(training data) (test data)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(training data) (test data)"

Transcript

1 Αποθήκες εδοµένων και Εξόρυξη Γνώσης Κατηγοριοποίηση Νίκος Πελέκης, Γιάννης Θεοδωρίδης 1 ΠΑ.ΠΕΙ. Περιεχόµενα Το πρόβληµα της κατηγοριοποίησης Τεχνικές κατηγοριοποίησης Στατιστικές τεχνικές Τεχνικές βασισµένες στην απόσταση ένδρα αποφάσεων Νευρωνικά δίκτυα Κανόνες κατηγοριοποίησης

2 Κατηγοριοποίηση (Classification) Εκµάθηση µιας τεχνικής να προβλέπει την κλάση ενός στοιχείου επιλέγοντας από προκαθορισµένες τιµές Εποπτευόµενη vs. Μη εποπτευόµενη µάθηση Εποπτευόµενη µάθηση (κατηγοριοποίηση) Επόπτευση: Τα δεδοµένα εκπαίδευσης συνοδεύονται από ετικέτες για την κλάση µε την οποία ανήκει το καθένα Τα νέα δεδοµένα κατηγοριοποιούνται µε βάση τη γνώση που µας παρέχουν τα δεδοµένα εκπαίδευσης Μη εποπτευόµενη µάθηση (συσταδοποίηση) ε γνωρίζουµε τις κλάση στην οποία ανήκουν τα δεδοµένα εκπαίδευσης Μας δίνεται ένα σύνολο µετρήσεων, παρατηρήσεων κλπ. µε στόχο να ανακαλύψουµε κλάσεις ή οµάδες µέσα στα δεδοµένα 4

3 Το πρόβληµα της κατηγοριοποίησης Αν µας δοθεί µια βάση δεδοµένων D={t 1,t,,t n } και ένα σύνολο κατηγοριών - "κλάσεων" C={C 1,,C m }, το Πρόβληµα Κατηγοριοποίησης έγκειται στον ορισµό µιας απεικόνισης f: D C όπου κάθε εγγραφή t i ανατίθεται σε µία κλάση C j. Ουσιαστικά, η κατηγοριοποίηση διαµερίζει τη D σε κλάσεις ισοδυναµίας. Η Πρόβλεψη είναι παρόµοιο πρόβληµα, αλλά µπορεί να θεωρηθεί ότι έχει άπειρο αριθµό κλάσεων. 5 Παραδείγµατα κατηγοριοποίησης Οι δάσκαλοι αναθέτουν βαθµούς µέσα από τις κατηγορίες A, B, C, D, F. Τα µανιτάρια ταξινοµούνται σε δηλητηριώδη και φαγώσιµα. Μπορεί να γίνει πρόβλεψη εάν θα πληµµυρίσει ένας ποταµός. Οι πελάτες της τράπεζας µπορούν να κατηγοριοποιηθούν ως προς την πιστωτική τους ικανότητα. 6

4 Παράδειγµα κατηγοριοποίησης Βαθµολογία πτυχίου If x 8.5 then grade = «άριστα». If 6.5 x < 8.5 then grade = «λίαν καλώς». If x < 6.5 then grade = «καλώς». x < x άριστα < καλώς λίαν καλώς 7 Τεχνικές κατηγοριοποίησης Τυπική προσέγγιση: 1. ηµιουργία ενός µοντέλου µέσω της αξιολόγησης ενός συνόλου δεδοµένων εκπαίδευσης (training data) (ή µέσω της γνώσης ειδικών του πεδίου).. Εφαρµογή του µοντέλου σε νέα δεδοµένα. Οι κλάσεις πρέπει να είναι προκαθορισµένες Οι πιο κοινές τεχνικές είναι τα δένδρα αποφάσεων, τα νευρωνικά δίκτυα και τεχνικές βασισµένες σε απόσταση ή σε στατιστικές µεθόδους. 8

5 1 ο βήµα: ηµιουργία µοντέλου εδοµένα εκπαίδευσης (training data) Αλγόριθµος Κατηγοριοποίησης όνοµα βαθµίδα έτη µόνιµος Μιχάλης Επικ.Καθηγητής ΟΧΙ Νίκος Επικ.Καθηγητής 7 ΝΑΙ Βασίλης Καθηγητής ΝΑΙ ηµήτρης Αναπλ.Καθηγητής 7 ΝΑΙ Γιώργος Επικ.Καθηγητής 6 ΟΧΙ Κώστας Αναπλ.Καθηγητής ΟΧΙ Μοντέλο IF βαθµίδα = Καθηγητής OR έτη > 6 THEN µόνιµος = ΝΑΙ 9 ο βήµα: Εφαρµογή µοντέλου Μοντέλο οκιµαστικά εδοµένα (test data) Νέα δεδοµένα (Γιάννης, Καθηγητής, 4) όνοµα βαθµίδα έτη µόνιµος Θωµάς Επικ.Καθηγητής ΟΧΙ Νίκος Αναπλ.Καθηγητής 7 ΟΧΙ Γεράσιµος Καθηγητής 5 ΝΑΙ Ιωσήφ Επικ.Καθηγητής 7 ΝΑΙ Μόνιµος; 10

6 Προσδιορισµός κλάσεων µεβάσητην απόσταση µεβάσητη διαµέριση 11 Ζητήµατα που προκύπτουν Ελλιπή δεδοµένα (missing data) τα αγνοούµε τα αντικαθιστούµε µε ειδικές τιµές Μέτρηση απόδοσης Μέτρηση ακρίβειας µε χρήση συνόλου δοκιµαστικών δεδοµένων (test data) Μήτρα σύγχυσης (confusion matrix) Καµπύλη OC (operating characteristic) 1

7 Παράδειγµα µε δοκιµαστικά δεδοµένα Name Gender Height Output1 Output Kristina F 1.6m Short Medium Jim M m Tall Medium Maggie F 1.9m Medium Tall Martha F 1.88m Medium Tall Stephanie F 1.7m Short Medium Bob M 1.85m Medium Medium Kathy F 1.6m Short Medium Dave M 1.7m Short Medium Worth M.m Tall Tall Steven M.1m Tall Tall Debbie F 1.8m Medium Medium Todd M 1.95m Medium Medium Kim F 1.9m Medium Tall Amy F 1.8m Medium Medium Wynette F 1.75m Medium Medium 1 Ακρίβεια κατηγοριοποίησης Για κλάσεις (π.χ. Tall/Medium) υπάρχουν 4 πιθανοί συνδυασµοί (m κλάσεις m συνδυασµοί) Αληθώς θετικό Ψευδώς αρνητικό Οπτικοποίηση ποιότητας κατηγοριοποίησης: Μήτρα σύγχυσης Καµπύλη OC Ψευδώς θετικό Αληθώς αρνητικό 14

8 Μήτρα σύγχυσης Έστω Output1 η ορθή κατηγοριοποίηση και Output η ανάθεση σε κλάσεις που προέκυψε από την (όποια) τεχνική κατηγοριοποίησης Μήτρα σύγχυσης (confusion matrix): Name Gender Height Output1 Output Kristina F 1.6m Short Medium Jim M m Tall Medium Maggie F 1.9m Medium Tall Martha F 1.88m Medium Tall Stephanie F 1.7m Short Medium Bob M 1.85m Medium Medium Kathy F 1.6m Short Medium Dave M 1.7m Short Medium Worth M.m Tall Tall Steven M.1m Tall Tall Debbie F 1.8m Medium Medium Todd M 1.95m Medium Medium Kim F 1.9m Medium Tall Amy F 1.8m Medium Medium Wynette F 1.75m Medium Medium Πραγµατική Ανάθεση κλάση Short Medium Tall Short Medium 0 5 Tall Καµπύλη OC (Operating Characteristic) Αληθώς θετικά Ψευδώς θετικά 16

9 Παλινδρόµηση Κάνουµε την παραδοχή ότι τα δεδοµένα ταιριάζουν σε µία συνάρτηση: y = c 0 + c 1 x c n x n Το πρόβληµα είναι ο προσδιορισµός των συντελεστών παλινδρόµησης c 0, c 1,, c n. Παραδοχή σφάλµατος: y = c 0 + c 1 x c n x n + ε Εκτίµηση σφάλµατος µε χρήση σφάλµατος τετραγωνικού µέσου πάνω στο σύνολο δοκιµαστικών δεδοµένων: 17 Γραµµική παλινδρόµηση Φτωχή απόδοση (µέτριο ταίριασµα) 18

10 Κατηγοριοποίηση µε χρήση παλινδρόµησης ιαίρεση: χρησιµοποιούµε τη συνάρτηση παλινδρόµησης για να διαιρέσουµε το χώρο σε περιοχές. Πρόβλεψη: χρησιµοποιούµε τη συνάρτηση παλινδρόµησης για να προβλέψουµε τη συνάρτηση µέλους για µια κλάση. Η επιθυµητή κλάση δίνεται ως είσοδος στο πρόβληµα. 19 ιαίρεση y = c 0 + ε Θέλουµε να ελαχιστοποιήσουµε το L ως προς c 0 c 0 = = y =

11 Πρόβλεψη 1 Bayesian κατηγοριοποίηση ύο παραδοχές για τα γνωρίσµατα Εξίσου σηµαντικά Στατιστικώς ανεξάρτητα (δοθείσης της τιµής µιας κλάσης) ηλαδή, αν γνωρίζουµε την τιµή ενός γνωρίσµατος δεν µπορούµε να πούµε τίποτα για την τιµή ενός άλλου γνωρίσµατος (µε δεδοµένο ότι γνωρίζουµε την κλάση) Η παραδοχή για την ανεξαρτησία των γνωρισµάτων σχεδόν ποτέ δεν ισχύει! αλλά αυτό το σχήµα δείχνει να δουλεύει καλά στην πράξη

12 Πρόγνωση καιρού Outlook Temperature Humidity Windy Play Sunny Hot High 4 False Overcast 4 0 Mild 4 rmal 6 1 True Rainy Cool 1 Sunny /9 /5 Hot /9 /5 High /9 4/5 False 6/9 /5 9/14 5/14 Overcast 4/9 0/5 Mild 4/9 /5 rmal 6/9 1/5 True /9 /5 Rainy /9 /5 Cool /9 1/5 Outlook Sunny Temp Hot Humidity High Windy False Play Sunny Hot High True Overcast Hot High False Rainy Mild High False Rainy Cool rmal False Rainy Cool rmal True Overcast Cool rmal True Sunny Mild High False Sunny Cool rmal False Rainy Mild rmal False Sunny Mild rmal True Overcast Mild High True Overcast Hot rmal False Rainy Mild High True Πρόγνωση καιρού (συν.) Outlook Temperature Humidity Windy Play Sunny Hot High 4 False Overcast 4 0 Mild 4 rmal 6 1 True Rainy Cool 1 Sunny /9 /5 Hot /9 /5 High /9 4/5 False 6/9 /5 9/14 5/14 Overcast 4/9 0/5 Mild 4/9 /5 rmal 6/9 1/5 True /9 /5 Rainy /9 /5 Cool /9 1/5 Μια νέα ηµέρα: Outlook Sunny Temp. Cool Humidity High Windy True Play? Πιθανοφάνειες για τις δύο κλάσεις yes : /9 /9 /9 /9 9/14 = no : /5 1/5 4/5 /5 5/14 = Πιθανότητες (µετά την κανονικοποίηση): P( yes ) = / ( ) = 0.05 P( no ) = / ( ) =

13 Ο κανόνας του Bayes Pr[ H E] Η πιθανότητα να συµβεί ένα γεγονός H δοθείσης µιας µαρτυρίας E : Pr[H ] Pr[ E H ]Pr[ H ] Pr[ H E] = Pr[ E] A priori πιθανότητα του H : Η πιθανότητα του γεγονότος χωρίς την επίκληση της µαρτυρίας A posteriori πιθανότητα του H : Η πιθανότητα του γεγονότος µε την επίκληση της µαρτυρίας 5 Κατηγοριοποίηση Naïve Bayes Εκµάθηση κατηγοριοποίησης: ποια η πιθανότητα µιας κλάσης δοθείσης µιας µαρτυρίας; Η µαρτυρία E είναι η εγγραφή στη Β Το γεγονός H είναι η κλάση της εγγραφής Απλοϊκή (naïve) παραδοχή: η µαρτυρία διαιρείται σε µέρη (όσο και τα γνωρίσµατα) που είναι ανεξάρτητα µεταξύ τους Pr[ E Pr[ H E] = 1 H]Pr[ E H] KPr[ E Pr[ E] n H]Pr[ H] 6

14 Παράδειγµα πρόγνωσης καιρού Outlook Sunny Temp. Cool Humidity High Windy True Play? µαρτυρία E Πιθανότητα κλάσης yes Pr[ yes E] = Pr[ Outlook = Sunny yes] = Pr[ Temperatur e= Cool yes] Pr[ Humidity=High yes] Pr[ Windy= True yes] Pr[ yes] Pr[ E] Pr[ E] 9 14 Το πρόβληµα της "µηδενικής συχνότητας" Τι θα συµβεί εάν δεν εµφανίζεται µια τιµή γνωρίσµατος σε κάθε κλάση; (π.χ. Humidity = high για την κλάση yes ) Η πιθανότητα θα είναι µηδέν! Pr[ Humidity= High yes] = 0 Η a posteriori πιθανότητα θα είναι επίσης µηδέν! (άσχετα µε το ποιες είναι οι υπόλοιπες τιµές!) Pr[ yes E] = 0 Τέχνασµα: προσθέτουµε 1 στο µετρητή κάθε ζευγαριού τιµής γνωρίσµατος κλάσης (εκτιµήτρια Laplace) Αποτέλεσµα: οι πιθανότητες δεν είναι ποτέ µηδέν! 8

15 Σχολιασµός Naïve Bayes Η κατηγοριοποίηση Naïve Bayes περιέργως δουλεύει καλά! ακόµη και αν καταστρατηγείται φανερά η παραδοχή περί ανεξαρτησίας γνωρισµάτων Γιατί; Επειδή η κατηγοριοποίηση δεν απαιτεί ακριβείς εκτιµήσεις πιθανοτήτων αρκεί η µέγιστη πιθανότητα να αντιστοιχεί στη σωστή κλάση Όµως: η προσθήκη επιπλέον γνωρισµάτων µπορεί να δηµιουργήσει προβλήµατα π.χ. ταυτόσηµα γνωρίσµατα 9 Κατηγοριοποίηση µε χρήση απόστασης Τοποθετούµε τα δεδοµένα στην «πλησιέστερη" (µε όρους απόστασης) κλάση. Πρέπει να προσδιορίσουµε την απόσταση µεταξύ ενός στοιχείου και µιας κλάσης. Κάθε κλάση µπορεί να αναπαρασταθεί µε Κέντρο βάρους (Centroid): η κεντρική τιµή της κλάσης Κεντρικό στοιχείο (Medoid): ένα αντιπροσωπευτικό σηµείο µέλος της. Σύνολο από ενδεικτικά σηµεία Αλγόριθµος: k- nearest neighbors (KNN) 0

16 Η προσέγγιση KNN Το σύνολο δεδοµένων εκπαίδευσης περιλαµβάνει τις κλάσεις. Για να αναθέσουµε ένα νέο στοιχείο σε µια κλάση εξετάζουµε τα K πλησιέστερα σ αυτό σηµεία. Τοποθετούµε το νέο στοιχείο στην κλάση που έχει την πλειοψηφία µέσα στα κοντινά στοιχεία. Πολυπλοκότητα O(q) για κάθε νέο στοιχείο (q είναι το µέγεθος του συνόλου δεδοµένων εκπαίδευσης). 1 Αλγόριθµος KNN Input: T //training data K //Number of neighbors t //Input tuple to classify Output: c //Class to which t is assigned KNN algorithm: //Algorithm to classify tuple using KNN begin N = ; //Find set of neighbors, N, for t for each d T do Υποθέτει ότι Ν είναι µια ειδική δοµή, if N K, then οργανωµένη µε βάση την οµοιότητα N = N {d}; sim(t,u) π.χ. σωρός ελαχίστων else if u N such that sim(t,u) sim(t,d), then begin N = N {u}; N = N {d}; end //Find class for classification c = class to which the most u N are classified end

17 Παράδειγµα KNN Name Gender Height Output1 Kristina F 1.6m Short Jim M m Tall Maggie F 1.9m Medium Martha F 1.88m Medium Stephanie F 1.7m Short Bob M 1.85m Medium Kathy F 1.6m Short Dave M 1.7m Short Worth M.m Tall Steven M.1m Tall Debbie F 1.8m Medium Todd M 1.95m Medium Kim F 1.9m Medium Amy F 1.8m Medium Wynette F 1.75m Medium Pat F 1.6m? Short Κατηγοριοποίηση µε δένδρα αποφάσεων (decision trees) Κατηγοριοποίηση βασισµένη στη διαµέριση: διαίρεση του χώρου σε ορθογώνιες περιοχές Οι εγγραφές ανατίθενται σε κλάσεις µε βάση την περιοχή µέσα στην οποία πέφτουν. Οι τεχνικές Α διαφέρουν µεταξύ τους στον τρόπο κατασκευής του δένδρου (επαγωγή Α) Οι εσωτερικοί κόµβοι ενός Α αντιστοιχούν σε γνωρίσµατα και τα τόξα ενός Α σε τιµές αυτών των γνωρισµάτων. Αλγόριθµοι: ID, C4.5, CART = Καθηγητής ΝΑΙ Βαθµίδα Καθηγητής 6 ΟΧΙ έτη >6 ΝΑΙ 4

18 5 5 Παράδειγµα: πρόγνωση καιρού true high mild rain false normal hot overcast true high mild overcast true normal mild sunny false normal mild rain false normal cool sunny false high mild sunny true normal cool overcast true normal cool rain false normal cool rain false high mild rain false high hot overcast true high hot sunny false high hot sunny Play? Windy Humidity Temperature Outlook 6 6 overcast high normal false true sunny rain Παράδειγµα Α για το γνώρισµα Play? Outlook Humidity Windy

19 ένδρο Απόφασης οθέντων: µιας βάσης δεδοµένων D = {t 1,, t n } όπου t i =<t i1,, t ih > του σχήµατος της Β {A 1, A,, A h } ενός συνόλου κλάσεων C={C 1,., C m } ένδρο απόφασης (ή κατηγοριοποίησης) είναι ένα δένδρο συσχετισµένο µε τη D έτσι ώστε Κάθε εσωτερικός κόµβος έχει ως ετικέτα ένα γνώρισµα, A i = Καθηγητής Κάθε τόξο έχει ως ετικέτα ένα κατηγόρηµα που µπορεί να εφαρµοστεί στο γνώρισµα του κόµβου-γονέα Κάθε φύλλο (τερµατικός κόµβος) έχει ως ετικέτα µια κλάση, C j ΝΑΙ Βαθµίδα 6 ΟΧΙ Καθηγητής έτη >6 ΝΑΙ 7 Επαγωγή Α Input: D //Training data Output: T //Decision tree DTBuild algorithm: //Simplistic algorithm to illustrate naïve approach to building DT begin T = ; Determine splitting criterion; T = Create root node and label with splitting attribute; T = Add arc to root node for each split predicate and label; for each arc do begin D = Database created by applying splitting predicate to D; if stopping point reached for this path, then T = Create leaf node and label with appropriate class; else T = DTBuild(D); end T = Add T to arc; end 8

20 Ζητήµατα στα Α Αρχική επιλογή των γνωρισµάτων διάσπασης Κάποια από τα γνωρίσµατα της Β πρέπει να παραλειφθούν (δεν εξυπηρετούν την κατηγοριοποίηση) Κριτήριο διάσπασης Επιλογή του γνωρίσµατος διάσπασης Επιλογή των κατηγορηµάτων διάσπασης (πάνω στο γνώρισµα διάσπασης) ενδρική δοµή επιθυµητό: ισοζυγισµένο δένδρο µε λίγα επίπεδα κάποιες τεχνικές παράγουν µόνο δυαδικά δένδρα Κριτήρια τερµατισµού ακρίβεια κατηγοριοποίησης vs. απόδοση vs. υπερπροσαρµογή Κλάδεµα (pruning) εκ των υστέρων «τακτοποίηση» του Α για καλύτερη απόδοση 9 Σύγκριση Α Ισοζυγισµένο Α Βαθύ Α 40

21 Ποιο γνώρισµα να διαλέξουµε; 41 Ένα κριτήριο για την επιλογή του κατάλληλου γνωρίσµατος διάσπασης Ποιο είναι το καλύτερο; Αυτό που θα οδηγήσει στο µικρότερο δένδρο Ένας ευρετικός κανόνας (heuristic): επιλέγουµε το γνώρισµα που παράγει τους πιο "αγνούς" κόµβους. Για το σκοπό αυτό, χρησιµοποιείται µια συνάρτηση καταλληλότητας (fitness function). Στρατηγική: επιλέγουµε το γνώρισµα που µεγιστοποιεί τη συνάρτηση καταλληλότητας Χαρακτηριστικές συναρτήσεις καταλληλότητας: Κέρδος πληροφορίας Gain (ID) Λόγος κέρδους πληροφορίας GainRatio (C4.5) gini index (SPRINT) 4

22 Θεωρία Πληροφορίας Η επαγωγή Α βασίζεται συχνά στη Θεωρία Πληροφορίας 4 Πληροφορία / Εντροπία Έστω πιθανότητες p 1, p,.., p s των οποίων το άθροισµα είναι 1. Η Εντροπία ορίζεται ως εξής: H ( p, p,..., p ) = 1 s i i= 1 η βάση του λογάριθµου δεν προσδιορίζεται (συνήθως, 10 ή ) Η εντροπία είναι ποσοτικοποίηση της τυχαιότητας (έκπληξης, αβεβαιότητας). Ο στόχος της κατηγοριοποίησης καθόλου έκπληξη εντροπία = 0 s p log 1 p i 44 H(p,1-p)

23 Αλγόριθµος ID ηµιουργεί Α µε χρήση στοιχείων από τη θεωρία πληροφορίας (εντροπία) Επιλέγει για διάσπαση το γνώρισµα µε το µεγαλύτερο κέρδος πληροφορίας (information gain): Gain ( D, S) = H( D) P( D ) H( ) s i= 1 H(D) η εντροπία του D (πριν το διαχωρισµό) i D i H(D i ) η εντροπία των επιµέρους D i (µετά το διαχωρισµό) Όσο µεγαλύτερη είναι η µείωση (το «άλµα» προς το 0), τόσο µεγαλύτερο είναι το κέρδος Gain(D,S) 45 Παράδειγµα ID Αρχική κατάσταση εντροπίας: H(D) = 4/15 log(15/4) + 8/15 log(15/8) + /15 log(15/) = Κέρδος αν γίνει διάσπαση στο gender: Gender= F : /9 log(9/) + 6/9 log(9/6)=0.764 Gender= M : 1/6 log(6/1) + /6 log(6/) + /6 log(6/) = 0.49 Weighted sum: (9/15)(0.764) + (6/15)(0.49) = Gain: = Κέρδος αν γίνει διάσπαση στο height: Weighted sum: (/15)(0.01) = Gain: = 0.98 Κατηγορήµατα διάσπ.: (0, 1.6], (1.6, 1.7], (1.7, 1.8], (1.8, 1.9], (1.9,.0], (.0, ) Επιλέγουµε height 46 Name Gender Height Output1 Kristina F 1.6m Short Jim M m Tall Maggie F 1.9m Medium Martha F 1.88m Medium Stephanie F 1.7m Short Bob M 1.85m Medium Kathy F 1.6m Short Dave M 1.7m Short Worth M.m Tall Steven M.1m Tall Debbie F 1.8m Medium Todd M 1.95m Medium Kim F 1.9m Medium Amy F 1.8m Medium Wynette F 1.75m Medium

24 Αλγόριθµος C4.5 Ο αλγόριθµος ID µεροληπτεί υπέρ των γνωρισµάτων µε µεγάλο αριθµό διαιρέσεων Ο αλγόριθµος C4.5 αποτελεί βελτιωµένη εκδοχή του ID: Καλύτερη διαχείριση ελλιπών / συνεχών δεδοµένων Κλάδεµα τεχνικές: αντικατάσταση υποδένδρου / ανύψωση υποδένδρου Κανόνες αποφάσεων (που παράγονται από τα Α) Βελτιωµένη συνάρτηση καταλληλότητας (για αποφυγή υπερπροσαρµογής): GainRatio ( D, S) ( D, S) Gain = D 1 Ds H,..., D D 47 Αλγόριθµος CART ηµιουργεί δυαδικό δένδρο Χρησιµοποιεί εντροπία Μαθηµατικός τύπος για την επιλογή του σηµείου διάσπασης, s, για τον κόµβο t: Οι πιθανότητες P L,P R αντιστοιχούν στην πιθανότητα µια εγγραφή να βρεθεί στην αριστερή ή τη δεξιά πλευρά, αντίστοιχα, του δένδρου. 48

25 Παράδειγµα CART Στο ξεκίνηµα, υπάρχουν έξι επιλογές για σηµείο διάσπασης: Gender= M, height=1.6, height=1.7, height=1.8, height=1.9, height=.0 (παραδοχή: η ισότητα οδηγεί στο δεξί κλαδί): Φ(Gender= M ) = (6/15) (9/15) (/15 + 4/15 + /15)=0.4 Φ(height=1.6) = 0 Φ(height=1.7) = (/15) (1/15) (0 + 8/15 + /15) = Φ(height=1.8) = (5/15) (10/15) (4/15 + 6/15 + /15) = 0.85 Φ(height=1.9) = (9/15) (6/15) (4/15 + /15 + /15) = 0.56 Φ(height=.0) = (1/15) (/15) (4/15 + 8/15 + /15) = 0. Αποφασίζεται διάσπαση στο height=1.8 κοκ. 49 Name Gender Height Output1 Kristina F 1.6m Short Jim M m Tall Maggie F 1.9m Medium Martha F 1.88m Medium Stephanie F 1.7m Short Bob M 1.85m Medium Kathy F 1.6m Short Dave M 1.7m Short Worth M.m Tall Steven M.1m Tall Debbie F 1.8m Medium Todd M 1.95m Medium Kim F 1.9m Medium Amy F 1.8m Medium Wynette F 1.75m Medium Κατηγοριοποίηση µε Κανόνες Μπορούµε να κάνουµε κατηγοριοποίηση χρησιµοποιώντας κανόνες If-Then Κανόνας κατηγοριοποίησης: r = <a,c> Τµήµατα κανόνα: a: πρότερο (antecedent), c: επακόλουθο ή απότοκο (consequent) Παράγονται είτε µέσω άλλων τεχνικών (DT, NN) είτε απευθείας. Αλγόριθµοι: Gen, RX, 1R, PRISM 50

26 Παραγωγή κανόνων από Α 51 Παράδειγµα παραγωγής κανόνων 5

27 Αλγόριθµος 1R 5 Παράδειγµα 1R 54

28 Αλγόριθµος PRISM 55 Παράδειγµα PRISM 56

29 ένδρα αποφάσεων vs. Κανόνες Τα δένδρα ενσωµατώνουν τη σειρά µε την οποία έγινε η διάσπαση. Οι κανόνες δεν έχουν σειρά γνωρισµάτων και κατηγορηµάτων διάσπασης. Τα δένδρα δηµιουργούνται εξετάζοντας όλες τις κλάσεις. Αρκεί κανείς να εξετάσει µόνο µια κλάση για να δηµιουργήσει τους κανόνες που αντιστοιχούν σ αυτή. 57 Σύνοψη Κατηγοριοποίηση: η ανάθεση ετικετών στις εγγραφές της βάσης δεδοµένων σχετικά µε την κλάση στην οποία ανήκει η καθεµία Αλλιώς, διαµέριση της βάσης δεδοµένων σε (προκαθορισµένες) κατηγορίες Τεχνικές: στατιστικές (παλινδρόµηση, Bayesian, ) βασισµένες σε απόσταση (k-nn, ) δένδρα αποφάσεων (ID, C4.5, CART, ) κανόνες κατηγοριοποίησης (1R, PRISM, ) 58

(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1

(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1 Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Κατηγοριοποίηση (classification) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων

Διαβάστε περισσότερα

Data Mining. Εισαγωγικά και Προηγµένα Θέµατα Εξόρυξης Γνώσης. Κατηγοριοποίηση (κεφ. 4)

Data Mining. Εισαγωγικά και Προηγµένα Θέµατα Εξόρυξης Γνώσης. Κατηγοριοποίηση (κεφ. 4) Data Mining Εισαγωγικά και Προηγµένα Θέµατα Εξόρυξης Γνώσης Κατηγοριοποίηση (κεφ. 4) Βασίλης Βερύκιος - Γιάννης Θεοδωρίδης http://isl.cs.unipi.gr/dmbook Περιεχόµενα Το πρόβληµα της κατηγοριοποίησης Τεχνικές

Διαβάστε περισσότερα

14Ιαν Νοε

14Ιαν Νοε Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Επανάληψη Γιάννης Θεοδωρίδης, Νίκος Πελέκης Εργαστήριο Πληροφοριακών Συστηµάτων http://infolab.cs.unipi.gr

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 11: Δημιουργία Βάσεων Κανόνων Από Δεδομένα- Εξαγωγή Κανόνων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων Από Δεδομένα-

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική Κατηγοριοποίηση Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 2 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr Μηχανική Μάθηση Η μηχανική μάθηση είναι μια περιοχή της τεχνητής νοημοσύνης η οποία αφορά

Διαβάστε περισσότερα

Αποθήκες και Εξόρυξη Δεδομένων

Αποθήκες και Εξόρυξη Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 2 Ο Εργαστήριο WEKA (CLASSIFICATION) Στουγιάννου Ελευθερία estoug@unipi.gr -2- Κατηγοριοποίηση Αποτελεί μια από τις βασικές

Διαβάστε περισσότερα

Κατηγοριοποίηση (Εποπτευόμενη μάθηση)

Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Αποθήκες και Εξόρυξη Δεδομένων Διδάσκoυσα: Μαρία Χαλκίδη με βάση slides από J. Han and M. Kamber Data Mining: Concepts and Techniques, 2 nd edition Εποπτευόμενη vs.

Διαβάστε περισσότερα

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6.

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6. Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Γνώσης από χωρικά δεδοµένα (κεφ. 8) Γιάννης Θεοδωρίδης Νίκος Πελέκης http://isl.cs.unipi.gr/db/courses/dwdm Περιεχόµενα

Διαβάστε περισσότερα

Αποθήκες εδομένων και Εξόρυξη εδομένων:

Αποθήκες εδομένων και Εξόρυξη εδομένων: Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 5: Κατηγοριοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Γνώσης από Χωρικά εδοµένα (spatial data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από Βιολογικά εδομένα

Εξόρυξη Γνώσης από Βιολογικά εδομένα Παρουσίαση Διπλωματικής Εργασίας Εξόρυξη Γνώσης από Βιολογικά εδομένα Καρυπίδης Γεώργιος (Μ27/03) Επιβλέπων Καθηγητής: Ιωάννης Βλαχάβας MIS Πανεπιστήμιο Μακεδονίας Φεβρουάριος 2005 Εξόρυξη Γνώσης από Βιολογικά

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Ταξινόμηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Μάθηση από Παρατηρήσεις Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2 Μορφές μάθησης

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 16η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 16η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 16η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται σε ύλη του βιβλίου Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες Αλγόριθμοι Δεδομένα input Αλγόριθμοι Εξόρυξης Πληροφορίας Εξαγόμενα output

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ

ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ Το dataset weather περιέχει 4 μεταβλητές (outlook, temperature, humidity, windy) και 14 καταχωρήσεις για το καθένα από αυτά. Με βάση αυτές εξετάζεται το γεγονός

Διαβάστε περισσότερα

Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή

Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή 0 0 0 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση Οι διαφάνειες στηρίζονται στο P.-N. Tan,

Διαβάστε περισσότερα

Ταξινόμηση I. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή

Ταξινόμηση I. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach,

Διαβάστε περισσότερα

Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση

Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση Αλγόριθμοι Δεδομένα input Αλγόριθμοι

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Κατηγοριοποίηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Τετάρτη 4 Οκτωβρίου 2006 0:00-3:00 ίνεται το παρακάτω

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

υποδείγματος για την αξιολόγηση αυτοκινήτων με τεχνικές Data Mining.»

υποδείγματος για την αξιολόγηση αυτοκινήτων με τεχνικές Data Mining.» ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική εργασία με θέμα: «Ανάπτυξη υποδείγματος για την αξιολόγηση αυτοκινήτων με

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Ιουνίου 24 ιάρκεια: 2 ώρες Σχεδιάστε έναν αισθητήρα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα «Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 8: Χρήση Μηχανικής Μάθησης στην Εξαγωγή Πληροφορίας Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο

Διαβάστε περισσότερα

Ταξινόμηση II Σύντομη Ανακεφαλαίωση

Ταξινόμηση II Σύντομη Ανακεφαλαίωση 0 0 0 Ταξινόμηση II Σύντομη Ανακεφαλαίωση Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εξόρυξη Δεδομένων: Ακ. Έτος 2007-2008 ΤΑΞΙΝΟΜΗΣΗ

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση Η μορφή των δεδομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης

Διαβάστε περισσότερα

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort)

Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Ταχυταξινόμηση (Quick-Sort) 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7

Διαβάστε περισσότερα

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 25 Αυγούστου 26 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 9: Κωδικοποίηση εντροπίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

Μάθηση με παραδείγματα Δέντρα Απόφασης

Μάθηση με παραδείγματα Δέντρα Απόφασης Μάθηση με παραδείγματα Δέντρα Απόφασης Μορφές μάθησης Επιβλεπόμενη μάθηση (Ταξινόμηση Πρόβλεψη) Παραδείγματα: {(x, t )} t κατηγορία ταξινόμηση t αριθμός πρόβλεψη Μη-επιβλεπόμενη μάθηση (Ομαδοποίηση Μείωση

Διαβάστε περισσότερα

Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services

Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services Γεράσιµος Μαρκέτος Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http://isl.cs.unipi.gr/db) οµή παρουσίασης SQL Server 2005 Επιχειρηµατική

Διαβάστε περισσότερα

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (path) o Πρόγονος απόγονος (ancestor, descendant)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Παρασκευή 9 Ιανουαρίου 2007 5:00-8:00 εδοµένου ότι η

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών &

Σύνθεση Data Path. ιασύνδεσης. Μονάδες. Αριθµό Μονάδων. Τύπο Μονάδων. Unit Selection Unit Binding. λειτουργιών σε. Μονάδες. Αντιστοίχιση µεταβλητών & Data Path Allocation Σύνθεση Data Path Το DataPath είναι ένα netlist που αποτελείται από τρεις τύπους µονάδων: (α) Λειτουργικές Μονάδες, (β) Μονάδες Αποθήκευσης και (γ) Μονάδες ιασύνδεσης Αριθµό Μονάδων

Διαβάστε περισσότερα

AVL-trees C++ implementation

AVL-trees C++ implementation Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015 kendea@ceid.upatras.gr Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης:

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #10 (β)

ιαφάνειες παρουσίασης #10 (β) ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΧΟΥΧΟΥΜΗΣ ΙΩΑΝΝΗΣ Το σύνολο των

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

Predicting the Choice of Contraceptive Method using Classification

Predicting the Choice of Contraceptive Method using Classification ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΣΣΑΛΟΝΙΚΗ Predicting the Choice of Contraceptive Method using Classification ΠΑΠΑΔΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Νικόλαος Σαμαράς ΕΞΕΤΑΣΤΗΣ:

Διαβάστε περισσότερα

Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις)

Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Κατηγοριοποίηση ΙΙ Εξόρυξη Δεδομένων: Ακ. Έτος 200-20 ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ II Κατηγοριοποίηση Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες

Διαβάστε περισσότερα

3.1 εκαδικό και υαδικό

3.1 εκαδικό και υαδικό Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και εδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 3.1 εκαδικό και υαδικό εκαδικό σύστηµα 2 1 εκαδικό και υαδικό υαδικό Σύστηµα 3 3.2 Μετατροπή Για τη µετατροπή

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ ΑΠΟ ΙΣΤΟΡΙΚΑ ΔΕΔΟΜΕΝΑ

ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ ΑΠΟ ΙΣΤΟΡΙΚΑ ΔΕΔΟΜΕΝΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ & ΔΙΟΙΚΗΣΗ» ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ

Διαβάστε περισσότερα

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

Γ. Κορίλη Αλγόριθµοι ροµολόγησης - Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 5 ο Έλεγχος Προγράµµατος Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Η εντολή if (Ι) Η εντολή if είναι µία από τις βασικότερες δοµές ελέγχου ροής στη C, αλλά και στις περισσότερες

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση (clustering) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα

Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα Στεργίου Κωνσταντίνος Α.Μ.496 Σχολή Θετικών Επιστημών - Τμήμα Μαθηματικών Μ.Π.Σ. Μαθηματικά και Σύγχρονες Εφαρμογές στα «Υπολογιστικά Μαθηματικά

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

Insert(K,I,S) Delete(K,S)

Insert(K,I,S) Delete(K,S) ΕΝΟΤΗΤΑ 5 ΣΥΝΟΛΑ & ΛΕΞΙΚΑ Φατούρου Παναγιώτα 1 Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενα από έναν αριθµό και

Διαβάστε περισσότερα

Αποθήκες εδομένων και Εξόρυξη εδομένων:

Αποθήκες εδομένων και Εξόρυξη εδομένων: Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Μπιτσάκη Αντωνία-Χρυσάνθη Ταουσάκος Θανάσης

Μπιτσάκη Αντωνία-Χρυσάνθη Ταουσάκος Θανάσης Μπιτσάκη Αντωνία-Χρυσάνθη Ταουσάκος Θανάσης Τι εννοούμε με τον όρο data mining. (ανακάλυψη patterns με τη χρήση διαφορετικών μεθόδων) Το σενάριο με το οποίο θα ασχοληθούμε (2 πλευρές με σκοπό την άντληση

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 7: Μηχανική μάθηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN: Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =

Διαβάστε περισσότερα

«ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER»

«ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER» Τ.Ε.Ι ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER»

Διαβάστε περισσότερα

Μεγίστου Σφάλµατος. Παναγιώτης Καρράς. Αθήνα, 26 Αυγούστου 2005

Μεγίστου Σφάλµατος. Παναγιώτης Καρράς. Αθήνα, 26 Αυγούστου 2005 Μ ένα Σµπάρο υο Τρυγώνια: Εισάπαξ Κυµατιδιακές Συνόψεις για Μέτρα Μεγίστου Σφάλµατος Παναγιώτης Καρράς Αθήνα, 6 Αυγούστου 005 Έρευνα στο HKU µε τον Νίκο Μαµουλή Περίληψη Προκαταρκτικά & Κίνητρα Χρησιµότητα

Διαβάστε περισσότερα

Μεταπτυχιακή Εργασία. Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα

Μεταπτυχιακή Εργασία. Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μεταπτυχιακή Εργασία Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα Ειρήνη Ντούτση Μηχανικός Η/Υ και Πληροφορικής

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Κατηγοριοποίηση με βάση δυναμικό αριθμό κοντινότερων γειτόνων

Κατηγοριοποίηση με βάση δυναμικό αριθμό κοντινότερων γειτόνων Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών στην Πληροφορική Κατεύθυνση: Πληροφοριακά Συστήματα Κατηγοριοποίηση με βάση δυναμικό αριθμό

Διαβάστε περισσότερα

Δημιουργία Δυαδικών Δέντρων Αναζήτησης

Δημιουργία Δυαδικών Δέντρων Αναζήτησης Δημιουργία Δυαδικών Δέντρων Αναζήτησης Τα Δυαδικά δέντρα αναζήτησης είναι διατεταγμένα δυαδικά δέντρα όπου έχει σημασία η διάταξη των παιδιών κάθε κόμβου. Συγκεκριμένα για τα Δυαδικά δέντρα αναζήτησης,

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση Η μορφή των εξαγομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Η πληροφορία στη σύγχρονη επιχείρηση Η Ανάγκη Διαδικασία Ορισμός Αφετηρία Πρότυπα Πέραν του ανθρώπινου δυναμικού, η πληροφορία αποτελεί τον πλέον πολύτιμο

Διαβάστε περισσότερα

Συστήματα Υποστήριξης Αποφάσεων Διάλεξη Νο2 και 3. Ενισχυτικές διαφάνειες

Συστήματα Υποστήριξης Αποφάσεων Διάλεξη Νο2 και 3. Ενισχυτικές διαφάνειες Συστήματα Υποστήριξης Αποφάσεων Διάλεξη Νο2 και 3 Ενισχυτικές διαφάνειες Πρόβλημα απόφασης υπό το καθεστώς αβεβαιότητας (decision making under uncertainty) Ένα πρόβλημα τοποθετείται γενικά ως πρόβλημα

Διαβάστε περισσότερα

Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων

Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων Εντοπισµός σφαλµάτων Εντοπισµός ιόρθωση Προστίθενται bit πλεονασµού Αν µπορεί διορθώνει, (forward error correction) αλλιώς ζητά επανεκποµπή (backward error correction)

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα