιότητα της πληρότητας και έχει χαμηλή πολυπλοκότητα. 1. Θέσε όριο βάθους = 1 2. Εκτέλεσε την παρακάτω διαδικασία αναζήτησης περιορισμένου βάθους έως ότου η αναζήτηση δεν φτάσει στο όριο βάθους ή βρεθεί ο στόχος Αύξησε το όριο βάθους κατά Δημιούργησε μία ουρά (queue) που αρχικά έχει τη ρίζα (root) Έως ότου η ουρά είναι άδεια ή ο στόχος έχει βρεθεί κάνε τα παρακάτω : 2.3.α. Έλεγξε αν το πρώτο στοιχείο είναι ο στόχος. 2.3.β. Αν είναι μην κάνεις τίποτα. 2.3.γ. Αν δεν είναι, τότε : - βγάλε το πρώτο στοιχείο - αν το στοιχείο που βγήκε ήταν σε βάθος μικρότερο του ορίου βάθους τότε: - βάλε τα παιδιά του μπροστά στην ουρά - διαφορετικά σημείωσε ότι φτάσαμε στο όριο βάθους 3. Αν έχει βρεθεί ο στόχος, τότε έχουμε επιτυχία, αλλιώς, αποτυχία.

18 Μέθοδος σταδιακής εκβάθυνσης Πλήρης - Ο(bm) χώρου - Ο(b m ) χρόνου A 0 1, 4 B 2 2, 5 D 7 3, 8 F G 8 I 22 J 27 K 10 M 22 M 107 N 16 R 16 T U V X Y Z Αναζήτηση με βάση το κόστος Αλγόριθμος: 1. Δημιούργησε μία ουρά (queue) που αρχικά έχει τη ρίζα (root). 2. Έως ότου η ουρά είναι άδεια ή ο στόχος έχει βρεθεί, έλεγξε αν το πρώτο στοιχείο είναι ο στόχος. 2α. Αν είναι μην κάνεις τίποτα. 2β. Αν δεν είναι, τότε: - βγάλε το πρώτο στοιχείο - βάλε τα παιδιά του πρώτου στοιχείου πίσω στην ουρά - ταξινόμησε όλη την ουρά με βάση την d(s) (ο καλύτερος κόμβος μπροστά) 3. Αν έχει βρεθεί ο στόχος, τότε έχουμε επιτυχία, αλλιώς, αποτυχία.

19 Αναζήτηση με βάση το κόστος Βέλτιστη λύση (με αύξουσα συν. κόστους - Ο(b m ) χώρου και χρόνου A 0 1 B 2 2 D F 13 6 G 8 4 I 22 J 27 K 10 M 22 M 107 N 16 R 16 7 T U V X Y Z Μέθοδος περιορισμού δέσμης Ευριστικός τρόπος μείωσης του χώρου αναζήτησης. Επιλογή μόνο των k καλύτερων παιδιών κάθε κόμβου. Μπορεί να χρησιμοποιηθεί στην αναζήτηση κατα πλάτος, κατα βάθος ή ακόμα και στην αναζήτηση βέλτιστου κόμβου. Μπορεί να μην βρεί λύση.

20 Αμφίδρομη αναζήτηση Εφαρμόσιμη όταν οι μεταβάσεις μπορούν να αντιστραφούν και όταν γνωρίζουμε καταστάσεις στόχος. Πολύ καλή πολυπλοκότητα χρόνου: Ο(b m/2 ) Χρειάζεται όμως αλγόριθμος που σε Ο(1) να βρίσκει αν τα δέντρα συναντήθηκαν - συνήθως με πίνακα κατακερματισμού. Ευριστικές συναρτήσεις Κωδικοποιούν πληροφορία για το πρόβλημα και τον τρόπο επίλυσης του. Εκτιμάνε την αξία της κατάστασης. Αποδεκτή είναι η ευριστική συνάρτηση που ποτέ δεν υποτιμά την αξία της κατάστασης. Κατασκευή ευριστικών συναρτήσεων με την μέθοδο της απαλοιφής περιορισμών του προβλήματος.

