arxiv: v1 [math.dg] 31 Jan 2009

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v1 [math.dg] 31 Jan 2009"

Transcript

1 arxiv: v1 [math.dg] 31 Jan 2009 Maurer Cartan Forms of the Symmetry Pseudo-Group and the Covering of Plebañski s Second Heavenly Equation Oleg I. Morozov Department of Mathematics, Moscow State Technical University of Civil Aviation, Kronshtadtskiy Blvd 20, Moscow , Russia oim@foxcub.org Abstract. We derive Wahlquist Estabrook forms of the covering of Plebañski s second heavenly equation from Maurer Cartan forms of its symmetry pseudo-group. AMS classification scheme numbers: 58H05, 58J70, 35A30

2 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 2 1. Introduction In our preceding papers [16] [19] it was shown that for a number of nonlinear partial differential equations (pdes) with three independent variables Wahlquist Estabrook forms of their coverings can be derived from Maurer Cartan forms of their symmetry pseudo-groups. In this paper we consider Plebañski s second heavenly equation, [21], u xz = u ty + u xx u yy u 2 xy, (1) describing self-dual metrics in theory of gravitation. This equation can be obtained as the compatibility condition for the following system of pdes, [8, 1], cf. [21, Eq. (3.13)]: q t = (u xy λ) q x u xx q y, q z = u yy q x (u xy + λ) q y, (2) where λ is an arbitrary constant. This condition is equivalent to the commutativity of the following four infinite-dimensional vector fields D t = D t + i,j 0 D x = D x + i,j 0 D y = D y + i,j 0 D i x D j y ((u xy λ) q 1,0 u xx q 0,1 ) q i+1,j q i,j+1 q i,j, q i,j, (3) q i,j, (4) D z = D z + i,j 0 D i x D j y (u yy q 1,0 (u xy + λ) q 0,1 ) q i,j, where D t, D x, D y and D z are restrictions of the total derivatives D t, D x, D y and D z to the infinite prolongation of (1). This construction is called a covering, [10] [13]. Dually coverings can be defined by means of differential 1-forms called Wahlquist Estabrook forms, [22]. For Eq. (1) an ideal of the Wahlquist Estabrook forms is generated by the following forms: ω 0,0 = dq 0,0 ((u xy λ) q 1,0 u xx q 0,1 ) dt q 1,0 dx q 0,1 dy (u yy q 1,0 (u xy + λ) q 0,1 ) dz, (5) ω i,j = D i x D j y ω 0,0, i, j 0. In this work we establish that the form ω 0,0 can be derived from Maurer Cartan forms of the contact symmetry pseudo-group of Eq. (1). 2. Symmetry pseudo-groups of differential equations Let π : R n R R n be a vector bundle with the local base coordinates (x 1,..., x n ) and the local fibre coordinate u; then by J 2 (π) denote the bundle of the secondorder jets of sections of π, with the local coordinates (x i, u, u i, u ij ), i, j {1,..., n}. For every local section (x i, f(x)) of π, denote by j 2 (f) the corresponding 2-jet (x i, f(x), f(x)/ x i, 2 f(x)/ x i x j ). A differential 1-form ϑ on J 2 (π) is called a contact

3 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 3 form if it is annihilated by all 2-jets of local sections: j 2 (f) ϑ = 0. In the local coordinates every contact 1-form is a linear combination of the forms ϑ 0 = du u i dx i, ϑ i = du i u ij dx j, i, j {1,..., n}, u ji = u ij (here and later we use the Einstein summation convention, so u i dx i = n i=1 u i dx i, etc.) A local diffeomorphism : J 2 (π) J 2 (π), : (x i, u, u i, u ij ) ( x i, ū, ū i, ū ij ), is called a contact transformation if for every contact 1-form ϑ the form ϑ is also contact. We denote by Cont(J 2 (π)) the pseudo-group of contact transformations on J 2 (π). Let H R (2n+1)(n+3)(n+1)/3 be an open set with local coordinates a, b i k, ci, f ik, g i, s ij, wij k, z ijk, i, j, k {1,..., n}, such that a 0, det(b i k ) 0, fik = f ki, z ijk = z jik = z ikj. Let (Bk i) be the inverse matrix for the matrix (bk l ), so Bi k bk l = δl i. We consider the lifted coframe Θ 0 = a ϑ 0, Θ i = g i Θ 0 + a B k i ϑ k, Ξ i = c i Θ 0 + f ik Θ k + b i k dxk, Σ ij = s ij Θ 0 + w k ij Θ k + z ijk Ξ k + a B k i Bl j du kl, (6) i j, defined on J 2 (π) H. As it is shown in [15], the forms (6) are Maurer Cartan forms for Cont(J 2 (π)), that is, a local diffeomorphism : J 2 (π) H J 2 (π) H satisfies the conditions Θ0 = Θ 0, Θi = Θ i, Ξi = Ξ i, and Σij = Σ ij whenever it is projectable on J 2 (π), and its projection : J 2 (π) J 2 (π) is a contact transformation. The structure equations for Cont(J 2 (π)) read dθ 0 = Φ 0 0 Θ 0 + Ξ i Θ i, dθ i = Φ 0 i Θ 0 + Φ k i Θ k + Ξ k Σ ik, dξ i = Φ 0 0 Ξi Φ i k Ξk + Ψ i0 Θ 0 + Ψ ik Θ k, dσ ij = Φ k i Σ kj Φ 0 0 Σ ij + Υ 0 ij Θ 0 + Υ k ij Θ k + Λ ijk Ξ k, where the additional forms Φ 0 0, Φ0 i, Φk i, Ψi0, Ψ ij, Υ 0 ij, Υk ij, and Λ ijk depend on differentials of the coordinates of H. Suppose E is a second-order differential equation in one dependent and n independent variables. We consider E as a sub-bundle in J 2 (π). Let Cont(E) be the group of contact symmetries for E. It consists of all the contact transformations on J 2 (π) mapping E to itself. Let ι 0 : E J 2 (π) be an embedding and ι = ι 0 id : E H J 2 (π) H. Maurer Cartan forms of the pseudo-group Cont(E) can be obtained from the forms θ 0 = ι Θ 0, θ i = ι Θ i, ξ i = ι Ξ i and σ ij = ι Σ ij by means of Cartan s method of equivalence, [2] [5], [7, 9, 20], see details and examples in [6, 16, 17, 19]. 3. Symmetry pseudo-group and the covering of Plebañski s equation Following the method outlined in the previous section we find the Maurer Cartan forms and their structure equations for the symmetry pseudo-group of Eq. (1). The structure equations for the forms θ 0, θ i, ξ i, i {1, 2, 3}, read dθ 0 = η 5 θ 0 + ξ 1 θ 1 + ξ 2 θ 2 + ξ 3 θ 3 + ξ 4 θ 4,

4 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 4 dθ 1 = (η 5 η 1 ) θ 1 η 3 θ 4 η 6 θ (η 5 4 η η σ 22 ) θ 3 + ξ 1 σ 11 + ξ 2 σ 12 + ξ 3 σ 13 + ξ 4 σ 14, dθ 2 = 1 3 (η 4 2 η η 5 ) θ 2 η 3 θ 3 + ξ 1 σ 12 + ξ 2 σ 22 + ξ 3 σ 23 + ξ 4 (σ 13 + σ 22 + σ 33 ), dθ 3 = 1 3 (η 1 2 η η 5 ) θ 3 η 2 θ 2 + ξ 1 σ 13 + ξ 2 σ 23 + ξ 3 σ 33 + ξ 4 σ 34, dθ 4 = (η 5 η 4 ) θ 4 η 2 θ (η 5 2 η η σ 33 ) θ 2 + ξ 1 σ 14 (2 η η 3 + η 6 2 σ 23 ) θ 3 + ξ 2 (σ 13 + σ 22 + σ 33 ) + ξ 3 σ 34 + ξ 4 σ 44, dξ 1 = η 1 ξ 1 + η 2 ξ 4, dξ 2 = η 6 ξ (η η 1 η 4 ) ξ 2 + η 2 ξ (η 5 4 η η σ 33 ) ξ 4, dξ 3 = 1 3 (4 η 1 2 η 4 η 5 3 σ 22 ) ξ 1 + η 3 ξ (η η 4 η 1 ) ξ 3 + (2 η η 3 + η 6 2 σ 23 ) ξ 4, dξ 4 = η 3 ξ 1 + η 4 ξ 4. The involutive system of structure equations for this pseudo-group is given in Appendix. In the next calculations we use the following Maurer Cartan forms only: ξ 1 = b 11 dt + b 14 dz, ξ 2 = v 1 (b 11 dx + b 14 dy (b 11 (w 1) u xy + b 14 u xx + b 41 v) dt (b 14 (w + 1) u xy b 11 u yy + b 44 v) dz), ξ 3 = v 1 (b 41 dx + b 44 dy + (b 11 v b 41 (w 1) u xy b 44 u xx ) dt +(b 14 v b 44 (w + 1) u xy + b 41 u yy ) dz), ξ 4 = b 41 dt + b 44 dz, η 1 = (b 44 db 11 b 41 db 14 ) (b 11 b 44 b 14 b 41 ) 1 + r 1 ξ 1 + r 2 ξ 4, η 4 = (b 11 db 44 b 14 db 41 ) (b 11 b 44 b 14 b 41 ) 1 r 1 ξ 1 r 2 ξ 4, η 5 = 3 v 1 dv + η 1 + η 4, where b 11, b 14, b 41, b 44, v, w, r 1, r 2 are arbitrary parameters such that b 11 b 44 b 14 b 41 0 and v 0. Direct computations prove the following theorem. Either substituting for v = q 0,0, b 11 = q 1,0, b 14 = q 0,1, w = λ u 1 xy linear combination into the 1 (η η 4 η 5 ) ξ 2 ξ 4, or substituting for v = q 0,0, b 41 = q 1,0, b 44 = q 0,1, w = λ u 1 xy into the linear combination 1 (η η 4 η 5 ) + ξ 1 ξ 3 yields the form q0,0 1 ω 0,0 proportional to the form (5), which is the generating form of the ideal of Wahquist Estabrook forms of the covering (2) of Eq. (1). Another approach to computing Wahquist Estabrook forms of coverings of pdes from Maurer Cartan forms of their symmetry pseudo-groups was proposed in [18]. We hope to apply this to Eq. (1) elsewhere.

5 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 5 References [1] Bogdanov, L.V., Konopelchenko, B.G.: On the -dressing method applicaple to heavenly equation. Phys. Lett. A 345, (2005) [2] Cartan, É.: Sur la structure des groupes infinis de transformations. Œuvres Complètes, Part II, 2, Gauthier - Villars, Paris (1953) [3] Cartan, É.: Les sous-groupes des groupes continus de transformations. Œuvres Complètes, Part II, 2, Gauthier - Villars, Paris (1953) [4] Cartan, É.: Les problèmes d équivalence. Œuvres Complètes, Part II, 2, Gauthier - Villars, Paris (1953) [5] Cartan, É.: La structure des groupes infinis. Œuvres Complètes, Part II, 2, Gauthier - Villars, Paris (1953) [6] Fels, M., Olver, P.J.: Moving coframes. I. A practical algorithm. Acta. Appl. Math. 51, (1998) [7] Gardner, R.B.: The Method of Equivalence and its Applications. CBMS NSF regional conference series in applied math., SIAM, Philadelphia (1989) [8] Husain, V.: Self-dual gravity and the chiral model. Phys. Rev. Lett., 72, (1994) [9] Kamran, N.: Contributions to the Study of the Equivalence Problem of Élie Cartan and its Applications to Partial and Ordinary Differential Equations. Mem. Cl. Sci. Acad. Roy. Belg., 45, Fac. 7 (1989) [10] Krasil shchik, I.S., Vinogradov, A.M.: Nonlocal symmetries and the theory of coverings. Acta Appl. Math., 2, (1984) [11] Krasil shchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach, New York (1986) [12] Krasil shchik, I.S., Vinogradov, A.M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math., 15, (1989) [13] Krasil shchik, I.S., Vinogradov, A.M. (eds.): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Transl. Math. Monographs 182, Amer. Math. Soc., Providence (1999). [14] Morozov, O.I.: Moving coframes and symmetries of differential equations. J. Phys. A, Math. Gen., 35, (2002) [15] Morozov, O.I.: Contact-equivalence problem for linear hyperbolic equations. J. Math. Sci., 135, (2006) [16] Morozov, O.I.: Coverings of differential equations and Cartan s structure theory of Lie pseudogroups. Acta Appl. Math. 99, (2007) [17] Morozov, O.I.: Cartan s structure theory of symmetry pseudo-groups, coverings and multi-valued solutions for the Khokhlov Zabolotskaya equation, Acta Appl. Math. 101, (2008) [18] Morozov, O.I.: Contact integrable extensions of symmetry pseudo-group and coverings of the r-th modified dispersionless Kadomtsev Petviashvili equation Preprint arxiv: v1 [math.dg] (2008) [19] Morozov, O.I.: Cartan s structure of symmetry pseudo-group and coverings for the r-th modified dispersionless Kadomtsev Petviashvili equation. Acta Appl. Math., accepted, 2009 [20] Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge, Cambridge University Press (1995) [21] Plebañski, J.F.: Some solutions of complex Einstein equations, J. Math. Phys., 16, (1975) [22] Wahlquist, H.D., Estabrook, F.B.: Prolongation structures of nonlinear evolution equations. J. Math. Phys., 16, 1 7 (1975)

6 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 6 Appendix The involutive system of structure equations for the symmetry pseudo-group of Eq. (1): dθ 0 = η 5 θ 0 + ξ 1 θ 1 + ξ 2 θ 2 + ξ 3 θ 3 + ξ 4 θ 4, dθ 1 = (η 5 η 1 ) θ 1 η 3 θ 4 η 6 θ (η η η σ 22 ) θ 3 + ξ 1 σ 11 + ξ 2 σ 12 + ξ 3 σ 13 + ξ 4 σ 14, dθ 2 = 1 (η η η 5 ) θ 2 η 3 θ 3 + ξ 1 σ 12 + ξ 2 σ 22 + ξ 3 σ 23 + ξ 4 (σ 13 + σ 22 + σ 33 ), dθ 3 = 1 (η η η 5 ) θ 3 η 2 θ 2 + ξ 1 σ 13 + ξ 2 σ 23 + ξ 3 σ 33 + ξ 4 σ 34, dθ 4 = (η 5 η 4 ) θ 4 η 2 θ (η η η σ 33 ) θ 2 + ξ 1 σ 14 (2 η η 3 + η 6 2 σ 23 ) θ 3 + ξ 2 (σ 13 + σ 22 + σ 33 ) + ξ 3 σ 34 + ξ 4 σ 44, dξ 1 = η 1 ξ 1 + η 2 ξ 4, dξ 2 = η 6 ξ (η η 1 η 4 ) ξ 2 + η 2 ξ (η η η σ 33 ) ξ 4, dξ 3 = 1 (4 η η 4 η 5 3 σ 22 ) ξ 1 + η 3 ξ (η η 4 η 1 ) ξ 3 + (2 η η 3 + η 6 2 σ 23 ) ξ 4, dξ 4 = η 3 ξ 1 + η 4 ξ 4, dσ 11 = η 7 θ 1 + η 8 θ 2 + η 9 θ 3 + η 10 θ 4 + η 11 ξ 1 + η 12 ξ 2 + η 13 ξ 3 + η 14 ξ 4 + (η 5 2 η 1 ) σ 11 2 η 6 σ (η η η σ 22 ) σ 13 2 η 3 σ 14, dσ 12 = η 7 θ 2 + η 10 θ 3 + η 12 ξ 1 + (2 η 7 η 9 ) ξ 2 + η 15 ξ 3 + η 16 ξ 4 (η 3 + η 6 ) σ (2 η η 4 5 η 1 ) σ 12 2 η 3 σ (η η 4 4 η σ 22 ) σ 23 η 3 σ 33, dσ 13 = (η 15 η 8 η 10 ) θ 2 η 7 θ 3 + η 13 ξ 1 + η 15 ξ 2 + (η 16 2 η 7 + η 9 η 13 ) ξ 3 + η 17 ξ 4 η 2 σ (η 3 5 η 1 η 4 ) σ 13 η 6 σ 23 η 3 σ (η η η σ 22 ) σ 33, dσ 14 = (η 15 η 8 η 10 ) θ 1 + (η 16 + η 9 η 13 ) θ 2 η 8 θ 3 η 7 θ 4 + η 14 ξ 1 + η 16 ξ 2 + η 17 ξ 3 + η 18 ξ 4 η 2 σ 11 1 (η η η 4 3 σ 33 ) σ 12 2 (η 2 + η 3 + η 6 σ 23 ) σ 13 + (η 5 η 1 η 4 ) σ 14 η 6 (σ 22 + σ 33 ) + 1 (η η η σ 22 ) σ 34 η 3 σ 44, dσ 22 = (2 η 7 η 9 ) ξ 1 η 10 ξ 2 + η 7 ξ 3 + (2 η 15 2 η 10 η 8 ) ξ 4 2 η 3 σ (η η η 4 ) σ 22, dσ 23 = η 15 ξ 1 + η 7 ξ 2 + (η 15 η 8 η 10 ) ξ 3 + η 19 ξ 4 η 2 σ 22 η 3 σ (η 3 5 η 1 η 4 ) σ 23, dσ 33 = (η 16 2 η 7 + η 9 η 13 ) ξ 1 + (η 15 η 8 η 10 ) ξ 2 + (η 19 + η 7 η 9 + η 13 η 16 ) ξ 3 + η 20 ξ 4 2 η 2 σ (η η 1 4 η 4 ) σ 33, dσ 34 = (η 7 η 9 + η 13 η 16 + η 19 ) θ 2 + (η 8 + η 10 η 15 ) θ 3 + η 17 ξ 1 + η 19 ξ 2 + η 20 ξ 3 + η 21 ξ 4 2 η 2 σ 13 η 2 σ 22 1 (η η η 4 ) σ 23 (3 η η 3 + η 6 3 σ 23 ) σ (2 η η 1 5 η 4 ) σ 34,

7 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 7 dσ 44 = (η 7 η 9 + η 13 η 16 + η 19 ) θ 1 + (η 20 2 (η 8 + η 10 η 15 )) θ 2 + η 18 ξ 1 (η 9 η 13 + η 16 ) θ 3 + (η 8 + η 10 η 15 ) θ 4 + (η 20 η 8 2 η η 15 + η 17 ) ξ 2 + η 21 ξ 3 + η 22 ξ 4 2 (η η 1 4 η σ 33 ) (σ 13 + σ 33 ) 2 η 2 σ 14 2 (η η 1 4 η σ 33 ) σ 22 2 (η (η 2 + η 3 σ 23 )) σ 34 + (η 5 2 η 4 ) σ 44, dη 1 = η 7 ξ 1 + (η 15 η 8 η 10 ) ξ 4 + η 2 η 3, dη 2 = (η 15 η 8 η 10 ) ξ 1 + (η 19 + η 7 η 9 + η 13 η 16 ) ξ 4 + (η 1 η 4 ) η 2, dη 3 = η 10 ξ 1 η 7 ξ 4 + (η 4 η 1 ) η 3, dη 4 = (η 8 + η 10 η 15 ) ξ 4 η 7 ξ 1 η 2 η 3, dη 5 = 0, dη 6 = η 8 ξ 1 + (η 7 η 8 η 10 + η 15 ) ξ 3 + (η 9 η 13 + η 16 ) ξ (η η 2 2 η 3 ) η (2 η η σ 22 ) η (η η σ 33 ) η 3 1 (η 3 4 η 5 ) η 6, dη 7 = η 23 ξ 1 + η 24 ξ 4 + η 7 η 1 η 10 η (η 15 η 8 η 10 ) η 3, dη 8 = η 25 ξ 1 + η 23 ξ 2 + η 24 ξ 3 + η 26 ξ 4 2 (2 η η 10 4 η 15 ) η 1 + η 2 η (η 9 η 13 + η 16 ) η (5 η η 10 4 η 15 ) η (η η 10 2 η 15 ) η 5 η 6 η (η 8 + η 10 η 15 ) σ 22 η 10 σ 33, dη 9 = η 27 ξ 1 + η 28 ξ 2 η 23 ξ 3 η 25 ξ 4 1 (12 η η 9 ) η 1 (3 η η 10 ) η 3 + η 10 (η σ 23 2 η 2 ) + 2 (3 η 3 7 η 9 ) η (3 η 3 7 η 9 ) η η 7 σ 22, dη 10 = η 28 ξ 1 η 23 ξ 4 + η 10 (2 η 1 η 4 ) + 3 η 3 η 7, dη 11 = η 23 θ 1 + η 25 θ 2 + η 27 θ 3 + η 28 θ 4 + η 29 ξ 1 + η 30 ξ 2 + η 31 ξ 3 + η 32 ξ 4 + (3 η η 13 ) η η 14 η 3 2 η 13 η 4 (η 11 + η 13 ) η (η 12 (η 6 + η 8 ) η 7 σ 11 η 9 σ 13 η 10 σ 14 η 13 σ 22 ), dη 12 = η 23 θ 2 + η 28 θ 3 + η 30 ξ 1 + (2 η 23 η 27 ) ξ 2 + (η 24 + η 25 + η 28 ) ξ 3 + (η 26 η 27 + η 31 ) ξ (η η 15 ) η 1 + (η η 16 ) η 3 1 (η η 15 ) η 4 2 (η η 15 ) η (2 η 7 η 9 ) η 6 3 η 7 σ 12 (η 8 + η η 15 ) σ 22 η 9 σ 23 η 10 (3 σ 13 + σ 33 ), dη 13 = η 24 θ 2 η 23 θ 3 + η 31 ξ 1 + (η 24 + η 25 + η 28 ) ξ 2 (2 η 23 η 26 ) ξ 3 + η 33 ξ 4 1 (16 η η 9 3 η η 16 ) η 1 + η 12 η η 17 η (4 η η η 13 2 η 16 ) η (2 η 3 7 η 9 η 16 ) η η 15 (η 6 σ 12 ) + η 7 (σ σ 22 ) + η 8 (2 σ 12 σ 23 ) η 9 (2 σ 22 + σ 33 ) + η 10 (2 σ 12 σ 34 ) + 2 (η 13 η 16 ) σ 22, dη 14 = η 24 θ 1 + η 26 θ 2 η 25 θ 3 η 23 θ 4 + η 32 ξ 1 + (η 26 η 27 + η 31 ) ξ 2 + η 33 ξ 3 + η 34 ξ (η η η 17 ) η 1 + (η η 13 ) η (η 13 + η 18 ) η 3 1 (4 η η η 17 ) η (η η 14 2 η 17 ) η 5 + (η η 16 ) η 6

8 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 8 + η 7 σ 14 + η 8 (2 σ 11 + σ 13 σ 22 σ 33 ) η 9 (2 σ 12 + σ 34 ) + η 10 (2 σ 11 σ 44 ) + η 12 σ ((η 13 + η 16 ) σ 12 η 13 σ 23 η 15 σ 11 η 17 σ 22 ), dη 15 = (η 24 + η 25 + η 28 ) ξ 1 + η 23 ξ 2 + η 24 ξ 3 + η 35 ξ 4 4 (η 3 8 η η 15 ) η 1 + (2 η 7 η 9 ) η 2 (2 η 7 η 9 + η 13 η 16 η 19 ) η (2 (η η 10 ) η 15 ) η (η η 10 2 η 15 ) η 5 η 6 η (η 8 + η 10 η 15 ) σ 22 η 10 σ 33, dη 16 = η 24 θ 2 η 23 θ 3 + (η 26 η 27 + η 31 ) ξ 1 + (2 η 24 + η 25 ) ξ 2 + η 35 ξ 3 + η 36 ξ (4 η η η η 19 ) η 1 + (η η 15 ) η 2 (σ σ 33 ) η 7 (η η 10 4 η 15 2 η 17 η 20 ) η 3 2 (4 η η 9 η 16 + η 19 ) η (2 η 3 7 η 9 2 η 16 η 19 ) η 5 (η η 10 3 η 15 ) η 6 (2 σ 12 + σ 23 ) η 8 + (σ 22 + σ 33 ) η 9 (2 σ 12 + σ 34 ) η 10 + (η 13 η 16 η 19 ) σ 22 2 η 15 ( σ 12 + σ 23 ), dη 17 = (η 23 η 26 + η 35 ) θ 2 η 24 θ 3 + η 33 ξ 1 + η 35 ξ 2 (2 η 24 + η 25 + η 33 η 36 ) ξ 3 + η 37 ξ (η η η 20 ) η 1 (4 η 7 2 η 9 + η 13 3 η 16 ) η 2 (4 η 7 2 η η 13 2 η 16 η 21 ) η 3 1 (4 η η η 20 ) η (η η 17 η 20 ) η 5 (2 η 7 η 9 + η 13 η 16 η 19 ) η 6 (σ σ 23 ) η 9 + (σ 12 4 σ 23 2 σ 34 ) η 7 (σ 13 σ 22 2 σ 33 ) η 8 (σ 13 + σ 22 + σ 33 ) η 10 + (σ 12 3 σ 23 ) η 13 + (σ 13 + σ 22 ) η 15 (σ σ 23 ) η 16 η 19 σ 12 η 20 σ 22, dη 18 = (η 23 η 26 + η 35 ) θ 1 (η 25 + η 33 η 36 ) θ 2 η 26 θ 3 η 24 θ 4 + η 34 ξ 1 + η 36 ξ 2 + η 37 ξ 3 + η 38 ξ (4 η η η 21 ) η (η η 17 ) η 2 + (4 η 17 + η 22 ) η 3 2 (4 η η 18 η 21 ) η (2 η η 18 η 21 ) η 5 (η η 10 2 η 15 3 η 17 η 20 ) η 6 η 7 (σ 11 2 σ 44 ) + η 8 (2 σ 12 + σ σ 34 ) + η 9 (σ 11 σ 13 2 σ 22 2 σ 33 ) + η 10 (2 σ 12 + σ 14 ) η 15 (2 σ 12 + σ 14 ) η 13 (σ 11 σ 13 2 σ 22 2 σ 33 ) + η 16 (σ 11 σ 13 2 σ 22 ) 4 η 17 σ 23 η 19 σ 11 η 20 σ 12 η 21 σ 22, dη 19 = η 35 ξ 1 + η 24 ξ 2 + (η 23 η 26 + η 35 ) ξ 3 + η 39 ξ (2 η η 19 ) η 1 (3 η η 10 5 η 15 ) η 2 (2 η η 10 2 η 15 η 20 ) η 3 4 (η 3 7 η 19 ) η (η 3 7 η 19 ) η 5 (η 8 + η 10 η 15 ) η 6 η 7 (σ 22 2 σ 33 ) + 2 (η 8 + η 10 η 15 ) σ 23 + (η 9 η 13 + η 16 η 19 ) σ 22, dη 20 = (η 36 2 η 24 η 25 η 33 ) ξ 1 + (η 23 η 26 + η 35 ) ξ 2 (η 9 η 13 + η 16 4 η 19 ) η 2 + (η 24 + η 25 + η 33 η 36 + η 39 ) ξ 3 + η 40 ξ 4 2 (η η 10 η 15 + η 20 ) η (η 7 η 9 + η 13 η 16 + η 19 ) η (4 (η η 10 η 15 ) + 7 η 20 ) η 4 1 (η η 10 η 15 + η 20 ) η 5 + (η 7 η 9 + η 13 η 16 + η 19 ) η 6 4 (η 7 η 9 + η 13 η 16 + η 19 ) σ 23 3 (η 8 + η 10 η 15 ) σ 33, dη 21 = (η 24 + η 25 + η 33 η 36 + η 39 ) θ 2 (η 23 η 26 + η 35 ) θ 3 + η 37 ξ 1 + η 39 ξ 2 + η 40 ξ 3 + η 41 ξ (4 η 3 19 η 21 ) η 1 (η η 10 2 η 15 3 η 17 5 η 20 ) η 2 2 (η 3 19 η 21 ) (4 η 4 η 5 ) (η 7 η 9 ) (3 σ σ σ 33 ) + η 8 (2 σ 23 3 σ 34 )

9 Symmetry Pseudo-Group and Covering of Second Heavenly Equation 9 + (η 10 η 15 ) (2 σ 23 3 σ 34 ) (η 13 η 16 ) (3 σ σ σ 33 ) η 19 (3 σ σ 22 ) + η 20 (4 η η 6 5 σ 23 ), dη 22 = (η 24 + η 25 η 36 + η 33 + η 39 ) θ 1 + (2 (η 23 η 26 + η 35 ) + η 40 ) θ 2 3 (η 7 + η 19 ) σ 14 + (η 25 + η 33 η 36 ) θ 3 (η 23 η 26 + η 35 ) θ 4 + η 38 ξ 1 + (3 η η 21 ) η 2 + (2 η 23 η η 35 + η 37 + η 40 ) ξ 2 + η 41 ξ 3 + η 42 ξ η 21 (2 η 3 + η 6 2 σ 23 ) 2 (η (η 10 η 15 ) η 17 η 20 ) η (η 9 η 13 + η 16 ) (σ 14 + σ 34 ) + (4 (η (η 10 η 15 ) η 17 η 20 ) + 3 η 22 ) η η 17 σ 33 3 η 20 (σ 13 + σ 22 ) (η (η 10 η 15 ) η 17 η 20 + η 22 ) η η 8 (2 (σ 13 + σ 22 ) + σ 33 σ 44 ) + 3 (η 10 η 15 ) (2 σ σ 22 σ 44 ).

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Minimal Surfaces PDE as a Monge Ampère Type Equation

Minimal Surfaces PDE as a Monge Ampère Type Equation Minimal Surfaces PDE as a Monge Ampère Type Equation Dmitri Tseluiko Abstract In the recent Bîlă s paper [1] it was determined the symmetry group of the minimal surfaces PDE (using classical methods).

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Annales Mathematicae et Informaticae 43 (2014) pp. 13 17 http://ami.ektf.hu On geodesic mappings of Riemannian spaces with cyclic Ricci tensor Sándor Bácsó a, Robert Tornai a, Zoltán Horváth b a University

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ADVANCED STRUCTURAL MECHANICS

ADVANCED STRUCTURAL MECHANICS VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

arxiv: v1 [math-ph] 4 Jun 2016

arxiv: v1 [math-ph] 4 Jun 2016 On commuting ordinary differential operators with polynomial coefficients corresponding to spectral curves of genus two Valentina N. Davletshina, Andrey E. Mironov arxiv:1606.0136v1 [math-ph] Jun 2016

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα