ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις"

Transcript

1 ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο

2 Δέντρα Δέντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών) σχέσεων: προγόνου-απογόνου, προϊσταμένου-υφισταμένου, όλου-μέρους, Εφαρμογές: Γενεαλογικά δέντρα. Οργανόγραμμα επιχείρησης, ιεραρχία διοίκησης. User interfaces, web sites, module hierarchy, δέντρα απόφασης, Ιεραρχική οργάνωση: ταχύτερη πρόσβαση σε δεδομένα!

3 Δέντρα: Βασικές Ιδιότητες Γράφημα ακυκλικό και συνεκτικό. Τα παρακάτω είναι ισοδύναμα για κάθε απλό μη κατευθυνόμενο γράφημα G(V, E): G είναι δέντρο. Κάθε ζευγάρι κορυφών του G συνδέεται με μοναδικό μονοπάτι. G ελαχιστικά συνεκτικό. G συνεκτικό και E = V -1. G ακυκλικό και E = V -1. G μεγιστικά ακυκλικό. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 3

4 Δέντρα: Ορολογία Γράφημα ακυκλικό και συνεκτικό. Δέντρο με n κορυφές έχει m = n 1 ακμές. Ρίζα : κόμβος χωρίς πρόγονο. Δέντρο με ρίζα : ιεραρχία Φύλλο : κόμβος χωρίς απογόνους. κόμβος βαθμού 1. Πρόγονοι u: κόμβοι στο (μοναδικό) μονοπάτι u προς ρίζα. Απόγονοι u: κόμβοι σε μονοπάτια από u προς φύλλα. Υποδέντρο u : Δέντρο αποτελούμενο από u και απόγονούς του. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 4

5 Δέντρα: Ορολογία Επίπεδο u : μήκος μονοπατιού από u προς ρίζα. Ύψος : μέγιστο επίπεδο κόμβου (φύλλου). Μέγιστηαπόστασηφύλλουαπόρίζα. Δυαδικό δέντρο : κάθε κορυφή 2 παιδιά Αριστερό και δεξιό. Κάθε υποδέντρο είναι δυαδικό δέντρο. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 5

6 Δυαδικά Δέντρα Αν δέντρο ύψους h, #κορυφών n: h+1 n 2 h+1 1 h+1 επίπεδα, 1 κορ. / επίπ. 2 i κορυφές στο επίπεδο i h = 2 h Αν δέντρο με #κορυφών = n, ύψος h: log 2 (n+1) 1 h n 1 Πλήρες (complete): n = 2 h ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 6

7 Inorder Ενδο-διατεταγμένη (inorder) διέλευση: Αριστερό Ρίζα Δεξί. Κόμβος εξετάζεται μετά από κόμβους αριστερού υποδέντρου και πριν από κόμβους δεξιού υποδέντρου ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 7

8 Preorder Προ-διατεταγμένη (preorder) διέλευση: Ρίζα Αριστερό Δεξί. Κόμβος εξετάζεται πριν από κόμβους αριστερού και δεξιού υποδέντρου ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 8

9 Postorder Μετα-διατεταγμένη (preorder) διέλευση: Αριστερό Δεξί Ρίζα Κόμβος εξετάζεται μετά από κόμβους αριστερού και δεξιού υποδέντρου ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 9

10 ΔυαδικάΔέντραΑναζήτησης Δυαδικά Δέντρα με ρίζα. Κάθε κόμβος περιέχει στοιχείο (αριθμό). Για κάθε κόμβο u, κόμβο left στο αριστερό υποδένδρο του u, και κόμβο right στο δεξιό υποδένδρο του u, στοιχείο(left) στοιχείο(u) στοιχείο(right) Inorder διέλευση τυπώνει στοιχεία σε αύξουσα σειρά. Απόδειξη με επαγωγή. Δομή ΔΔΑ επιτρέπει εύκολη αναζήτηση! ΠΛΗ 20, ΑΘΗ4 ( )

11 Αναζήτηση Ακολουθούμε μονοπάτι από ρίζα προς φύλλο: Αν x = στοιχείο κόμβου, εύρεση Αν x < στοιχείο κόμβου, πηγαίνουμε αριστερά Αν x > στοιχείο κόμβου, πηγαίνουμε δεξιά Ορθότητα: ιδιότητα ΔΔΑ Χρόνος εκτέλεσης: Ο(ύψος) ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 11

12 Μέγιστο / Ελάχιστο Μέγιστο : δεξιότατος (rightmost) κόμβος. Ελάχιστο : αριστερότατος (leftmost) κόμβος. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 12

13 Εισαγωγή ως παιδί / φύλλο του κόμβου όπου καταλήγει αποτυχημένη αναζήτηση στοιχείου. Διατηρείται ιδιότητα ΔΔΑ. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 13

14 Αναζήτηση Κατά Πλάτος (BFS) Εκκίνηση από αρχική κορυφή s και εξέλιξη σε φάσεις. 1 η φάση: εξερεύνηση γειτόνων s (σε απόσταση 1 από s). 2 η φάση: εξερεύνηση γειτόνων κορυφών 1 ης φάσης που δεν έχουν εξερευνηθεί ακόμη (σε απόσταση 2 από s). 3 η φάση: εξερεύνηση γειτόνων κορυφών 2 ης φάσης που δεν έχουν εξερευνηθεί ακόμη (σε απόσταση 3 από s).. φάση k: εξερεύνηση γειτόνων κορυφών φάσης k 1που δεν έχουν εξερευνηθεί ακόμη (σε απόσταση k από s). «Κατά Πλάτος»: ολοκληρώνει εξερεύνηση κορυφών σε απόσταση k από s πριν επεκταθεί σε απόσταση k+1. Εξέλιξη αναζήτησης: δάσος της ΑΚΠ. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 14

15 Αναζήτηση Κατά Πλάτος (BFS) Κάθε χρονική στιγμή, 3 είδη κορυφών: Ανεξερεύνητη: όχι επίσκεψη ακόμη (λευκή). Υπο-εξέταση: επίσκεψη αλλά όχι εξερεύνηση γειτόνων (γκρι). Εξερευνημένη: επίσκεψη και εξερεύνηση γειτόνων (μαύρη). Κορυφές περνούν από παραπάνω στάδια με αυτή τη σειρά. Αρχικά όλες οι κορυφές ανεξερεύνητες. Πρώτηεπίσκεψηανεξερεύνητηςκορ. υπό-εξέταση. Επίσκεψητωνγειτόνωνυπο-εξέταση κορ. εξερευνημένη. «Κατά Πλάτος»: σειρά που γίνονται υπο-εξέταση ίδια με σειρά που γίνονται εξερευνημένες. Ουρά: εισαγωγή όταν γίνονται υπο-εξέταση και εξαγωγή για εξερεύνηση γειτόνων. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 15

16 Αναζήτηση Κατά Πλάτος (BFS) s ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 16

17 Παραδείγματα Ιδιότητες BFS σε (α) πλήρες γράφημα, (β) δέντρο, (γ) κύκλο. Διαδικασία ολοκληρώνεται με κορυφές εξερευνημένες ή ανεξερεύνητες. Αν γράφημα συνεκτικό, όλες εξερευνημένες, και δέντρο BFS αποτελεί συνδετικό δέντρο γραφήματος. Αν όχι, εξερευνημένες σε ίδια συνεκτική συνιστώσα με s. Υπόλοιπες ανεξερεύνητες. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 17

18 Ιδιότητες BFS δίνει υπογράφημα G p (V p, E p ) εξερευνημένων κορυφών και ακμών από όπου έγινε πρώτη επίσκεψη. Ένα μη κατευθυνόμενο γράφημα συνεκτικό ανν BFS παράγει συνδετικό δέντρο. Συνεκτικό γράφημα: BFS δέντρο είναι δέντρο συντομότερων μονοπατιών από s (ακμές θεωρούνται μοναδιαίου μήκους). Πώς υπολογίζουμε αποστάσεις; Αλγόριθμος για αναγνώριση διμερούς γραφήματος; s ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 18

19 Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση νέων κορυφών με συνεχή απομάκρυνση από αρχική κορυφή s. Επισκέπτομαι ανεξερεύνητη κορυφή u για πρώτη φορά. Εξερευνώ (όμοια) όλους τους γείτονες της u (πριν εξερευνημένη). Αναδρομική διαδικασία: Κάθε χρονική στιγμή, 3 είδη κορυφών: Ανεξερεύνητη: δεν έχουμε επισκεφθεί ακόμη (λευκή). Υπο-εξέταση: έχουμε επισκευφθεί και εξερευνούμε γείτονες (γκρι). Εξερευνημένη: έχει ολοκληρωθεί η διαδικασία (μαύρη). ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 19

20 Αναζήτηση Κατά Βάθος (DFS) ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 20

21 Ελάχιστο Συνδετικό Δέντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος υπογραφήματος Ζητούμενο: ελάχιστου βάρους συνεκτικό υπογράφημα που καλύπτει όλες τις κορυφές. Συνεκτικό (εξ ορισμού) + ακυκλικό (ελάχιστο) Δέντρο. Minimum Spanning Tree (MST, ΕΣΔ). Πολλές και σημαντικές εφαρμογές. Σχεδιασμός συνδετικού δικτύου (οδικού, τηλεπ/κου, ηλεκτρικού) με ελάχιστο κόστος ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 21

22 Τομές, Σύνολα Τομής, και ΕΣΔ Τομή (S, V \ S): διαμέριση κορυφών σε 2 σύνολα S, V \ S. Σύνολο τομής δ(s, V \ S): ακμές ένα άκρο στο S και άλλο άκρο στο V \ S. δ(s, V \ S): όλες οι ακμές που διασχίζουν τομή (S, V \ S). Σύνολο ακμών E διασχίζει τομή (S, V \ S) αν Ε δ(s, V \ S). (Ε)ΣΔ ορίζεται από σύνολο ακμών (ελάχιστου) βάρους που διασχίζει όλες τις τομές. Άπληστη στρατηγική: ενόσω «αγεφύρωτη» τομή, διέσχισέ την με ακμή ελάχιστου βάρους. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις)

23 Αλγόριθμος Prim Ορθότητα: Ακμή {v, p[v]}: Διασχίζει τομή (S, V \ S). Ελάχιστου βάρους μεταξύ ακμών του δ(s, V \ S). ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 23

24 Αλγόριθμος Prim: Παράδειγμα ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 24

25 Αλγόριθμος Kruskal Ορθότητα: αν e i προστεθεί τότε: Όχι κύκλος, άρα e i διασχίζει μια τομή που δεν διασχίζει το Δ. Αύξουσα σειρά βάρους: e i ελάχιστου βάρους (πρώτη που ελέγχεται) από όσες ακμές διασχίζουν συγκεκριμένη τομή. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 25

26 Αλγόριθμος Kruskal: Παράδειγμα ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 26

27 Κανόνες Σχηματισμού ΕΣΔ Ακμή e που για κάποια τομή (S, V \ S), αποτελεί ελάχιστου βάρους ακμή που διασχίζει τομή (S, V \ S): e ανήκει σε κάποιο ΕΣΔ. Ακμή e που για κάποιον κύκλο C αποτελεί μέγιστου βάρους ακμή κύκλου C: Αν βάρος e μεγαλύτερο από βάρος άλλων ακμών του C, e δεν ανήκει σε κανένα ΕΣΔ. Αν όλες οι ακμές του C έχουν ίδιο βάρος, e δεν ανήκει σε κάποιο ΕΣΔ. Ενόσω υπάρχει κύκλος C, αποκλεισμός (μιας) βαρύτερης ακμής C. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 27

28 Συζήτηση Ασκήσεις Έστω γράφημα G με διαφορετικά βάρη στις ακμές. Νδο κάθε ΕΣΔ του G περιέχει την ακμή ελάχιστου βάρους. Νδο G έχει μοναδικό ΕΣΔ. Αληθεύει ότι η ακμή μέγιστου βάρους δεν ανήκει στο ΕΣΔ; Έστω γράφημα G με κύκλο C. Νδο η ακμή μέγιστου βάρους του C (αν είναι μοναδική) δεν ανήκει σε κανένα ΕΣΔ του G. Έστω T ΕΣΔ για γράφημα G(V, E, w). Να δείξετε ότι ΤπαραμένειΕΣΔγια G(V, E, w/2). Αληθεύει ότι το ΤπαραμένειΕΣΔγια G(V, E, w+k); ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 28

29 Συζήτηση Ασκήσεις Υπολογισμός ΕΣΔ Τ υπό περιορισμούς ότι κάποιες ακμές πρέπει να (μην) ανήκουν στο Τ; Υπολογισμός ΣΔ Τ με δεύτερο μικρότερο βάρος; Bottleneck κόστος ΣΔ Τ: Υπολογισμός ΣΔ με ελάχιστο bottleneck κόστος; ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 29

30 Εξετάσεις: Ερωτήματα Α Μέρους 10 Ερωτήματα, από 4 προτάσεις το καθένα (4 10 = 40). Κάθε πρόταση να χαρακτηριστεί ΣωστήήΛάθος. Όχι απάντηση: 0. Σωστή απάντηση: 1. Λάθος απάντηση: -1/2. Ελάχιστη βαθμολογία σε κάθε ερώτημα: 0. Χρόνος: συνήθως 1 ώρα και 10 λεπτά. Βαρύτητα: περίπου 1/3 συνολικής βαθμολογίας. Εξετάζονται τα πάντα! Αλλά (σχετικά) εύκολα και έτσι ώστε να λύνονται (σχετικά) γρήγορα. Βασικό η ακριβής κατανόηση του ζητούμενου, σε κάποια αφού «οι λέξεις κάνουν τη διαφορά»! «Τυπολόγιο» δεν βοηθάει σημαντικά, λόγω χρόνου. Εξάσκηση, ψυχραιμία, προσοχή, αυτο-συγκέντρωση! ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 30

31 Εξετάσεις: Ερωτήματα Β Μέρους Συνήθως 4 ασκήσεις σε περίπου 2 ώρες και 20 λεπτά. Αρκετές φορές παρόμοια με ερωτήματα εργασιών (όχι μόνο τρέχουσας χρονιάς, αλλά και παλαιότερων). Συνδυαστική (συνήθως 25%): Συνήθως δύο σκέλη (με επιμέρους ερωτήματα). Μαθηματική Λογική (συνήθως 35%): Συνήθως τρία σκέλη (κάποια με επιμέρους ερωτήματα). Γραφήματα (συνήθως 2 20%): Συνήθως δύο ασκήσεις, μπορεί να αναλύονται σε επιμέρους ερωτήματα (για διευκόλυνση). ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 31

32 Συνδυαστική 100 (μη διακεκριμένοι) επιβάτες κατεβαίνουν σε 4 (διακεκριμένες) στάσεις. Γεννήτρια Συνάρτηση και όρο του οποίου ο συντελεστής δίνει #τρόπων να κατέβουν, όταν: Δεν υπάρχουν περιορισμοί. #επιβατών 3 η στάση #επιβατών 2 η στάση #επιβατών 1 η στάση. #συμβ/ρών μήκους n από γράμματα Α, Β, και Γ, όταν κάθε γράμμα εμφανίζεται τουλάχιστον 1 φορά, #Α είναιάρτιος, και #Γ είναιπεριττός. #συμβ/ρών για n = 3, 4, και 5. ΓΣ και όρο του οποίου ο συντελεστής δίνει τον #συμβ/ρών μήκους n. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 32

33 Συνδυαστική n πράσινους βόλους και m κόκκινους βόλους (n m) στη σειρά ώστε τουλάχιστον 1 πράσινος βόλος ανάμεσα σε κάθε ζευγάρι κόκκινων. Γεννήτρια συνάρτηση και όρο του οποίου ο συντελεστής δίνει #διαφορετικών τοποθετήσεων. #μεταθέσεων γραμμάτων λέξης ΠΑΡΑΠΟΝΑ ώστε τα 2 Π να μην εμφανίζονται σε διαδοχικές θέσεις. Πόσα γραφήματα ισομορφικά με το διπλανό γράφημα έχει το γράφημα Κ 4 ; Πόσα έχει το Κ 20. Θεωρούμε τις κορυφές των Κ 4 και Κ 20 διακεκριμένες. ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 33

34 Μαθηματική Λογική Κάποια αντιπροσωπευτικά ερωτήματα (τελευταίας 5ετίας): Ερ. 2, Επαναληπτική Ερ. 2, Κανονική Ερ. 2, Επαναληπτική Ερ. 2.β και2.δ, Κανονική Ερ. 2.2, Ιούλιος Ερ. 2, Ιούνιος 2010 (δείτε ειδικά τα 2.i και 2.ii). Ερ. 2, Ιούλιος Ερ. 2.α και2.γ, Ιούνιος Ερ. 2, Ιούλιος Ερ. 2.α, Ιούνιος Ερ. 2, Ιούλιος Ερ. 2, Ιούνιος ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 34

35 Θεωρία Γραφημάτων Κάποια αντιπροσωπευτικά ερωτήματα (τελευταίας 5ετίας): Ερ. 3 (επαγ. δέντρα) και Ερ. 4 (Euler), επαναλ. 12. Ερ. 3.α (επαγ. χρωματικός αρ.), Ερ. 3.β (DFS και συνεκτικότητα), και Ερ. 4 (επιπεδότητα), κανονική 12. Ερ. 3 (χρωματικός αρ.) και Ερ. 4 (δέντρα+αποστάσεις), επαναλ. 11. Ερ. 3 (Hamilton+επαγωγή) και Ερ. 4 (διμερή+επίπεδα), κανον. 11. Ερ. 3 (συντ. μονοπάτια) και 4 (χρωματικός αρ.+επαγωγή), Ιούλιος 10. Ερ. 3 (συνδυαστική+χρωματισμοί+συνεκτικότητα) και Ερ. 4 (επιπεδότητα), Ιούνιος 10. Ερ. 3 (επιπεδότητα) και 4 (συμπληρωματικό+απόστασεις), Ιούλιος 09. Ερ. 3 (επαγωγή σε δέντρα) και 4.2 (δέντρα+...), Ιούνιος Ερ. 3 (Hamilton) και 4.1 (βαθμοί+δέντρα), Ιούλιος Ερ. 3 (επιπεδότητα+βαθμοί) και 4 (ΕΣ δέντρα), Ιούνιος Ερ. 3 (χρωματικός αριθμός) και 4, Ιούλιος Ερ. 3 (επιπεδότητα) και 4 (επαγωγή), Ιούνιος ΠΛΗ 20, ΑΘΗ4 ( ) 6η ΟΣΣ(Δέντρα - Εξετάσεις) 35

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό έντρο

Ελάχιστο Συνδετικό έντρο Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

Αλγόριθµοι Γραφηµάτων

Αλγόριθµοι Γραφηµάτων Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 3: Δένδρα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

υαδικά έντρα Αναζήτησης

υαδικά έντρα Αναζήτησης ηµήτρης Φωτάκης Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο Αιγαίου υαδικά έντρα µε ρίζα. Κάθε εσωτερικός κόµβος περιέχει στοιχείο (αριθµό) και έχει δύο παιδιά. NULL-φύλλα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Outline 1 Άσκηση 1: Εφαρμογές BFS DFS 2 Άσκηση 2: Μια Συνάρτηση Κόστους σε Κατευθυνόμενα Γραφήματα 3 Άσκηση 3: Ανάλυση Ασφάλειας 4 Άσκηση 4: Το Σύνολο

Outline 1 Άσκηση 1: Εφαρμογές BFS DFS 2 Άσκηση 2: Μια Συνάρτηση Κόστους σε Κατευθυνόμενα Γραφήματα 3 Άσκηση 3: Ανάλυση Ασφάλειας 4 Άσκηση 4: Το Σύνολο Αλγόριθμοι και Πολυπλοκότητα 3η σειρά γραπτών και προγραμματιστικών ασκήσεων CoReLab ΣΗΜΜΥ ΕΜΠ Ιανουάριος 2017 CoReLab ΣΗΜΜΥ ΕΜΠ Αλγόριθμοι και Πολυπλοκότητα Ιανουάριος 2017 1 / 53 Outline 1 Άσκηση 1:

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες έννοιες και τους αλγορίθµους της Θεωρίας ένδρων.

Διαβάστε περισσότερα

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

6η Διάλεξη Διάσχιση Γράφων και Δέντρων ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

(elementary graph algorithms)

(elementary graph algorithms) (elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ0, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 014, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ20, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 203, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Γραφήματα Βασικές Έννοιες και Εφαρμογές Βασικοί

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94. ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ0, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΕΡΩΤΗΜΑΤΑ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 015, Α ΜΕΡΟΣ 1. Στους παρακάτω τύπους τα,, είναι προτασιακοί τύποι. Ισχύει ότι: 1. ( Σ / Λ ) O τύπος ( ) ( ) είναι αντίφαση.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3 Δενδρικά Γραφήματα 93 ΚΕΦΑΛΑΙΟ 3 ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ 3.1 Εισαγωγή 3.2 Βασικές Ιδιότητες Δένδρων 3.3 Απαρίθμηση Δένδρων 3.4 Γενετικά Δένδρα 3.5 Ελάχιστα Γενετικά Δένδρα Προαπαιτούμενη Γνώση Πολύ καλή γνώση

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

έντρα Πολλαπλής ιακλάδωσης και (a, b)- έντρα

έντρα Πολλαπλής ιακλάδωσης και (a, b)- έντρα έντρα Πολλαπλής ιακλάδωσης και (a, b)- έντρα ηµήτρης Φωτάκης Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων έντρα Αναζήτησης Πολλαπλής ιακλάδωσης ( ΑΠ ) ΑΠ ή έντρα m-δρόµων: Σ Βάσεων εδοµένων.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Δέντρα Δυαδικά Δέντρα Δυαδικά Δέντρα Αναζήτησης (inary Search Trees) http://aetos.it.teithe.gr/~demos/teaching_r.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Δένδρα (Trees) Βασικές Έννοιες. Δυαδικά Δένδρα. Δυαδικά Δένδρα Αναζήτησης. AVL Δένδρα. Δένδρα: Βασικές Έννοιες Ορισμοί Λειτουργίες Υλοποιήσεις ΑΤΔ Δένδρο: μοντέλο ιεραρχικής

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Άσκηση 10.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) : Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Διερεύνηση Πρώτα σε Βάθος (DFS) 2. Τοπολογική Ταξινόμηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Depth-First Search Πρώτα σε Βάθος διερεύνηση (Depth-First Search) είναι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10γ: Αλγόριθμοι Γραφημάτων- Διερεύνηση Πρώτα σε Βάθος (DFS)- Τοπολογική Ταξινόμηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ουρά Προτεραιότητας: Heap

Ουρά Προτεραιότητας: Heap Ουρά Προτεραιότητας: Heap ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ομές εδομένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειμένων για

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (3)

Στοιχεία Θεωρίας Γραφηµάτων (3) Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 1 / 23 Απαρίθµηση Μονοπατιών Εστω

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για συνεκτικά γραφήματα Επαγωγή για συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη προτασιακή

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016 Άσκηση 8.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος 2009. Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας. ΠΡΟΛΟΓΟΣ Το βιβλίο «Δικτυακή Βελτιστοποίηση» γράφτηκε με κύριο στόχο να καλύψει τις ανάγκες της διδασκαλίας του μαθήματος «Δικτυακός Προγραμματισμός», που διδάσκεται στο Τμήμα Εφαρμοσμένης Πληροφορικής,

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Εισαγωγή στους Αλγορίθμους Ενότητα 9η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Ελάχιστα Γεννητικά Δένδρα Ελάχιστο Γεννητικό

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal

Διαβάστε περισσότερα