21 Ευριστικές συναρτήσεις Για παράδειγμα στο πρόβλημα της σπαζοκεφαλιάς μεγέθους 8 μπορούμε να ορίσουμε τις δύο παρακάτω συναρτήσεις : h1 = ο αριθμός των στοιχείων που δεν ταιριάζουν. h2 = το άθροισμα των αποστάσεων των στοιχείων που δεν ταιριάζουν από την σωστή τους θέση. Η απόσταση ενός στοιχείου από την σωστή του θέση υπολογίζεται από το άθροισμα των οριζόντιων και κάθετων κινήσεων που πρέπει να γίνουν στο στοιχείο έτσι ώστε να φτάσει στην σωστή του θέση, δεδομένου ότι δεν υπάρχουν τα άλλα στοιχεία που εμποδίζουν τις μετακινήσεις. Και οι δύο συναρτήσεις είναι αποδεκτές. Έχουν, δηλαδή, την ιδιότητα να μας καθοδηγούν πάντα προς την καλύτερη λύση. Ευριστικές συναρτήσεις Σε άλλα προβλήματα είναι πολύ πιο δύσκολο να αξιολογήσουμε τις καταστάσεις για να καθοδηγήσουμε την αναζήτηση. Μπορούμε όμως πολλές φορές να περιορίσουμε τον αριθμό των καταστάσεων ανάμεσα στις οποίες γίνεται η αναζήτηση. Για παράδειγμα, στο πρόβλημα των 12 νομισμάτων, δεν χρειάζεται να δοκιμάζουμε ζυγίσεις με οποιοδήποτε αριθμό νομισμάτων αλλά ζυγίζοντας πάντα 8 νομίσματα μπορούμε να βρούμε την λύση. Γενικά, η κατασκευή ευριστικών μεθόδων απαιτεί καλή κατανόηση του προβλήματος και των ιδιοτήτων της διαδικασίας επίλυσης.

22 Πληροφορημένοι Αλγόριθμοι Οι πληροφορημένοι αλγόριθμοι αναζήτησης βασίζονται σε κάποια ευριστική συνάρτηση. Χρησιμοποιώντας αυτήν την συνάρτηση (αλλά πιθανώς και άλλες παραμέτρους) αξιολογούν τις πιθανές επόμενες καταστάσεις και διαλέγουν την καλύτερη από αυτές. Σε αντιστοιχία με την απαίτηση η συνάρτηση d(s) να μας δίνει το κόστος για να φτάσουμε στην κατάσταση s απαιτούμε η συνάρτηση h(s) να εκτιμάει το κόστος για να φτάσουμε από την κατάσταση s σε κάποια κατάσταση στόχος. Το πόσο καλή θα είναι η εκτίμηση καθορίζει το πόσο χρήσιμη θα είναι η ευριστική συνάρτηση. Το παράδειγμα που θα χρησιμοποιούμε 21 h(s) A 0 7 B 2 d(s) 8 D 7 20 F 13 6 G 8 0 I J 27 5 K 10 2 M 22 2 M N 16 0 R U T V X Y Z

23 Άπληστη αναζήτηση (Greedy search) 1. Δημιούργησε μία ουρά (queue) που αρχικά έχει τη ρίζα (root). 2. Έως ότου η ουρά είναι άδεια ή ο στόχος έχει βρεθεί, έλεγξε αν το πρώτο στοιχείο είναι ο στόχος. 2α. Αν είναι μην κάνεις τίποτα. 2β. Αν δεν είναι, τότε: - βγάλε το πρώτο στοιχείο - βάλε τα παιδιά του πρώτου στοιχείου πίσω στην ουρά - ταξινόμησε όλη την ουρά με βάση την h(s) (ο καλύτερος κόμβος μπροστά) 3. Αν έχει βρεθεί ο στόχος, τότε έχουμε επιτυχία, αλλιώς, αποτυχία. Άπληστη αναζήτηση Ο(b m ) χρόνου και χώρου, δεν είναι σίγουρο ότι θα βρεί τη 21 βέλτιστη λύση πρώτα A B 2 D 7 20 F 13 6 G I J 27 5 K M 22 2 M N 16 0 R U T V X Y Z

24 Αναζήτηση Α* Συνδυάζουν την άπληστη αναζήτηση με την αναζήτηση με βάση το κόστος. Χρησιμοποιούν δηλαδή στην ταξινόμηση την συνάρτηση f(s) = d(s) + h(s) Η f(s) μας δίνει ουσιαστικά μία εκτίμηση της καλύτερης λύσης που περνάει από τον κόμβο s. Προϋπόθεση ότι η h(s) δεν υπερεκτιμά ποτέ το κόστος για να φτάσουμε στο κοντινότερο στόχο (αποδεκτή συνάρτηση). Όπως μπορεί να αποδειχτεί και αυστηρά αυτή η ιδιότητα της f(s) μας εγγυάται ότι ο αλγόριθμος θα βρει πάντα λύση και μάλιστα θα βρει πρώτα την καλύτερη λύση. Ο αλγόριθμος Α* δηλαδή, είναι πλήρης και βέλτιστος. Αναζήτηση Α* - Ιδιότητες Άλλη σημαντική Ιδιότητα: πληροφόρηση Πληροφόρηση: αν h 1 (n) & h 2 (n) είναι αποδεκτές συναρτήσεις (δηλ. Δεν υπερεκτιμούν την απόσταση σε στόχο) και & h 1 (n) >= h 2 (n), τότε οι κόμβοι που ο A* εξετάζει χρησιμοποιώντας την h 1 είναι υποσύνολο αυτών που εξετάζει χρησιμοποιώντας την h 2 δηλαδή η h 1 (n) θα οδηγήσει σε πιο γρήγορη αναζήτηση ακραία περίπτωση: h 2 (n) = 0 = καθόλου πληροφόρηση - τότε ότι παραπάνω ξέρει η h 1 θα βελτίωνε την αναζήτηση θα λέμε ότι η h 1 είναι πιο πληροφορημένη από την h 2

25 Αναζήτηση Α* - Ιδιότητες Σταθερότητα: Αν η h σπάνια υπερεκτιμά την απόσταση το πολυ s, τότε ο A* σπάνια θα βρεί λύσεις που είναι χειρότερες από την καλύτερη αρα, είναι χρήσιμο να έχουμε καλή εκτίμηση της h Πληρότητα: Ο A* θα τελειώσει και θα βρεί τη βέλτιστη λύση ακόμα και σε άπειρους χώρους αναζήτησης, αν υπάρχει βέλτιστη λύση και όλα τα κόστη είναι θετικά Μονότονη συνάρτηση: Αν για όλα τα n, m όπου m είναι απόγονος του n και h(n) - h(m) <= cost(n, m), τότε όποτε επισκεφτόμαστε ένα κόμβο, θα είμαστε εκεί με τον συντομότερο δρόμο δεν χρειάζεται να θυμόμαστε τα μονοπάτια ακραία περίπτωση: h(n) = 0 [κατά πλάτος] Αναζήτηση Α* Αλγόριθμος: 1. Δημιούργησε μία ουρά (queue) που αρχικά έχει τη ρίζα (root). 2. Έως ότου η ουρά είναι άδεια ή ο στόχος έχει βρεθεί, έλεγξε αν το πρώτο στοιχείο είναι ο στόχος. 2α. Αν είναι μην κάνεις τίποτα. 2β. Αν δεν είναι, τότε: - βγάλε το πρώτο στοιχείο - βάλε τα παιδιά του πρώτου στοιχείου πίσω στην ουρά - ταξινόμησε όλη την ουρά με βάση την f(s) (ο καλύτερος κόμβος μπροστά) 3. Αν έχει βρεθεί ο στόχος, τότε έχουμε επιτυχία, αλλιώς, αποτυχία.

26 Αναζήτηση Α* Πλήρης - Ο(b m ) χρόνου και χώρου -βέλτιστη λύση f(s)=d(s)+h(s) 21 A 1 με h(s) 0 αποδεκτή 2 7 B 2 8 D F 13 6 G I J K M 22 2 M N 16 0 R U T V X Y Z Σύγκριση αλγορίθμων Όνομα αλγορίθμου Πολυπλοκότητα χρόνου Πολυπλοκότητα χώρου Πληρότητα Κατά πλάτος O(b m ) O(b m ) ΝΑΙ ΟΧΙ Κατά βάθος O(b m ) O(bm) ΟΧΙ ΟΧΙ Αναρρίχησης O(b m ) O(bm) ΟΧΙ ΟΧΙ Σταδιακής εκβάθυνσης Με βάση το κόστος Περιορισμένης δέσμης Άπληστη αναζήτηση O(b m ) O(bm) ΝΑΙ ΟΧΙ Βέλτιστη Λύση O(b m ) O(b m ) αναλόγως την d(s) αναλόγως την d(s) O(k m ) O(k m ) ή O(km) ΟΧΙ ΟΧΙ O(b m ) O(b m ) αναλόγως την h(s) OXI Α* O(b m ) O(b m ) ΝΑΙ ΝΑΙ

27 Γενικοί παράγοντες στην αναζήτηση βέλτιστη - κάποια λύση μεγάλοι χώροι αναζήτησης - βέλτιστη λύση κόστος εκτέλεσης της αναζήτησης - κόστος να βρείς μια λύση γνώση σε σχέση με το πρόβλημα - brute force implicit - explicit στόχοι

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές

Αλγοριθμικές Τεχνικές Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο

ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων

Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή

Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Πράκτορας ε ίλυσης ροβληµάτων πράκτορας µε στόχο Αναζήτηση διατύπωση

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 3: Αλγόριθμοι πληροφορημένης αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ

ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 8: Αναζήτηση με Αντιπαλότητα Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Αναζήτηση

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες

Διαβάστε περισσότερα

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων

Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων

Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται

Διαβάστε περισσότερα

Θέμα 1: Robbie και Αναζήτηση

Θέμα 1: Robbie και Αναζήτηση Θέμα : Robbie και Αναζήτηση Ο Robbie, το ρομπότ του παρακάτω σχήματος-χάρτη, κατά τη διάρκεια των εργασιών που κάνει διαπιστώνει ότι πρέπει να γυρίσει όσο το δυνατόν πιο γρήγορα, από την τρέχουσα θέση,

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths

Διαβάστε περισσότερα

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών 1 Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της Κωτσογιάννη Μαριάννας Περίληψη 1. Αντικείµενο- Σκοπός Αντικείµενο της διπλωµατικής αυτής εργασίας

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 3: Αναζήτηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 3: Αναζήτηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Επίλυση προβληµάτων µε αναζήτηση

Επίλυση προβληµάτων µε αναζήτηση Επίλυση προβληµάτων µε αναζήτηση Πράκτορες επίλυσης προβληµάτων (1/2) ιατύπωση στόχου: Σύνολο καταστάσεων του κόσµου ιατύπωση προβλήµατος Επιλογή επιπέδου λεπτοµέρειας (αφαίρεση) 3-2 Πράκτορες επίλυσης

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:

Διαβάστε περισσότερα

Ευφυείς Τεχνολογίες Πράκτορες

Ευφυείς Τεχνολογίες Πράκτορες Ευφυείς Τεχνολογίες Πράκτορες Ενότητα 2: Αναπαράσταση Γνώσης και Επίλυση Προβλημάτων Δημοσθένης Σταμάτης mos@it.tith.gr www.it.tith.gr/~mos Μαθησιακοί Στόχοι της ενότητας 2 Πως ορίζεται ένα πρόβλημα στα

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιακριτό Πρόβλημα Σακιδίου ίνονται n αντικείμενα και σακίδιο μεγέθους Β. Αντικείμενο

Διαβάστε περισσότερα

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης 7η Δραστηριότητα Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης Περίληψη Οι υπολογιστές χρησιμοποιούνται συχνά για την ταξινόμηση καταλόγων, όπως για παράδειγμα, ονόματα σε αλφαβητική σειρά, ραντεβού

Διαβάστε περισσότερα

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων

ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων ΚΕΦΑΛΑΙΟ 1 - Επίλυση Προβλημάτων Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν με παραδειγματικές περιπτώσεις οι θεμελιώδεις έννοιες για τον ορισμό ενός προβλήματος και η επίλυσή του μέσω αλγόριθμων αναζήτησης,

Διαβάστε περισσότερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα

Ε ανάληψη. Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. συνεισφορά άλλων επιστηµών στην ΤΝ. 1956 σήµερα ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α ληροφόρητη Αναζήτηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Καταβολές συνεισφορά άλλων επιστηµών στην ΤΝ Ιστορική αναδροµή 1956

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ

Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Καθηγητής : Κουμπαράκης Μανόλης Ημ/νία παράδοσης: 11/01/2011 Ονομ/μο φοιτητή : Μπεγέτης Νικόλαος Α.Μ.:

Διαβάστε περισσότερα

2ο video (επίλυση ανίσωσης 1 ου βαθμού)

2ο video (επίλυση ανίσωσης 1 ου βαθμού) 2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Επεξεργασία Ερωτήσεων Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL)

Διαβάστε περισσότερα

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας,

Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις:,, πίνακας, Παράδειγμα 3.2(Επίλυση συστήματος Jordan) Δίνεται το σύστημα μιας εισόδου και μιας εξόδου, το οποίο περιγράφεται από τις κάτωθι εξισώσεις: Όπου,, πίνακας, Να λυθεί το σύστημα με είσοδο τη συνάρτηση Επίλυση

Διαβάστε περισσότερα

Chapter 7, 8 : Time, Space Complexity

Chapter 7, 8 : Time, Space Complexity CSC 314: Switching Theory Chapter 7, 8 : Time, Space Complexity 12 December 2008 1 1 Υπολογίσιμα και Εφικτά Υπολογίσιμα Προβλήματα Είδαμε ότι 1. Οτιδήποτεμπορούμεναπεριγράψουμεμεένααλγόριθμο μπορεί να

Διαβάστε περισσότερα

Επιλέγοντας το μενού Αναζητήσεις έχετε τις εξής δυνατότητες : Αναζήτηση Μερίδων. Αναζήτηση Εγγράφων

Επιλέγοντας το μενού Αναζητήσεις έχετε τις εξής δυνατότητες : Αναζήτηση Μερίδων. Αναζήτηση Εγγράφων Οδηγίες χρήσης της Εφαρμογής του Υποθηκοφυλακείου Αναζητήσεις Επιλέγοντας το μενού Αναζητήσεις έχετε τις εξής δυνατότητες : Αναζήτηση Μερίδων Αναζήτηση Εγγράφων Α ν α ζ ή τ η σ η Μ ε ρ ί δ ων Στην κεντρική

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα