Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006"

Transcript

1 Κατηγοριοποίηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Παραδείγματα Εντοπισμός spam s, με βάση πχ την επικεφαλίδα τους ή το περιεχόμενό τους Πρόβλεψη καρκινικών κυττάρων χαρακτηρίζοντας τα ως καλοήθη ή κακοήθη Κατηγοριοποίηση συναλλαγών με πιστωτικές κάρτες ως νόμιμες ή προϊόν απάτης Κατηγοριοποίηση δευτερευόντων δομών πρωτείνης ως alpha helix, beta sheet, ή random coil Χαρακτηρισμός ειδήσεων ως οικονομικές, αθλητικές, πολιτιστικές, πρόβλεψης καιρού, κλπ Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 2 Εξόρυξη Δεδομένων

2 10 Ορισμός Σύνολο εγγραφών (x) Κατηγοριοποίηση είναι η διαδικασία εκμάθησης μιας συνάρτησης στόχου (target function) f (μοντέλο) που απεικονίζει κάθε σύνολο γνωρισμάτων x σε μια από τις προκαθορισμένες ετικέτες κλάσεις y. Μοντέλο Κατηγοριοποίησης Ετικέτα κλάσης (y) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 3 Ορισμός Είσοδος (x): συλλογή από εγγραφές Κάθε εγγραφή περιέχει ένα σύνολο από γνωρίσματα/χαρακτηριστικά (attributes) Ένα από τα γνωρίσματα είναι η κλάση/κατηγορία (class) Έξοδος (y): ένα μοντέλο για το γνώρισμα κλάση ως μια συνάρτηση των τιμών των άλλων γνωρισμάτων Tid κατηγορικό Επιστροφή κατηγορικό Οικογενειακή Κατάσταση συνεχές Φορολογητέο Εισόδημα 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Απάτη 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes κλάση Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 4 Εξόρυξη Δεδομένων

3 Εισαγωγή Το μοντέλο κατηγοριοποίησης, χρησιμοποιείται ως: Περιγραφικό μοντέλο (descriptive modeling): ως επεξηγηματικό εργαλείο πχ ποια χαρακτηριστικά κάνουν ένα ζώο να χαρακτηριστεί ως θηλαστικό Μοντέλο πρόβλεψης (predictive modeling): για τη πρόβλεψη της κλάσης άγνωστων εγγραφών πχ δοσμένων των χαρακτηριστικών κάποιου ζώου να προβλέψουμε αν είναι θηλαστικό, πτηνό, ερπετό ή αμφίβιο Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 5 Ορισμός Συνήθως το σύνολο δεδομένων εισόδου χωρίζεται σε: ένα σύνολο εκπαίδευσης (training set) και ένα σύνολο ελέγχου (test test) Το σύνολο εκπαίδευσης χρησιμοποιείται για να κατασκευαστεί το μοντέλο, ενώ το σύνολο ελέγχου γιανατηνεπικύρωση του μοντέλου. Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 6 Εξόρυξη Δεδομένων

4 10 10 Εισαγωγή Θεωρούμε ότι τιμή (ετικέτα) της κλάσης (γνώρισμα y) είναι διακριτή τιμή Αν όχι, regression (οπισθοδρόμηση) όπου το γνώρισμα y παίρνει συνεχείς τιμές Κατάλληλη κυρίως για: δυαδικές κατηγορίες ή κατηγορίες για τις οποίες δεν υπάρχει διάταξη [διακριτές (nominal) vs διατεταγμένες (ordinal)] για μη ιεραρχικές κατηγορίες Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 7 Βήματα Κατηγοριοποίησης Εισαγωγή 1. Κατασκευή Μοντέλου Χρησιμοποιώντας το σύνολο εκπαίδευσης (στις εγγραφές του το γνώρισμα της κλάσης είναι προκαθορισμένο) Το μοντέλο μπορεί να είναι ένα δέντρο απόφασης, κανόνες, μαθηματικοί τύποι κλπ 2. Εφαρμογή Μοντέλου για την κατηγοριοποίηση μελλοντικών ή άγνωστων αντικειμένων Εκτίμηση της ακρίβειας του μοντέλου με χρήση συνόλου ελέγχου Ρυθμός ακρίβειας: το ποσοστό των εγγραφών του συνόλου ελέγχου που ταξινομούνται σωστά από το μοντέλο Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes Σύνολο Εκπαίδευσης Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K? 12 Yes Medium 80K? 13 Yes Large 110K? 14 No Small 95K? 15 No Large 67K? Σύνολο Ελέγχου Επαγωγή Induction Συμπέρασμα Deduction Αλγόριθμος Μάθησης Κατασκευή Μοντέλου Εφαρμογή Μοντέλου Χαρακτηριστικά Μοντέλου Ταιριάζει δεδομένα εκπαίδευσης Προβλέπει την κλάση των δεδομένων ελέγχου Καλή δυνατότητα γενίκευσης Μοντέλο Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 8 Εξόρυξη Δεδομένων

5 Προεπεξεργασία 1. Καθαρισμός Δεδομένων (data cleaning) Προεπεξεργασία δεδομένων και χειρισμός τιμών που λείπουν (πχ τις αγνοούμε ή τις αντικαθιστούμε με ειδικές τιμές) 2. Ανάλυση Σχετικότητας (Relevance analysis) (επιλογή χαρακτηριστικών (γνωρισμάτων) feature selection) Απομάκρυνση των μη σχετικών ή περιττών γνωρισμάτων 3. Μετασχηματισμοί Δεδομένων (Data transformation) Κανονικοποίηση ή/και Γενίκευση Πιθανών αριθμητικά γνωρίσματα κατηγορικά {low, medium, high} Κανονικοποίηση αριθμητικών δεδομένων στο [0,1) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 9 Εκτίμηση Μεθόδων Κατηγοριοποίησης Πόσο καλός είναι ο κατηγοριοποιητής Προβλεπόμενη ακρίβεια Predictive accuracy Ταχύτητα (speed) Χρόνος κατασκευής του μοντέλου Χρόνος χρήσης/εφαρμογής του μοντέλου Robustness Χειρισμός θορύβου και τιμών που λείπουν Κλιμάκωση Scalability Αποδοτικότητα σε βάσεις δεδομένων αποθηκευμένες στο δίσκο Ευκρίνεια Interpretability: Πόσο κατανοητό είναι το μοντέλο και τι νέα πληροφορία προσφέρει Ποιότητα Goodness of rules (quality) Πχ μέγεθος του δέντρου Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 10 Εξόρυξη Δεδομένων

6 Ορισμός Τεχνικές κατηγοριοποίησης βασισμένες σε Δέντρα Απόφασης (decision trees) Κανόνες (Rule based Methods) Αλγόριθμοι Κοντινότερου Γείτονα Memory based reasoning Νευρωνικά Δίκτυα Naïve Bayes και Bayesian Belief Δίκτυα Support Vector Machines Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 11 έντρα Απόφασης Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 12 Εξόρυξη Δεδομένων

7 10 Δέντρο Απόφασης Μοντέλο = Δέντρο Απόφασης Εσωτερικοί κόμβοι αντιστοιχούν σε κάποιο γνώρισμα Διαχωρισμός (split) ενός κόμβου σε παιδιά ηετικέταστηνακμή= συνθήκη/έλεγχος Φύλλα αντιστοιχούν σε κλάσεις Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 13 Δεδομένα Εκπαίδευσης Δέντρο Απόφασης: Παράδειγμα κατηγορικό Tid Refund Marital Status κατηγορικό Taxable Income συνεχές 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes κλάση Ετικέτα = συνθήκη Yes Φύλλα στα οποία αντιστοιχεί μια (ετικέτα) κλάσης Ρίζα Refund TaxInc No Single, Divorced MarSt < 80K > 80K Γνωρίσματα Διαχωρισμού Splitting Attributes YES Married Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 14 Εξόρυξη Δεδομένων

8 Δέντρο Απόφασης: Βήματα Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes Σύνολο Εκπαίδευσης Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K? 12 Yes Medium 80K? 13 Yes Large 110K? 14 No Small 95K? 15 No Large 67K? Σύνολο Ελέγχου Επαγωγή Συμπέρασμα Αλγόριθμος Επαγωγής Δέντρου Μάθηση Μοντέλου Εφαρμογή Μοντέλου μοντέλο Δέντρο Απόφασης Αφού κατασκευαστεί το δέντρο, η εφαρμογή (χρήση) του στην κατηγοριοποίηση νέων εγγραφών είναι απλή > διαπέραση από τη ρίζα στα φύλλα του Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 15 Δέντρο Απόφασης: Εφαρμογή Μοντέλου Ξεκίνα από τη ρίζα του δέντρου. εδομένα Ελέγχου Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? Single, Divorced MarSt Married TaxInc < 80K > 80K YES Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 16 Εξόρυξη Δεδομένων

9 10 10 Δέντρο Απόφασης: Εφαρμογή Μοντέλου Δεδομένα Ελέγχου Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? Single, Divorced MarSt Married TaxInc < 80K > 80K YES Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 17 Δέντρο Απόφασης: Εφαρμογή Μοντέλου Δεδομένα Ελέγχου Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? Single, Divorced MarSt Married TaxInc < 80K > 80K YES Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 18 Εξόρυξη Δεδομένων

10 10 10 Δέντρο Απόφασης: Εφαρμογή Μοντέλου Δεδομένα Ελέγχου Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? Single, Divorced MarSt Married TaxInc < 80K > 80K YES Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 19 Δέντρο Απόφασης: Εφαρμογή Μοντέλου Δεδομένα Ελέγχου Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? Single, Divorced MarSt Married TaxInc < 80K > 80K YES Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 20 Εξόρυξη Δεδομένων

11 Δέντρο Απόφασης: Εφαρμογή Μοντέλου Δεδομένα Ελέγχου Refund Marital Status Taxable Income Cheat Yes Refund No No Married 80K? Single, Divorced MarSt Married Ανάθεση στο Cheat No TaxInc < 80K > 80K YES Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 21 Δέντρο Απόφασης: Βήματα Tid Attrib1 Attrib2 Attrib3 Class 1 Yes Large 125K No 2 No Medium 100K No 3 No Small 70K No 4 Yes Medium 120K No 5 No Large 95K Yes 6 No Medium 60K No 7 Yes Large 220K No 8 No Small 85K Yes 9 No Medium 75K No 10 No Small 90K Yes Σύνολο Εκπαίδευσης Tid Attrib1 Attrib2 Attrib3 Class 11 No Small 55K? 12 Yes Medium 80K? 13 Yes Large 110K? 14 No Small 95K? 15 No Large 67K? Σύνολο Ελέγχου Επαγωγή Συμπέρασμα Αλγόριθμος Επαγωγής Δέντρου Μάθηση Μοντέλου Εφαρμογή Μοντέλου Model Δέντρο Απόφασης Στη συνέχεια, θα δούμε αλγόριθμους για την κατασκευή του δέντρου Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 22 Εξόρυξη Δεδομένων

12 10 Δέντρο Απόφασης Θα δούμε στη συνέχεια αλγορίθμους για την κατασκευή του (βήμα επαγωγής) Κατασκευή του δέντρου (με λίγα λόγια): 1. Ξεκίνα με έναν κόμβο που περιέχει όλες τις εγγραφές 2. Διάσπαση του κόμβου (μοίρασμα των εγγραφών) με βάση μια συνθήκη διαχωρισμού σε κάποιο από τα γνωρίσματα 3. Αναδρομική κλήση του βήματος 2 σε κάθε κόμβο 4. Αφού κατασκευαστεί το δέντρο, κάποιες βελτιστοποιήσεις (tree pruning) (top down, recursive, divide and conquer προσέγγιση) Το βασικό θέμα είναι Ποιο γνώρισμα συνθήκη διαχωρισμού να χρησιμοποιήσουμε για τη διάσπαση των εγγραφών κάθε κόμβου Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 23 Tid Refund Marital Status Taxable Income Cheat Δέντρο Απόφασης: Παράδειγμα 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Yes Refund TaxInc Για το ίδιο σύνολο εκπαίδευσης υπάρχουν διαφορετικά δέντρα No Single, Divorced MarSt < 80K > 80K Married MarSt Yes Single, Divorced Refund < 80K No TaxInc > 80K YES YES Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 24 Εξόρυξη Δεδομένων

13 Δέντρο Απόφασης: Κατασκευή Ο αριθμός των πιθανών Δέντρων Απόφασης είναι εκθετικός. Πολλοί αλγόριθμοι για την επαγωγή (induction) του δέντρου οι οποίοι ακολουθούν μια greedy στρατηγική: γιανακτίσουντοδέντροαπόφασης παίρνοντας μια σειρά από τοπικά βέλτιστες αποφάσεις Hunt s Algorithm (από τους πρώτους) CART ID3, C4.5 SLIQ, SPRINT Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 25 έντρο Απόφασης: Αλγόριθμος του Hunt Κτίζει το δέντρο αναδρομικά, αρχικά όλες οι εγγραφές σε έναν κόμβο (ρίζα) D t : το σύνολο των εγγραφών εκπαίδευσης που έχουν φτάσει στον κόμβο t Γενική Διαδικασία (αναδρομικά σε κάθε κόμβο) Αν το D t περιέχει εγγραφές που ανήκουνστηνίδιακλάσηy t, τότε ο κόμβος t είναι κόμβος φύλλο με ετικέτα y t? D t Αν D t είναι το κενό σύνολο (αυτό σημαίνει ότι δεν υπάρχει εγγραφή στο σύνολο εκπαίδευσης με αυτό το συνδυασμό τιμών), τότε D t γίνεται φύλλο με κλάση αυτή της πλειοψηφίας των εγγραφών εκπαίδευσης ή ανάθεση κάποιας default κλάσης Αν το D t περιέχει εγγραφές που ανήκουν σε περισσότερες από μία κλάσεις, τότε χρησιμοποίησε έναν έλεγχο γνωρίσματος για το διαχωρισμό των δεδομένων σε μικρότερα υποσύνολα Σημείωση: ο διαχωρισμός δεν είναι δυνατός αν όλες οι εγγραφές έχουν τις ίδιες τιμές σε όλα τα γνωρίσματα (δηλαδή, ο ίδιος συνδυασμός αντιστοιχεί σε περισσότερες από μία κλάσεις) τότε φύλλο με κλάση αυτής της πλειοψηφίας των εγγραφών εκπαίδευσης Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 26 Εξόρυξη Δεδομένων

14 10 age income student credit_rating buys_computer <=30 high no fair no <=30 high no excellent no high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes medium no excellent yes high yes fair yes >40 medium no excellent no κλάση <=30 income student credit_rating buys_computer high no fair no high no excellent no medium no fair no low yes fair yes medium yes excellent yes Δέντρο Απόφασης Παράδειγμα Ποιο γνώρισμα (πχ age) Ποια συνθήκη age? >40 income student credit_rating buys_computer medium no fair yes low yes fair yes low yes excellent no medium yes fair yes medium no excellent no income student credit_rating buys_computer high no fair yes low yes excellent yes medium no excellent yes high yes fair yes φύλλο με ετικέτα yes Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 27 Don t Cheat Yes Refund Don t Cheat Single, Divorced Cheat Yes Don t Cheat No Marital Status Refund Married Don t Cheat Δέντρο Απόφασης: Αλγόριθμος του Hunt No Don t Cheat Παράδειγμα Yes Refund Don t Cheat Single, Divorced Taxable Income No Marital Status < 80K >= 80K Married Don t Cheat Tid Refund Marital Status Taxable Income 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Don t Cheat Cheat Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 28 Εξόρυξη Δεδομένων

15 Δέντρο Απόφασης: Κατασκευή Δέντρου Πως θα γίνει ο διαχωρισμός του κόμβου; Greedy στρατηγική Διαχωρισμός εγγραφών με βάση έναν έλεγχο στις τιμές του γνωρίσματος που βελτιστοποιεί ένα συγκεκριμένο κριτήριο Θέματα Καθορισμόςτουτρόπουδιαχωρισμούτωνεγγραφών Ποιο γνώρισμα Ποια συνθήκη Ποιος είναι ο βέλτιστος διαχωρισμός Πότε θα σταματήσει ο διαχωρισμός (συνθήκη τερματισμού) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 29 Δέντρο Απόφασης: Κατασκευή Δέντρου Ας δούμε πρώτα πιθανές συνθήκες ελέγχου για τα γνωρίσματα Εξαρτάται από τον τύπο των γνωρισμάτων Διακριτές Nominal Διατεταγμένες (τακτικές) Ordinal Συνεχείς Continuous Είδη διαχωρισμού: Δυαδικός διαχωρισμός 2 way split Πολλαπλός διαχωρισμός Multi way split Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 30 Εξόρυξη Δεδομένων

16 Δέντρο Απόφασης: Κατασκευή Δέντρου Διαχωρισμός βασισμένος σε διακριτές τιμές Πολλαπλός διαχωρισμός: Χρησιμοποίησε τόσες διασπάσεις όσες οι διαφορετικές τιμές CarType Family Sports Luxury Δυαδικός Διαχωρισμός: Χωρίζει τις τιμές σε δύο υποσύνολα. Πρέπει να βρει το βέλτιστο διαχωρισμό (partitioning). {Sports, Luxury} CarType {Family} {Family, Luxury} CarType {Sports} Γενικά, αν κ τιμές, 2 κ-1 1 τρόποι Όταν υπάρχει διάταξη, πρέπει οι διασπάσεις να μη την παραβιάζουν Αυτός ο διαχωρισμός; {Small, Large} Size {Medium} Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 31 Δέντρο Απόφασης: Κατασκευή Δέντρου Διαχωρισμός βασισμένος σε συνεχείς τιμές Taxable Income > 80K? Taxable Income? < 10K > 80K Yes No [10K,25K) [25K,50K) [50K,80K) Δυαδικός διαχωρισμός Πολλαπλός διαχωρισμός Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 32 Εξόρυξη Δεδομένων

17 10 Δέντρο Απόφασης: Κατασκευή Δέντρου Τρόποι χειρισμού Διαχωρισμός βασισμένος σε συνεχείς τιμές Discretization (διακριτοποίηση) ώστε να προκύψει ένα διατεταγμένο κατηγορικό γνώρισμα Ταξινόμηση των τιμών και χωρισμός τους σε περιοχές καθορίζοντας n 1 σημεία διαχωρισμού, απεικόνιση όλων των τιμών μιας περιοχής στην ίδια κατηγορική τιμή Στατικό μιαφοράστηναρχή Δυναμικό εύρεση των περιοχών πχ έτσι ώστε οι περιοχές να έχουν το ίδιο διάστημα ή τις ίδιες συχνότητες εμφάνισης ή με χρήση συσταδοποίησης Δυαδική Απόφαση: (A < v) or (A v) εξετάζει όλους τους δυνατούς διαχωρισμούς (τιμές του v) και επιλέγει τον καλύτερο υπολογιστικά βαρύ Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 33 Δέντρο Απόφασης: Κατασκευή Δέντρου Συνεχή Γνωρίσματα (δυαδικός διαχωρισμός αναλυτικά) Πχ, χρήση δυαδικών αποφάσεων πάνω σε μία τιμή Πολλές επιλογές για την τιμή διαχωρισμού Αριθμός πιθανών διαχωρισμών = Αριθμός διαφορετικών τιμών έστω Ν Κάθε τιμή διαχωρισμού v συσχετίζεται με έναν πίνακα μετρητών Μετρητές των κλάσεων για κάθε μια από τις δύο διασπάσεις, A < v and A v Απλή μέθοδος για την επιλογή της καλύτερης τιμής v (βέλτιστη τιμή διαχωρισμού best split point) Διάταξε τις τιμές του A σε αύξουσα διάταξη Συνήθωςεπιλέγεταιτομεσαίοσημείοανάμεσα σε γειτονικές τιμές ας υποψήφιο (a i +a i+1 )/2 μέσο των τιμών a i και a i+1 Επέλεξε το «βέλτιστο» ανάμεσα στα υποψήφια Tid Refund Marital Status Taxable Income 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Taxable Income > 80K? Yes No Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 34 Εξόρυξη Δεδομένων

18 Δέντρο Απόφασης: Κατασκευή Δέντρου Greedy στρατηγική. Διάσπαση εγγραφών με βάση έναν έλεγχο γνωρίσματος που βελτιστοποιεί ένα συγκεκριμένο κριτήριο Θέματα Καθορισμός του τρόπου διαχωρισμού των εγγραφών Καθορισμός του ελέγχου γνωρίσματος Καθορισμός του βέλτιστου διαχωρισμού Πότε θα σταματήσει ο διαχωρισμός (συνθήκη τερματισμού) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 35 Δέντρο Απόφασης: Κατασκευή Δέντρου Βέλτιστος Διαχωρισμός Έστω ότι πριν το διαχωρισμό: 10 εγγραφές της κλάσης 0, 10 εγγραφές της κλάσης 1 Own Car? Car Type? Student ID? Yes No Family c 20 Luxury c 1 c 10 Sports c 11 C0: 6 C1: 4 C0: 4 C1: 6 C0: 1 C1: 3 C0: 8 C1: 0 C0: 1 C1: 7 C0: 1 C1: 0... C0: 1 C1: 0 C0: 0 C1: 1... C0: 0 C1: 1 Ποια από τις 3 διασπάσεις να προτιμήσουμε; (Δηλαδή, ποια συνθήκη ελέγχου είναι καλύτερη;) => ορισμός κριτηρίου βέλτιστου διαχωρισμού Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 36 Εξόρυξη Δεδομένων

19 Δέντρο Απόφασης: Κατασκευή Δέντρου Σε κάθε επίπεδο, πολλές διαφορετικές δυνατότητες για την διάσπαση. Ποια θα επιλέξουμε; Ορίζουμε ένα κριτήριο για την «ποιότητα» ενός κόμβου Διαισθητικά, προτιμώνται οι κόμβοι με ομοιογενείς κατανομές κλάσεων (homogeneous class distribution) ιδανικά, όλες οι εγγραφές στην ίδια κλάση Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 37 Δέντρο Απόφασης: Κατασκευή Δέντρου Βέλτιστος Διαχωρισμός Χρειαζόμαστε μία μέτρηση της μη καθαρότητας ενός κόμβου (node impurity) «Καλός» κόμβος!! C0: 5 C1: 5 Μη-ομοιογενής, Μεγάλος βαθμός μη καθαρότητας C0: 9 C1: 1 Ομοιογενής, Μικρός βαθμός μη καθαρότητας v1 C1 0 C2 6 Μη καθαρότητα ~ 0 v2 C1 1 C2 5 ενδιάμεση v3 C1 2 C2 4 ενδιάμεση αλλά μεγαλύτερη v4 C1 3 C2 3 Μεγάλη μη καθαρότητα Ι(v1) < Ι(v2) < I(v3) < I(v4) Θα δούμε 3 διαφορετικούς ορισμούς για την ποιότητα Ι(v) ενός κόμβου v στη συνέχεια Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 38 Εξόρυξη Δεδομένων

20 Δέντρο Απόφασης: Κατασκευή Δέντρου Σε κάθε επίπεδο, πολλές διαφορετικές δυνατότητες για την διάσπαση. Ποια θα επιλέξουμε; Έστω μια διάσπαση ενός κόμβου (parent) με N εγγραφές σε k παιδιά u i Έστω N(u i ) ο αριθμός εγγραφών κάθε παιδιού ( Ν(u i ) = N) Κοιτάμε το κέρδος, δηλαδή τη διαφορά μεταξύ της ποιότητας του γονέα (πριν τη διάσπαση) και το «μέσο όρο» της ποιότητας ων παιδιών του (μετά τη διάσπαση) Δ = I( parent) k i= 1 N( u ) N i I( u ) i Βάρος (εξαρτάται από τον αριθμό εγγραφών) Διαλέγουμε τη διάσπαση με το μεγαλύτερο κέρδος (μεγαλύτερο Δ) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 39 Παράδειγμα Δέντρο Απόφασης: Κατασκευή Πριν τη διάσπαση: C0 C1 N00 N01 M0 A? B? Yes No Yes No Node v1 Node v2 Node v3 Node v4 C0 C1 N10 N11 C0 C1 N20 N21 C0 C1 N30 N31 C0 C1 N40 N41 M1 M2 M3 M4 M12 Gain (κέρδος) = M0 M12 vs M0 M34 M34 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 40 Εξόρυξη Δεδομένων

21 Δέντρο Απόφασης: Αλγόριθμος του Hunt Ψευδό-κώδικας Algorithm GenDecTree(Sample S, Attlist A) 1. create a node N 2. If all samples are of the same class C then label N with C; terminate; 3. If A is empty then label N with the most common class C in S (majority voting); terminate; 4. Select a A, with the highest gain; Label N with a; 5. For each value v of a: a. Grow a branch from N with condition a=v; b. Let S v be the subset of samples in S with a=v; c. If S v is empty then attach a leaf labeled with the most common class in S; d. Else attach the node generated by GenDecTree(S v, A-a) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 41 Δέντρο Απόφασης: Κατασκευή Δέντρου Μέτρα μη Καθαρότητας 1. Ευρετήριο Gini (Gini Index) 2. Εντροπία (Entropy) 3. Λάθος ταξινομήσεις (Misclassification error) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 42 Εξόρυξη Δεδομένων

22 Δέντρο Απόφασης: GINI Ευρετήριο Gini για τον κόμβο t : GINI( t) = 1 c j= 1 [ p( j t)] 2 Παραδείγματα: v1 v2 v3 v4 C1 1 C1 2 C2 5 C2 4 C1 0 C2 6 Gini=0.000 p(j t) σχετική συχνότητα της κλάσης j στον κόμβο t (ποσοστό εγγραφών της κλάσης j στον κόμβο t) c αριθμός κλάσεων Gini=0.278 Gini=0.444 C1 3 C2 3 Gini=0.500 Ελάχιστη τιμή (0.0) ότανόλεςοιεγγραφέςανήκουνσεμίακλάση Μέγιστη τιμή (1 1/c) όταν όλες οι εγγραφές είναι ομοιόμορφα κατανεμημένες στις κλάσεις εξαρτάται από τον αριθμό των κλάσεων Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 43 Δέντρο Απόφασης: GINI Χρήση του στην κατασκευή του δέντρου απόφασης Χρησιμοποιείται στα CART, SLIQ, SPRINT. Όταν ένας κόμβος p διασπάται σε k κόμβους (παιδιά), (που σημαίνει ότι το σύνολο των εγγραφών του κόμβου χωρίζεται σε k υποσύνολα), η ποιότητα του διαχωρισμού υπολογίζεται ως: GINI split = k i= 1 ni n GINI ( i) όπου,n i = αριθμός εγγραφών του παιδιού i, n= αριθμός εγγραφών του κόμβου p. Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 44 Εξόρυξη Δεδομένων

23 Παράδειγμα Εφαρμογής Δέντρο Απόφασης: GINI Περίπτωση 1: Δυαδικά Γνωρίσματα C1 4 C2 3 A? Yes Node v1 C1 6 C2 6 No Node v2 C1 2 C2 3 Αρχικός κόμβος Parent C1 6 C2 6 Gini = v1 v2 C1 4 2 C2 3 3 Gini=0.486 Gini(v1) = 1 (4/7) 2 (3/7) 2 = 0.49 Gini(v2) = 1 (2/5) 2 (3/5) 2 = 0.48 Κέρδος Δ = Gini(Children) = 7/12 * /12 * 0.48 = Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 45 Παράδειγμα (συνέχεια) Δέντρο Απόφασης: GINI Yes B? C1 6 C2 6 Parent C1 6 C2 6 Gini = No Υπενθύμιση: με βάση το Α v1 v2 C1 4 2 C2 3 3 Gini=0.486 C1 5 C2 2 Node v1 Node v2 C1 1 C2 4 v1 v2 C1 5 1 C2 2 4 Gini=0.371 Gini(v1) = 1 (5/7) 2 (2/7) 2 = Gini(v2) = 1 (1/5) 2 (4/5) 2 = 0.32 Κέρδος Δ = Gini(Children) = 7/12 * /12 * 0.32 = Άρα διαλέγουμε το Β Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 46 Εξόρυξη Δεδομένων

24 Δέντρο Απόφασης: GINI Περίπτωση 2: Κατηγορικά Γνωρίσματα Για κάθε διαφορετική τιμή, μέτρησε τις τιμές στα δεδομένα που ανήκουν σε κάθε κλάση Χρησιμοποίησε τον πίνακα με τους μετρητές για να πάρεις την απόφαση Δυαδική διάσπαση (βρες τον καλύτερο διαχωρισμό των τιμών) {Family, Luxury} CarType {Sports} {Sports, Luxury} CarType CarType {Sports, {Family} Luxury} {Family} C1 9 1 C2 7 3 Gini CarType {Sports} {Family, Luxury} C1 8 2 C Gini Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 47 Δέντρο Απόφασης: GINI Περίπτωση 2: Κατηγορικά Γνωρίσματα CarType Family Luxury Sports Πολλαπλή Διάσπαση CarType Family Sports Luxury C C Gini Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 48 Εξόρυξη Δεδομένων

25 10 Δέντρο Απόφασης: GINI Παράδειγμα Κλάση ageclass income P: buys_computer student = yes credit_rating <=30Class high N: buys_computer no = no fair buys_computer no <=30 high no excellent no high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes medium no excellent yes high yes fair yes >40 medium no excellent no Αρχικό Gini για αυτόν τον κόμβο: gini( D) = = Έστω ότι το διασπάμε με βάση το income Πρέπει να θεωρήσουμε όλες τις δυνατές διασπάσεις Έστω μόνο δυαδικές D1: {low, medium} και D2 {high} D3: {low} και D4 {medium, high} Αν πολλαπλές διασπάσεις, πρέπει να θεωρήσουμε και άλλες διασπάσεις Με τον ίδιο τρόπο εξετάζουμε και πιθανές διασπάσεις με βάση τα άλλα τρία γνωρίσματα (δηλαδή, age, student, credit_rating) και διαλέγουμε την καλύτερη Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 49 Συνεχή Γνωρίσματα Δέντρο Απόφασης: GINI Χρήση δυαδικού διαχωρισμού πάνω σε μία τιμή Πολλές επιλογές για την τιμή διαχωρισμού Αριθμός πιθανών διαχωρισμών = Αριθμός διαφορετικών τιμών έστω Ν Κάθε τιμή διαχωρισμού v συσχετίζεται με έναν πίνακα μετρητών Μετρητές των κλάσεων για κάθε μια από τις δύο διασπάσεις, A < v and A v Απλή μέθοδος για την επιλογή της καλύτερης τιμής v Για κάθε διαφορετική τιμή v, scan τα δεδομένα, κατασκεύασε τον πίνακα και υπολόγισε το Gini ευρετήριο χρόνος Ο(Ν) Άρα για Ν τιμές, Ο(Ν 2 ) > Υπολογιστικά μη αποδοτικό! Επανάληψη υπολογισμού. Tid Refund Marital Status Taxable Income 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Taxable Income > 80K? Yes No Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 50 Εξόρυξη Δεδομένων

26 10 Δέντρο Απόφασης: GINI Για ποιο αποδοτικό υπολογισμό, για κάθε γνώρισμα Ταξινόμησε το γνώρισμα Ο(Ν logn) Σειριακή διάσχιση των τιμών, ενημερώνοντας κάθε φορά τον πίνακα με τους μετρητές και υπολογίζοντας το ευρετήριο Gini Επιλογή του διαχωρισμού με το μικρότερο ευρετήριο Gini Παράδειγμα Διαχωρισμός στο γνώρισμα Income Cheat No No No Yes Yes Yes No No No No Taxable Income Ταξινόμηση Τιμών Τιμές διαχωρισμού <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > Yes No Gini Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 51 Tid Refund Marital Status Taxable Income 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No Cheat 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10 No Single 90K Yes Για <55, δεν υπάρχει εγγραφή οπότε 0 Για <65, κοιτάμε το μικρότερο το 60, 0 >1, 7 >6 YES δεν αλλάζει Για <72, κοιτάμε το μικρότερο το 70, ΝΟ 1 >2 6 >5, YES δεν αλλάζει κοκ Καλύτερα; Αγνοούμε τα σημεία στα οποία δεν υπάρχει αλλαγή κλάσης (αυτά δε μπορεί να είναι σημεία διαχωρισμού) Άρα, στο παράδειγμα, αγνοούνται τα σημεία 55, 65, 72, 87, 92, 122, 172, 230 Από 11 πιθανά σημεία διαχωρισμού μας μένουν μόνο 2 Ταξινομημένες Τιμές Τιμές Διαχωρισμού Cheat No No No Yes Yes Yes No No No No Taxable Income <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > <= > Yes No Gini Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 52 Εξόρυξη Δεδομένων

27 Δέντρο Απόφασης: Κατασκευή Δέντρου Μέτρα μη Καθαρότητας 1. Ευρετήριο Gini Gini Index 2. Εντροπία Entropy 3. Λάθος ταξινομήσεις Misclassification error Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 53 Εντροπία για τον κόμβο t : Δέντρο Απόφασης: Εντροπία Entropy( t) = c j= 1 p( j t)log p( j t) 2 p(j t) σχετική συχνότητα της κλάσης j στον κόμβο t c αριθμός κλάσεων v1 v2 v3 v4 C1 0 C2 6 Entropy=0.000 C1 1 C2 5 Entropy=0.650 C1 2 C2 4 Entropy = 0.92 C1 3 C2 3 Entropy = Gini = Gini = Gini = Gini = Μετράει την ομοιογένεια ενός κόμβου Μέγιστη τιμή log(c) όταν όλες οι εγγραφές είναι ομοιόμορφα κατανεμημένες στις κλάσεις (που σημαίνει τη λιγότερο ενδιαφέρουσα πληροφορία) Ελάχιστη τιμή (0.0) όταν όλες οι εγγραφές ανήκουν σε μία κλάση (που σημαίνει την πιο ενδιαφέρουσα πληροφορία) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 54 Εξόρυξη Δεδομένων

28 Δέντρο Απόφασης: Εντροπία Παραδείγματα Entropy t) p( j t)log p( j t) ( 2 = j C1 0 C2 6 P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 Entropy = 0 log 0 1 log 1 = 0 0 = 0 C1 1 C2 5 P(C1) = 1/6 P(C2) = 5/6 Entropy = (1/6) log 2 (1/6) (5/6) log 2 (5/6) = 0.65 C1 2 C2 4 P(C1) = 2/6 P(C2) = 4/6 Entropy = (2/6) log 2 (2/6) (4/6) log 2 (4/6) = 0.92 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 55 Δέντρο Απόφασης: Εντροπία Και σε αυτήν την περίπτωση, όταν ένας κόμβος p διασπάται σε k σύνολα (παιδιά), η ποιότητα του διαχωρισμού υπολογίζεται ως: GAIN split k = Entropy( p) i= 1 n i Entropy( i) n όπου, n i = αριθμός εγγραφών του παιδιού i, n= αριθμός εγγραφών του κόμβου p. Χρησιμοποιείται στα ID3 and C4.5 Όταν χρησιμοποιούμε την εντροπία για τη μέτρηση της μη καθαρότητας τότε η διαφορά καλείται κέρδος πληροφορίας (information gain) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 56 Εξόρυξη Δεδομένων

29 Δέντρο Απόφασης: Κέρδος Πληροφορίας Παράδειγμα Κλάση age income student credit_rating buys_computer <=30 high no fair no <=30 high no excellent no high no fair yes >40 medium no fair yes >40 low yes fair yes >40 low yes excellent no low yes excellent yes <=30 medium no fair no <=30 low yes fair yes >40 medium yes fair yes <=30 medium yes excellent yes medium no excellent yes high yes fair yes >40 medium no excellent no age p i n i I(p i, n i ) <= > Info( D) = I(9,5) = log ( ) log2( ) Info age ( D) = + 2 = I (2,3) I (3,2) = Gain( income) = Gain( student) = Gain( credit _ rating) = I (4,0) Gain( age) = Info( D) Info ( D) = age Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 57 Δέντρο Απόφασης Δ = I( parent) k i= 1 N( u ) N i I( u ) i Τείνει να ευνοεί διαχωρισμούς που καταλήγουν σε μεγάλο αριθμό από διασπάσεις που η κάθε μία είναι μικρή αλλά καθαρή Own Car? Car Type? Student ID? Yes No Family Sports C0: 6 C1: 4 C0: 4 C1: 6 C0: 1 C1: 3 C0: 8 C1: 0 Luxury c 1 c 20 c 10 c 11 C0: 1 C1: 7 C0: 1 C1: 0... C0: 1 C1: 0 C0: 0 C1: 1... C0: 0 C1: 1 Μπορεί να καταλήξουμε σε πολύ μικρούς κόμβους (με πολύ λίγες εγγραφές) για αξιόπιστες προβλέψεις Στο παράδειγμα, το student id είναι κλειδί, όχι χρήσιμο για προβλέψεις Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 58 Εξόρυξη Δεδομένων

30 Δέντρο Απόφασης: Λόγος Κέρδους Μία λύση είναι να έχουμε μόνο δυαδικές διασπάσεις Εναλλακτικά, μπορούμε να λάβουμε υπό όψιν μας τον αριθμό των κόμβων GainRATIO split GAIN Split = SplitINFO Δηλαδή διαιρούμε με μια ποσότητα που εξαρτάται από τον αριθμό των κόμβων Όπου: SplitINFO = k i= 1 ni n log ni n SplitINFO: εντροπία της διάσπασης Μεγάλος αριθμός μικρών διασπάσεων (υψηλή εντροπία) τιμωρείται Χρησιμοποιείται στο C4.5 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 59 Δέντρο Απόφασης: Λόγος Κέρδους GainRATIO split GAIN Split = SplitINFO SplitINFO = k i= 1 ni n log ni n Παράδειγμα Έστω N εγγραφές αν τις χωρίσουμε Σε 3 («ίσους») κόμβους SplitINFO = log(1/3) = log3 Σε 2 («ίσους») κόμβους SplitINFO = log(1/2) = log2 = 1 Άρα οι 2 ευνοούνται Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 60 Εξόρυξη Δεδομένων

31 Δέντρο Απόφασης: Εντροπία Και τα τρία μέτρα επιστρέφουν καλά αποτελέσματα Κέρδος Πληροφορίας (εντροπία): Δουλεύει καλύτερα σε γνωρίσματα με πολλαπλές τιμές Λόγος Κέρδους: Τείνει να ευνοεί διαχωρισμούς όπου μία διαμέριση είναι πολύ μικρότερη από τις υπόλοιπες Ευρετήριο Gini: Δουλεύει καλύτερα σε γνωρίσματα με πολλαπλές τιμές Δε δουλεύει τόσο καλά όταν ο αριθμός των κλάσεων είναι μεγάλος Τείνει να ευνοεί ελέγχους που οδηγούν σε ισομεγέθεις διαμερίσεις που και οι δύο είναι καθαρές Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 61 Δέντρο Απόφασης: Κατασκευή Δέντρου Μέτρα μη Καθαρότητας 1. Ευρετήριο Gini Gini Index 2. Εντροπία Entropy 3. Λάθος ταξινομήσεις Misclassification error Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 62 Εξόρυξη Δεδομένων

32 Λάθος ταξινόμησης (classification error) για τον κόμβο t : Μετράει το λάθος ενός κόμβου Δέντρο Απόφασης: Λάθος Ταξινόμησης Error( t) = 1 max P( i t) class i C1 0 C2 6 C1 1 C2 5 Παράδειγμα Όσες ταξινομούνται σωστά Υπενθύμιση: στις εγγραφές P(C1) = 0/6 = 0 P(C2) = 6/6 = 1 ενός κόμβου ανατίθεται η Error = 1 max (0, 1) = 1 1 = 0 κλάση της πλειοψηφίας, (max p(i t)), όλα τα άλλα (1 max) ταξινομούνται λάθος P(C1) = 1/6 P(C2) = 5/6 Error = 1 max (1/6, 5/6) = 1 5/6 = 1/6 C1 2 C2 4 P(C1) = 2/6 P(C2) = 4/6 Error = 1 max (2/6, 4/6) = 1 4/6 = 1/3 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 63 Δέντρο Απόφασης: Λάθος Ταξινόμησης Λάθος ταξινόμησης (classification error) για τον κόμβο t : Error( t) = 1 max P( i t) class i Μετράει το λάθος ενός κόμβου Μέγιστη τιμή 1 1/c όταν όλες οι εγγραφές είναι ομοιόμορφα κατανεμημένες στις κλάσεις (που σημαίνει τη λιγότερο ενδιαφέρουσα πληροφορία) Ελάχιστη τιμή (0.0) όταν όλες οι εγγραφές ανήκουν σε μία κλάση (που σημαίνει την πιο ενδιαφέρουσα πληροφορία) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 64 Εξόρυξη Δεδομένων

33 Δέντρο Απόφασης: Σύγκριση Για ένα πρόβλημα δύο κλάσεων p ποσοστό εγγραφών που ανήκει σε μία από τις δύο κλάσεις (p κλάση +, 1 p κλάση ) Όλες την μεγαλύτερη τιμή για 0.5 (ομοιόμορφη κατανομή) Όλες μικρότερη τιμή όταν όλες οι εγγραφές σε μία μόνο κλάση (0 και στο 1) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 65 Δέντρο Απόφασης: Σύγκριση Όπως είδαμε και στα παραδείγματα οι τρεις μετρήσεις είναι συνεπής μεταξύ τους, πχ v1 μικρότερη τιμή από το v2 και με τις τρεις μετρήσεις Ωστόσο το γνώρισμα που θα επιλεγεί για τη συνθήκη ελέγχου εξαρτάται από το ποια μέτρηση χρησιμοποιείται v1 v2 v3 v4 C1 0 C2 6 Error=0.000 C1 1 C2 5 Error=0.167 C1 2 C2 4 Error = C1 3 C2 3 Error = Gini = Gini = Gini = Gini = Entropy = Entropy = Entropy = Entropy = Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 66 Εξόρυξη Δεδομένων

34 Δέντρο Απόφασης: Αλγόριθμος του Hunt Ψευδό κώδικας (πάλι) Algorithm GenDecTree(Sample S, Attlist A) 1. create a node N 2. If all samples are of the same class C then label N with C; terminate; 3. If A is empty then label N with the most common class C in S (majority voting); terminate; 4. Select a A, with the highest information gain (gini, error); Label N with a; 5. For each value v of a: a. Grow a branch from N with condition a=v; b. Let S v be the subset of samples in S with a=v; c. If S v is empty then attach a leaf labeled with the most common class in S; d. Else attach the node generated by GenDecTree(S v, A-a) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 67 Δέντρο Απόφασης: Κατασκευή Δέντρου Greedy στρατηγική. Διάσπαση εγγραφών με βάση έναν έλεγχο γνωρίσματος που βελτιστοποιεί ένα συγκεκριμένο κριτήριο Θέματα Καθορισμόςτουτρόπουδιαχωρισμούτωνεγγραφών Καθορισμός του ελέγχου γνωρίσματος Καθορισμός του βέλτιστου διαχωρισμού Πότε θα σταματήσει ο διαχωρισμός (συνθήκη τερματισμού) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 68 Εξόρυξη Δεδομένων

35 Δέντρο Απόφασης: Κριτήρια Τερματισμού Σταματάμε την επέκταση ενός κόμβου όταν όλες οι εγγραφές του ανήκουν στην ίδια κλάση Σταματάμε την επέκταση ενός κόμβου όταν όλα τα γνωρίσματα έχουν τις ίδιες τιμές Γρήγορος τερματισμός με βάση τον αριθμό των εγγραφών με βάση το κέρδος (λάθος) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 69 Δέντρο Απόφασης Data Fragmentation Διάσπαση Δεδομένων Ο αριθμός των εγγραφών μειώνεται όσο κατεβαίνουμε στο δέντρο Ο αριθμός των εγγραφών στα φύλλα μπορεί να είναι πολύ μικρός για να πάρουμε οποιαδήποτε στατιστικά σημαντική απόφαση Μπορούμε να αποτρέψουμε την περαιτέρω διάσπαση όταν ο αριθμός των εγγραφών πέσει κάτω από ένα όριο Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 70 Εξόρυξη Δεδομένων

36 Δέντρο Απόφασης Πλεονεκτήματα Δέντρων Απόφασης Μη παραμετρική προσέγγιση: Δε στηρίζεται σε υπόθεση εκ των προτέρων γνώσης σχετικά με τον τύπο της κατανομής πιθανότητας που ικανοποιεί η κλάση ή τα άλλα γνωρίσματα Η κατασκευή του βέλτιστου δέντρου απόφασης είναι ένα NP complete πρόβλημα. Ευριστικοί: Αποδοτική κατασκευή ακόμα και στην περίπτωση πολύ μεγάλου συνόλου δεδομένων Αφού το δέντρο κατασκευαστεί, η κατηγοριοποίηση νέων εγγραφών είναι πολύ γρήγορη O(h) όπουh το μέγιστο ύψος του δέντρου Εύκολα στην κατανόηση (ιδιαίτερα τα μικρά δέντρα) Η ακρίβεια τους συγκρίσιμη με άλλες τεχνικές για μικρά σύνολα δεδομένων Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 71 Δέντρο Απόφασης Πλεονεκτήματα Καλή συμπεριφορά στο θόρυβο Η ύπαρξη πλεοναζόντων γνωρισμάτων (γνωρίσματα των οποίων η τιμή εξαρτάται από κάποιο άλλο) δεν είναι καταστροφική για την κατασκευή. Χρησιμοποιείται ένα από τα δύο. Αν πάρα πολλά, μπορεί να οδηγήσουν σε δέντρα πιο μεγάλα από ότι χρειάζεται Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 72 Εξόρυξη Δεδομένων

37 Δέντρο Απόφασης Εκφραστικότητα Δυνατότητα αναπαράστασης για συναρτήσεις διακριτών τιμών, αλλά δε δουλεύουν σε κάποια είδη δυαδικών προβλημάτων πχ, parity ισοτιμία 0(1) αν υπάρχει μονός (ζυγός) αριθμός από δυαδικά γνωρίσματα 2 d κόμβοι για d γνωρίσματα Όχι καλή συμπεριφορά για συνεχείς μεταβλητές Ιδιαίτερα όταν η συνθήκη ελέγχου αφορά ένα γνώρισμα τη φορά Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 73 Δέντρο Απόφασης Decision Boundary Μέχρι στιγμής είδαμε ελέγχους που αφορούν μόνο ένα γνώρισμα τη φορά, μπορούμε να δούμε τη διαδικασία ως τη διαδικασία διαμερισμού του χώρου των γνωρισμάτων σε ξένες περιοχές μέχρι κάθε περιοχή να περιέχει εγγραφές που να ανήκουν στην ίδια κλάση Η οριακή γραμμή (Border line) μεταξύ δυο γειτονικών περιοχών που ανήκουν σε διαφορετικές κλάσεις ονομάζεται και decision boundary (σύνορο απόφασης) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 74 Εξόρυξη Δεδομένων

38 Δέντρο Απόφασης Όταν η συνθήκη ελέγχου περιλαμβάνει μόνο ένα γνώρισμα τη φορά τότε το Decision boundary είναι παράλληλη στους άξονες (τα decision boundaries είναι ορθογώνια παραλληλόγραμμα) x < 0.43? Yes No y y < 0.47? y < 0.33? Yes No Yes No : 4 : 0 : 0 : 4 : 0 : 3 : 4 : x Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 75 Δέντρο Απόφασης Oblique (πλάγιο) Δέντρο Απόφασης x + y < 1 Class = + Class = Οι συνθήκες ελέγχου μπορούν να περιλαμβάνουν περισσότερα από ένα γνωρίσματα Μεγαλύτερη εκφραστικότητα Η εύρεση βέλτιστων συνθηκών ελέγχου είναι υπολογιστικά ακριβή Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 76 Εξόρυξη Δεδομένων

39 Δέντρο Απόφασης Constructive induction (εποικοδομητική επαγωγή) Κατασκευή σύνθετων γνωρισμάτων ως αριθμητικών ή λογικών συνδυασμών άλλων γνωρισμάτων Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 77 Δέντρο Απόφασης Στρατηγική αναζήτησης Ο αλγόριθμος που είδαμε χρησιμοποιεί μια greedy, top down, αναδρομική διάσπαση για να φτάσει σε μια αποδεκτή λύση Άλλες στρατηγικές? Bottom up (από τα φύλλα, αρχικά κάθε εγγραφή και φύλλο) Bi directional Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 78 Εξόρυξη Δεδομένων

40 Δέντρο Απόφασης Tree Replication (Αντίγραφα) P Q R S 0 Q S 0 Το ίδιο υπο δέντρο να εμφανίζεται πολλές φορές σε ένα δέντρο απόφασης Αυτό κάνει το δέντρο πιο περίπλοκο και πιθανών δυσκολότερο στην κατανόηση 0 1 Σε περιπτώσεις διάσπασης ενός γνωρίσματος σε κάθε εσωτερικό κόμβο ο ίδιος έλεγχος σε διαφορετικά σημεία Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 79 Δέντρο Απόφασης: C4.5 Simple depth first construction. Uses Information Gain Sorts Continuous Attributes at each node. Needs entire data to fit in memory. Unsuitable for Large Datasets. Needs out of core sorting. You can download the software from: Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 80 Εξόρυξη Δεδομένων

41 Δέντρο Απόφασης Περίληψη Προτερήματα Pros + Λογικός χρόνος εκπαίδευσης + Γρήγορη εφαρμογή + Ευκολία στην κατανόηση + Εύκολη υλοποίηση + Μπορεί να χειριστεί μεγάλο αριθμό γνωρισμάτων Μειονεκτήματα Cons Δεν μπορεί να χειριστεί περίπλοκες σχέσεις μεταξύ των γνωρισμάτων Απλά όρια απόφασης (decision boundaries) Προβλήματα όταν λείπουν πολλά δεδομένα Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 81 Θέματα στην Κατηγοριοποίηση Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 82 Εξόρυξη Δεδομένων

42 Εκτίμηση του Λάθους Ως λάθος (σφάλμα) μετράμε τις εγγραφές που το μοντέλο τοποθετεί σε λάθος κλάση 2 ειδών λάθη Εκπαίδευσης (training, resubstitution, apparent): λάθη κατηγοριοποίησης στα δεδομένα του συνόλου εκπαίδευσης (ποσοστό δεδομένων εκπαίδευσης που κατηγοριοποιούνται σε λάθος κλάση) Γενίκευσης (generalization): τα αναμενόμενα λάθη κατηγοριοποίησης του μοντέλου σε δεδομένα που δεν έχει δει Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 83 Λάθη και στα δεδομένα εκπαίδευσης, γιατί χρησιμοποιούμε την πλειοψηφία των εγγραφών σε ένα φύλλο για να αποδώσουμε κλάση Εκτίμηση του Λάθους Πλειοψηφία στην + Άρα 1 έγγραφή λάθος Πλειοψηφία στην - Άρα 3 εγγραφές λάθος Παράδειγμα δύο δέντρων για τα ίδια δεδομένα εκπαίδευσης Με βάση το λάθος εκπαίδευσης Αριστερό 4/24 = Δεξί: 6/24 = 0.25 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 84 Εξόρυξη Δεδομένων

43 Υπερπροσαρμογή (Overfitting) Υπερπροσαρμογή Overfitting Μπορεί ένα μοντέλο που ταιριάζει πολύ καλά με τα δεδομένα εκπαίδευσης να έχει μεγαλύτερο λάθος γενίκευσης από ένα μοντέλο που ταιριάζει λιγότερο καλά στα δεδομένα εκπαίδευσης Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 85 Overfitting Δύο κλάσεις: κλάση 1 (500 κυκλικά σημεία) και κλάση 2 (500 τριγωνικά σημεία) Για τα σημεία της κλάσης 1 (κυκλικά σημεία): 0.5 sqrt(x 12 +x 22 ) 1 Για τα σημεία της κλάσης 2 (τριγωνικά σημεία): sqrt(x 12 +x 22 ) > 0.5 or sqrt(x 12 +x 22 ) < 1 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 86 Εξόρυξη Δεδομένων

44 Everything should be made as simple as possible, but not simpler, Einstein Overfitting Overfitting Το δέντρο απόφασης για το προηγούμενα δεδομένα 30% εκπαίδευση 70% έλεγχο Gini Στη συνέχεια, pruning Underfitting (υποπροσαρμογή): όταν το μοντέλο είναι πολύ απλό και τα λάθη εκπαίδευσης και τα λάθη ελέγχου είναι μεγάλα Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 87 Μπορούμε να διασπάμε το δέντρο μέχρι να φτάσουμε στο σημείο κάθε φύλλο να ταιριάζει απολύτως στα δεδομένα Μικρό (μηδενικό) λάθος εκπαίδευσης Μεγάλο λάθος ελέγχου Και το ανάποδο, μπορεί επίσης να ισχύει Overfitting Δέντρα απόφασης με διαφορετική πολυπλοκότητα Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 88 Εξόρυξη Δεδομένων

45 Overfitting εξαιτίας Θορύβου Overfitting Το σημείο θορύβου επηρεάζει τη συνθήκη (Decision boundary is distorted by noise point) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 89 Overfitting εξαιτίας μη Επαρκών Δειγμάτων Overfitting Κόκκινοι κύκλοι ανήκουν στην ίδια κλάση Οι γεμάτοι είναι στο σύνολο εκπαίδευσης, οι άδειοι στο σύνολο ελέγχου Η έλλειψη κόκκινων σημείων στο κάτω μισό του διαγράμματος κάνει δύσκολη την πρόβλεψη των κλάσεων σε αυτήν την περιοχή Μη επαρκής αριθμός εγγραφών εκπαίδευσης έχει ως αποτέλεσμα το δέντρο απόφασης να κάνει πρόβλεψηγιατασημείααυτήςτηςπεριοχήςχρησιμοποιώντας εγγραφές εκπαίδευσης μη σχετικές με το έργο της ταξινόμησης Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 90 Εξόρυξη Δεδομένων

46 Overfitting Πρόβλημα λόγω πολλαπλών επιλογών Επειδή σε κάθε βήμα εξετάζουμε πάρα πολλές διαφορετικές διασπάσεις, κάποια διάσπαση βελτιώνει το δέντρο κατά τύχη Το πρόβλημα χειροτερεύει όταν αυξάνει ο αριθμός των επιλογών και μειώνεται ο αριθμός των δειγμάτων (σημείων εκπαίδευσης) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 91 Overfitting Το οverfitting έχει ως αποτέλεσμα μοντέλα (δέντρα απόφασης) που είναι πιο περίπλοκα από ό,τι χρειάζεται Τα λάθη εκπαίδευσης δεν αποτελούν πια μια καλή εκτίμηση για τη συμπεριφορά του δέντρου σε εγγραφές που δεν έχει δει ξανά Νέοι μέθοδοι για την εκτίμηση του λάθους Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 92 Εξόρυξη Δεδομένων

47 Κλάδεμα Δέντρου Δύο βασικές προσεγγίσεις κλαδέματος (pruning) του δέντρου: Pre pruning Σταμάτημα της ανάπτυξης του δέντρου μετά από κάποιο σημείο Post pruning Η κατασκευή του δέντρου χωρίζεται σε δύο φάσεις: 1. Φάση Ανάπτυξης 2. Φάση Κλαδέματος Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 93 Κλάδεμα Δέντρου Pre-Pruning (Early Stopping Rule) Σταμάτα τον αλγόριθμο πριν σχηματιστεί ένα πλήρες δέντρο Συνήθεις συνθήκες τερματισμού για έναν κόμβο: Σταμάτα όταν όλες οι εγγραφές ανήκουν στην ίδια κλάση Σταμάτα όταν όλες οι τιμές των γνωρισμάτων είναι οι ίδιες Πιο περιοριστικές συνθήκες: Σταμάτα όταν ο αριθμός των εγγραφών είναι μικρότερος από κάποιο προκαθορισμένο κατώφλι Σταμάτα όταν η επέκταση ενός κόμβου δεν βελτιώνει την καθαρότητα (π.χ., Gini ή information gain) ήτολάθος γενίκευσης περισσότερο από κάποιο κατώφλι. ( ) δύσκολος ο καθορισμός του κατωφλιού, ( ) ανκαι το κέρδος μικρό, κατοπινοί διαχωρισμοί μπορεί να καταλήξουν σε καλύτερα δέντρα Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 94 Εξόρυξη Δεδομένων

48 Κλάδεμα Δέντρου Post pruning Ανάπτυξε το δέντρο πλήρως Trim ψαλίδισε τους κόμβους από πάνω προς τα κάτω (bottom up) Αν το λάθος γενίκευσης μειώνεται με το ψαλίδισμα, αντικατέστησε το υποδέντρο με ένα φύλλο οι ετικέτες κλάσεις του φύλλου καθορίζεται από την πλειοψηφία των κλάσεων των εγγραφών του υποδέντρου (subtree replacement) ένα από τα κλαδιά του (Branch), αυτό που χρησιμοποιείται συχνότερα (subtree raising) Χρησιμοποιείται πιο συχνά Χρήση άλλων δεδομένων για τον υπολογισμό του καλύτερου δέντρου του λάθους γενίκευσης) (δηλαδή Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 95 Εκτίμηση του Λάθους Εκτίμηση Λάθους Γενίκευσης Ως λάθος μετράμε τις εγγραφές που ο ταξινομητής τοποθετεί σε λάθος κλάση Χρήση Δεδομένων Εκπαίδευσης αισιόδοξη εκτίμηση απαισιόδοξη εκτίμηση Χρήση Δεδομένων Ελέγχου Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 96 Εξόρυξη Δεδομένων

49 Εκτίμηση του Λάθους Re substitution errors: Λάθος στην εκπαίδευση (Σ e(t) ) Generalization errors: Λάθος στον έλεγχο (Σ e (t)) Ως λάθος μετράμε το ποσοστό των εγγραφών που το μοντέλο τοποθετεί σε λάθος κλάση Μέθοδοι εκτίμησης του λάθους γενίκευσης: Optimistic approach Αισιόδοξη προσέγγιση: e (t) = e(t) Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 97 Εκτίμηση του Λάθους Πλειοψηφία στην + Άρα 1 έγγραφή λάθος Πλειοψηφία στην - Άρα 3 εγγραφές λάθος Παράδειγμα δύο δέντρων για τα ίδια δεδομένα Το δέντρο στο δεξί (T R ) μετά από ψαλίδισμα του δέντρου στα αριστερά (T L ) sub tree raising Με βάση το λάθος εκπαίδευσης Αριστερό 4/24 = Δεξί: 6/24 = 0.25 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 98 Εξόρυξη Δεδομένων

50 Πολυπλοκότητα Μοντέλου Occam s Razor Δοθέντων δυο μοντέλων με παρόμοια λάθη γενίκευσης, πρέπει να προτιμάται το απλούστερο από το πιο περίπλοκο Ένα πολύπλοκο μοντέλο είναι πιο πιθανό να έχει ταιριαστεί (Fitted) τυχαία λόγω λαθών στα δεδομένα Για αυτό η πολυπλοκότητα του μοντέλου θα πρέπει να αποτελεί έναν από τους παράγοντες της αξιολόγησής του Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 99 Εκτίμηση του Λάθους Γενίκευσης Pessimistic approach Απαισιόδοξη προσέγγιση: k: αριθμός φύλλων, για κάθε φύλλο t i προσθέτουμε ένα κόστος V(t i ) e'( T ) k i i= 1 = k [ e( t ) + V ( t )] i 1 n( t ) i i Aν για κάθε φύλλο t,v(t) = 0.5: e (t) = e(t) Συνολικό λάθος: e (T) = e(t) + k 0.5 (k: αριθμός φύλλων) Το 0.5 σημαίνει ότι διαχωρισμός ενός κόμβου δικαιολογείται αν βελτιώνει τουλάχιστον μία εγγραφή Για ένα δέντρο με 30 φύλλα και 10 λάθη στο σύνολο εκπαίδευσης (από σύνολο 1000 εγγραφών): Training error = 10/1000 = 1% Generalization error = ( )/1000 = 2.5% Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 100 Εξόρυξη Δεδομένων

51 Εκτίμηση του Λάθους Παράδειγμα δύο δέντρων για τα ίδια δεδομένα Με βάση το λάθος εκπαίδευσης Αν αντί για 0.5, κάτι μεγαλύτερο; Αριστερό (4 + 7*0.5)/24 = Δεξί: (6 + 4*0.5)/24 = Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 101 Κλάδεμα Δέντρου Παράδειγμα Post Pruning Λάθος εκπαίδευσης (Πριν τη διάσπαση) = 10/30 Class = Yes 20 Class = No 10 Error = 10/30 A1 A? A4 Απαισιόδοξο λάθος = ( )/30 = 10.5/30 Λάθος εκπαίδευσης (Μετά τη διάσπαση) = 9/30 Απαισιόδοξο λάθος (Μετά τη διάσπαση) A2 A3 = ( )/30 = 11/30 PRUNE! Class = Yes Class = No 8 4 Class = Yes Class = No 4 1 Class = Yes Class = No 5 1 Class = Yes Class = No 3 4 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 102 Εξόρυξη Δεδομένων

52 Εκτίμηση του Λάθους Reduced error pruning (REP): χρήση ενός συνόλου επαλήθευσης για την εκτίμηση του λάθους γενίκευσης Χώρισε τα δεδομένα εκπαίδευσης: 2/3 εκπαίδευση 1/3 (σύνολο επαλήθευσης validation set) για υπολογισμό λάθους Χρήση για εύρεση του κατάλληλου μοντέλου Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 103 Παράδειγμα post pruning Κλάδεμα Δέντρου Αισιόδοξη προσέγγιση? Όχι διάσπαση Απαισιόδοξη προσέγγιση? Case 1: C0: 11 C1: 3 C0: 2 C1: 4 όχι case 1, ναι case 2 REP? Εξαρτάται από το σύνολο ελέγχου Case 2: C0: 14 C1: 3 C0: 2 C1: 2 Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 104 Εξόρυξη Δεδομένων

53 10 Τιμές που λείπουν Οι τιμές που λείπουν (missing values) επηρεάζουν την κατασκευή του δέντρου με τρεις τρόπους: Πως υπολογίζονται τα μέτρα καθαρότητας Πως κατανέμονται στα φύλλα οι εγγραφές με τιμές που λείπουν Πως ταξινομείται μια εγγραφή εκπαίδευσης στην οποία λείπει μια τιμή Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 105 Τιμές που λείπουν Tid Refund Marital Status Taxable Income Class 1 Yes Single 125K No 2 No Married 100K No 3 No Single 70K No 4 Yes Married 120K No 5 No Divorced 95K Yes 6 No Married 60K No 7 Yes Divorced 220K No 8 No Single 85K Yes 9 No Married 75K No 10? Single 90K Yes Missing value Υπολογισμό μέτρων καθαρότητας Πριν τη διάσπαση: Entropy(Parent) = -0.3 log(0.3)-(0.7)log(0.7) = Κόμβος 1 Κόμβος 2 Class = Yes Class = No Refund=Yes 0 3 Refund=No 2 4 Refund=? 1 0 Διάσπαση στο Refund: Entropy(Refund=Yes) = 0 Entropy(Refund=No) = -(2/6)log(2/6) (4/6)log(4/6) = Entropy(Children) = 0.3 (0) (0.9183) = Gain = 0.9 ( ) = Εξόρυξη Δεδομένων: Ακ. Έτος ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ I 106 Εξόρυξη Δεδομένων

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Ταξινόμηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός

Διαβάστε περισσότερα

Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή

Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή 0 0 0 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση Οι διαφάνειες στηρίζονται στο P.-N. Tan,

Διαβάστε περισσότερα

Ταξινόμηση II Σύντομη Ανακεφαλαίωση

Ταξινόμηση II Σύντομη Ανακεφαλαίωση 0 0 0 Ταξινόμηση II Σύντομη Ανακεφαλαίωση Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εξόρυξη Δεδομένων: Ακ. Έτος 2007-2008 ΤΑΞΙΝΟΜΗΣΗ

Διαβάστε περισσότερα

Ταξινόμηση I. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή

Ταξινόμηση I. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach,

Διαβάστε περισσότερα

Ταξινόμηση ΙI. Σύντομη Επανάληψη. Εισαγωγή Κατασκευή έντρου Απόφασης. Εξόρυξη Δεδομένων

Ταξινόμηση ΙI. Σύντομη Επανάληψη. Εισαγωγή Κατασκευή έντρου Απόφασης. Εξόρυξη Δεδομένων Ταξινόμηση ΙI Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Σύντομη Επανάληψη Εισαγωγή Κατασκευή έντρου Απόφασης Εξόρυξη Δεδομένων:

Διαβάστε περισσότερα

Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις)

Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Κατηγοριοποίηση ΙΙ Εξόρυξη Δεδομένων: Ακ. Έτος 200-20 ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ II Κατηγοριοποίηση Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

Αποθήκες εδομένων και Εξόρυξη εδομένων:

Αποθήκες εδομένων και Εξόρυξη εδομένων: Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Α http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 5: Κατηγοριοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 11: Δημιουργία Βάσεων Κανόνων Από Δεδομένα- Εξαγωγή Κανόνων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων Από Δεδομένα-

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Oμαδοποίηση: Μέρος B http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 6: Κατηγοριοποίηση Μέρος Β Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Αποθήκες και Εξόρυξη Δεδομένων

Αποθήκες και Εξόρυξη Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 2 Ο Εργαστήριο WEKA (CLASSIFICATION) Στουγιάννου Ελευθερία estoug@unipi.gr -2- Κατηγοριοποίηση Αποτελεί μια από τις βασικές

Διαβάστε περισσότερα

Κατηγοριοποίηση (Εποπτευόμενη μάθηση)

Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Αποθήκες και Εξόρυξη Δεδομένων Διδάσκoυσα: Μαρία Χαλκίδη με βάση slides από J. Han and M. Kamber Data Mining: Concepts and Techniques, 2 nd edition Εποπτευόμενη vs.

Διαβάστε περισσότερα

Ανάλυση Συσχέτισης IΙ

Ανάλυση Συσχέτισης IΙ Ανάλυση Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 ΟΑλγόριθμοςFP-Growth Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΚΑΝΟΝΕΣ

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων Σ Β Βάση εδομένων Η ομή ενός ΣΒ Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2006-2007 Ευαγγελία Πιτουρά 2 Εισαγωγή Εισαγωγή ΜΕΡΟΣ 1 (Χρήση Σ Β ) Γενική

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Προεπεξεργασία Δεδομένων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Η διαδικασίας της ανακάλυψης γνώσης Knowledge Discovery (KDD) Process Εξόρυξη δεδομένων- πυρήνας της διαδικασίας ανακάλυψης

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων

Εισαγωγή στην. Εισαγωγή Σ Β. Αρχεία ευρετηρίου Κατάλογος. συστήματος. Αρχεία δεδομένων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ Ε ΟΜΕΝΩΝ Αρχεία δεδομένων συστήματος Σύστημα Βάσεων εδομένων (ΣΒ ) 2 :

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Το Πιθανοκρατικό Μοντέλο Κλασικά Μοντέλα Ανάκτησης Τρία είναι τα, λεγόμενα, κλασικά μοντέλα ανάκτησης: Λογικό (Boolean) που βασίζεται στη Θεωρία Συνόλων Διανυσματικό (Vector) που βασίζεται στη Γραμμική

Διαβάστε περισσότερα

Μάθηση με παραδείγματα Δέντρα Απόφασης

Μάθηση με παραδείγματα Δέντρα Απόφασης Μάθηση με παραδείγματα Δέντρα Απόφασης Μορφές μάθησης Επιβλεπόμενη μάθηση (Ταξινόμηση Πρόβλεψη) Παραδείγματα: {(x, t )} t κατηγορία ταξινόμηση t αριθμός πρόβλεψη Μη-επιβλεπόμενη μάθηση (Ομαδοποίηση Μείωση

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση

8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων

Διαβάστε περισσότερα

Μηχανική Μάθηση: γιατί;

Μηχανική Μάθηση: γιατί; Μηχανική Μάθηση Μηχανική Μάθηση: γιατί; Απαραίτητη για να μπορεί ο πράκτορας να ανταπεξέρχεται σε άγνωστα περιβάλλοντα Δεν είναι δυνατόν ο σχεδιαστής να προβλέψει όλα τα ενδεχόμενα περιβάλλοντα. Χρήσιμη

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράµµατα για τη διαχείριση της ΒΔ Αρχεία ευρετηρίου Κατάλογος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Αρχεία δεδοµένων συστήµατος Σύστηµα Βάσεων Δεδοµένων (ΣΒΔ)

Διαβάστε περισσότερα

Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort

Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο

Διαβάστε περισσότερα

(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1

(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1 Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Κατηγοριοποίηση (classification) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Αποθήκες εδομένων και Εξόρυξη εδομένων:

Αποθήκες εδομένων και Εξόρυξη εδομένων: Αποθήκες εδομένων και Εξόρυξη εδομένων: Κατηγοριοποίηση: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές ακολουθούν

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων 2009-2010: Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε

Διαβάστε περισσότερα

Το εσωτερικό ενός Σ Β

Το εσωτερικό ενός Σ Β Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήµατος Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασµός) Προγραµµατισµός (Σχεσιακή Άλγεβρα, SQL) ηµιουργία/κατασκευή Εισαγωγή εδοµένων

Διαβάστε περισσότερα

Χαλκίδης Νέστωρας, Τσαγιοπούλου Μαρία, Παπακωνσταντίνου Νίκος, Μωυσιάδης Θεόδωρος. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 2016

Χαλκίδης Νέστωρας, Τσαγιοπούλου Μαρία, Παπακωνσταντίνου Νίκος, Μωυσιάδης Θεόδωρος. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 2016 Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης 2016 Χαλκίδης Νέστωρας, Τσαγιοπούλου Μαρία, Παπακωνσταντίνου Νίκος, Μωυσιάδης Θεόδωρος Η παρούσα εργασία έγινε στα πλαίσια της εκπόνησης της διπλωματικής διατριβής

Διαβάστε περισσότερα

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική Κατηγοριοποίηση Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 2 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr Μηχανική Μάθηση Η μηχανική μάθηση είναι μια περιοχή της τεχνητής νοημοσύνης η οποία αφορά

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε

Διαβάστε περισσότερα

Ταχεία Ταξινόμηση Quick-Sort

Ταχεία Ταξινόμηση Quick-Sort Ταχεία Ταξινόμηση Quc-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1 Outlne Quc-sort Αλγόριθμος Βήμα διαχωρισμού Δένδρο Quc-sort

Διαβάστε περισσότερα

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ευρετήρια Ευαγγελία Πιτουρά 1 τιμή γνωρίσματος Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται

Διαβάστε περισσότερα

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6.

MBR Ελάχιστο Περιβάλλον Ορθογώνιο (Minimum Bounding Rectangle) Το µικρότερο ορθογώνιο που περιβάλλει πλήρως το αντικείµενο 7 Παραδείγµατα MBR 8 6. Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Εξόρυξη Γνώσης από χωρικά δεδοµένα (κεφ. 8) Γιάννης Θεοδωρίδης Νίκος Πελέκης http://isl.cs.unipi.gr/db/courses/dwdm Περιεχόµενα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Εισαγωγή Στην πλειοψηφία των ορισμών για την ΤΝ, η δυνατότητα μάθησης / προσαρμογής

Διαβάστε περισσότερα

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1

Ευρετήρια. Ευρετήρια. Βάσεις Δεδομένων : Ευρετήρια 1 Ευρετήρια 1 Ευρετήρια Ένα ευρετήριο (index) είναι μια βοηθητική δομή αρχείου που κάνει πιο αποδοτική την αναζήτηση μιας εγγραφής σε ένα αρχείο Το ευρετήριο καθορίζεται (συνήθως) σε ένα γνώρισμα του αρχείου

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: FP-Growth Ευχαριστίες Xρησιμοποιήθηκε επιπλέον υλικό από τα βιβλία «Εισαγωγή στην Εξόρυξη και τις Αποθήκες Δεδομένων» «Introduction to Data

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 7: Μηχανική μάθηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Γνώσης από Χωρικά εδοµένα (spatial data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

ΕΞΟΡΥΞΗ Ε ΟΜΕΝΩΝ. Εισαγωγή

ΕΞΟΡΥΞΗ Ε ΟΜΕΝΩΝ. Εισαγωγή ΕΞΟΡΥΞΗ Ε ΟΜΕΝΩΝ Εισαγωγή Εισαγωγή Τεράστιος όγκος διαθέσιμων δεδομένων χρειαζόμαστε μεθόδουςγιανατααναλύσουμε Τι είναι η Εξόρυξη Δεδομένων (με δυο λόγια) Αποδοτικές τεχνικές για να αναλύσουμε πολύ μεγάλες

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006 Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία Πέτρος Ποτίκας CoReLab 4/5/2006 Επισκόπηση Ετικέτες σε συνιστώσες (Component labelling) Hough μετασχηματισμοί (transforms) Πλησιέστερος

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1

Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1 Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,

Διαβάστε περισσότερα

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 3

Αλγόριθμοι Ταξινόμησης Μέρος 3 Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 8: Ομαδοποίηση Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Εισαγωγή ΣΔΒΔ Σύνολο από προγράμματα γιατηδιαχείρισητηςβδ Αρχεία ευρετηρίου Αρχεία δεδομένων Κατάλογος συστήματος ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Σύστημα Βάσεων Δεδομένων (ΣΒΔ) 2 :

Διαβάστε περισσότερα

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1

Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1 Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου

Διαβάστε περισσότερα

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού

Διαβάστε περισσότερα

Ταξινόμηση με συγχώνευση Merge Sort

Ταξινόμηση με συγχώνευση Merge Sort Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #10 (β)

ιαφάνειες παρουσίασης #10 (β) ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)

Διαβάστε περισσότερα