Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης"

Transcript

1 7η Δραστηριότητα Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης Περίληψη Οι υπολογιστές χρησιμοποιούνται συχνά για την ταξινόμηση καταλόγων, όπως για παράδειγμα, ονόματα σε αλφαβητική σειρά, ραντεβού ή κατά ημερομηνία, αντικείμενα κατ' αριθμητική σειρά. Έχει διαπιστωθεί πως οι κατάλογοι ταξινόμησης μας επιτρέπουν να βρίσκουμε γρήγορα το αντικείμενο που ψάχνουμε, καθιστώντας επίσης τις ακραίες τιμές ενός οποιουδήποτε καταλόγου πιο εύκολα αντιληπτές. Για παράδειγμα, αν ταξινομηθούν τα αποτελέσματα ενός διαγωνίσματος στην τάξη, τότε, τόσο ο χειρότερος βαθμός όσο κι' ο καλύτερος, καθίστανται εμφανείς. Αν χρησιμοποιηθεί μία λανθασμένη μέθοδος, μπορεί να απαιτηθεί πολύ παραπάνω χρόνος για την ταξινόμηση ενός μεγάλου καταλόγου, ακόμη και με έναν γρήγορο υπολογιστή. Ευτυχώς, όμως, υπάρχουν πολλές γνωστές μέθοδοι για την ταξινόμηση. Σ' αυτή τη δραστηριότητα, τα παιδιά θα ανακαλύψουν διαφορετικούς τρόπους για να ταξινομούν και θα διαπιστώσουν πως μία καλή μέθοδος μπορεί να πετύχει το στόχο πολύ πιο αποτελεσματικά και γρήγορα από μία απλή μέθοδο. Αντιστοιχία με το σχολικό πρόγραμμα * (*Σημ. μτφ.: αναφέρεται στη Νέα Ζηλανδία) Μαθηματικά: Μέτρηση, επίπεδο 2 και άνω. Εκτελώντας εντολές πρακτικής ζύγισης. Δεξιότητες Χρήση ζυγαριάς Τακτοποίηση Σύγκριση Ηλικία Από 8 ετών και άνω Υλικά Κάθε ομάδα παιδιών θα έχει: ομάδες των 8 δοχείων των ιδίων διαστάσεων αλλά διαφορετικού βάρους (π.χ. κουτιά γάλακτος ή κουτιά με ρολά μεμβράνης ή αλουμινίου γεμάτα με άμμο) Ζυγαριές Φύλλο εργασίας: Ταξινόμηση βαρών (σελ. 68) Φύλλο εργασίας: Διαίρει και βασίλευε (σελ. 69) 2002 Computer Science Unplugged (www.unplugged.canterbury.ac.nz) 66

2 O ελαφρύτερος και ο βαρύτερος Συζήτηση Οι υπολογιστές πρέπει συχνά να βάλουν καταλόγους σε τάξη. Ας σκεφτούμε όλα τα μέρη όπου το να βάζουμε σε τάξη τα αντικείμενα, είναι σημαντικό. Τι θα συνέβαινε αν αυτά τα αντικείμενα δεν ήταν τακτοποιημένα; Οι υπολογιστές, συνήθως, συγκρίνουν μόνο 2 τιμές συγχρόνως. Η δραστηριότητα στην επόμενη σελίδα, χρησιμοποιεί αυτό τον περιορισμό για να δώσει στα παιδιά μια ιδέα για το πως είναι να ταξινομείς και να τακτοποιείς. Δραστηριότητα Χωρίστε τα παιδιά σε διάφορες ομαδούλες. 2. Η κάθε ομάδα θα χρειαστεί ένα αντίτυπο της δραστηρ. στη σελ. 68, αλλά και δικά της αντίβαρα και ζυγαριές. 3. Αφήστε τα παιδιά να διασκεδάσουν με την δραστηριότητα αυτή και μετά συζητείστε μαζί τους το αποτέλεσμα Computer Science Unplugged (www.unplugged.canterbury.ac.nz)

3 Δραστηριότητα του φύλλου εργασίας: Κατατάσσοντας βάρη Σκοπός: Να βρούμε τον καλύτερο τρόπο για να βάλουμε μία ομάδα αγνώστων βαρών στη σειρά. Θα χρειαστείς: Άμμο ή Νερό, 8 ίδια δοχεία και ζυγαριές Τι να κάνεις: 1. Γέμισε το κάθε δοχείο με μία διαφορετική ποσότητα άμμου ή νερού. Κλείσε καλά. 2. Μπερδέψτε τα δοχεία, για να μη μπορείτε να ξεχωρίζετε το βάρος τους. 3. Εντοπίστε το πιο ελαφρύ δοχείο. Ποιος είναι ο πιο εύκολος τρόπος για να το πετύχουμε; Σημείωση: Μπορείτε να χρησιμοποιείτε τη ζυγαριά μόνο για να ζυγίζετε το κάθε δοχείο. Μπορείτε να συγκρίνετε μόνο 2 δοχεία κάθε φορά. 4. Επιλέξτε στη τύχη 3 δοχεία και βάλτε τα κατά σειρά, από το πιο ελαφρύ προς το πιο βαρύ, χρησιμοποιώντας μόνο τη ζυγαριά. Πώς τα καταφέρατε; Ποιός είναι ο μικρότερος αριθμός συγκρίσεων που είναι απαραίτητος; Γιατί; 5. Τώρα βάλτε όλα τα αντικείμενα κατά σειρά βάρους, από το πιο ελαφρύ προς το πιο βαρύ. Όταν νομίζετε ότι τελειώσατε, ελέγξτε το αποτέλεσμα, συγκρίνοντας μεταξύ τους με τη βοήθεια της ζυγαριάς, τα ζεύγη 2 πλαϊνών αντικειμένων. Κατάταξη με επιλογή (Selection Sort) Μία μέθοδος που μπορεί να χρησιμοποιεί ένας υπολογιστής, λέγεται κατάταξη με επιλογή (selection sort). Λειτουργεί με τον εξής τρόπο: Βρείτε πρώτα το πιο ελαφρύ αντικείμενο και βάλτε το κατά μέρος. Στη συνέχεια, βρείτε το πιο ελαφρύ απ' αυτά που μένουν και αφαιρέστε το. Επαναλάβατε αυτή τη διαδικασία, μέχρι να τελειώσετε τα προς ζύγιση αντικείμενα. Μετρήστε πόσες συγκρίσεις κάνατε. Extra για ειδικούς: δείξτε πώς μπορείτε να υπολογίσετε με μαθηματικό τρόπο πόσα βήματα είναι απαραίτητα για να κατατάξετε 8 αντικείμενα; Και αν είναι 9 αντικείμενα; Αν είναι 20; 68

4 Δραστηριότητα του φύλλου εργασίας: Διαίρει και βασίλευε Quicksort (Γρήγορη κατάταξη) Το Quicksort είναι πολύ πιο γρήγορο από την κατάταξη με επιλογή, ειδικά για πολύ μεγάλους καταλόγους. Πράγματι, πρόκειται για μία από τις καλύτερες μεθόδους κατάταξης που γνωρίζουμε. Λειτουργεί ως εξής: Διαλέξτε στη τύχη ένα αντικείμενο και τοποθετείστε το στο ένα πιάτο της ζυγαριάς. Τώρα συγκρίνετε εκείνο που επιλέξατε, με κάθε αντικείμενο από εκείνα που μένουν. Βάλτε τα πιο ελαφριά στα αριστερά, το αντικείμενο που επιλέξατε πρώτο στο κέντρο, και τα πιο βαριά στα δεξιά. (Μπορεί, τυχαία, να έχετε πολύ περισσότερα αντικείμενα από τη μία μεριά, απ' ότι στην άλλη). Επιλέξτε ένα από τα σύνολα στα δεξιά και επαναλάβατε την προηγούμενη διαδικασία. Κάντε το ίδιο και για το άλλο σύνολο. Να θυμάστε να κρατάτε πάντα στο κέντρο το αντικείμενο που επιλέξατε ως πρώτο. Συνεχίστε να εφαρμόζετε αυτή τη διαδικασία με όλα τα σύνολα, μέχρι που κάθε ομάδα να μην έχει πάνω από ένα αντικείμενο. Όταν όλα σύνολα θα έχουν υποδιαιρεθεί σε μεμονωμένα αντικείμενα, τότε τα αντικείμενα θα έχουν καταταγεί κατά σειρά από το πιο ελαφρύ προς το πιο βαρύ. Πόσες συγκρίσεις απαιτούνται σε αυτή τη διαδικασία; Το Quicksort είναι πιο αποτελεσματικό από το selection sort, εκτός κι αν αρχίσατε με το απολύτως πιο βαρύ ή το πιο ελαφρύ αντικείμενο. Αν είστε τυχεροί και επιλέξατε το αντικείμενο με το ενδιάμεσο βάρος, θα πρέπει να κάνατε μόνο 14 συγκρίσεις, δηλ. τις μισές από τις 28 που θα χρειαζόσασταν με το selection sort. Σε κάθε περίπτωση, το quicksort δεν θα είναι χειρότερο από το selection sort και, μάλιστα, μπορεί να είναι πολύ-πολύ πιο αποτελεσματικό! Extra για ειδικούς: Αν το quicksort, παρεμπιπτόντως, διάλεγε πάντα το πιο ελαφρύ αντικείμενο, πόσες συγκρίσεις θα έπρεπε να κάνει; 69

5 Παραλλαγές και επεκτάσεις Έχουν επινοηθεί πολλά διαφορετικά συστήματα κατάταξης. Για να κατατάξετε τα βάρη σας, μπορείτε να χρησιμοποιήσετε και τα εξής: Insertion sort (κατάταξη με εισαγωγή): λειτουργεί αποβάλλοντας κάθε αντικείμενο από ένα μη καταταγμένο σύνολο, και βάζοντάς το στη σωστή θέση, μέσα σε έναν αυξανόμενο κατάλογο (βλέπε παρακάτω εικόνα). Για κάθε εισαγωγή, το σύνολο των μη καταταγμένων αντικειμένων μειώνεται, ενώ ο αυξανόμενος κατάλογος με τα καταταγμένα αυξάνεται, μέχρι που να τακτοποιηθούν όλα τα αρχικά αντικείμενα. Οι χαρτοπαίχτες χρησιμοποιούν πολύ συχνά αυτό το σύστημα για να τακτοποιήσουν μία μοιρασιά με χαρτιά. Bubble sort (κατάταξη με φούσκες) λειτουργεί ανατρέχοντας τον κατάλογο ξανά και ξανά, αλλάζοντας θέση σε όλα τα αντικείμενα που είναι δίπλα-δίπλα και σε λάθος θέση, όταν συναντάμε στα δεξιά ένα αντικείμενο πιο ελαφρύ απ' εκείνο στ' αριστερά. Ο κατάλογος θα είναι ταξινομημένος όταν δεν απαιτούνται πια περαιτέρω αλλαγές θέσεως. Αυτή η μέθοδος δεν είναι πολύ αποτελεσματική, αλλά πολλοί θεωρούν ότι είναι πολύ πιο εύκολα κατανοητή από άλλες. Mergesort (κατάταξη με σύμπτυξη) είναι μία άλλη μέθοδος που χρησιμοποιεί το διαίρει και βασίλευε για να ταξινομήσει ένα κατάλογο πραγμάτων. Κατ' αρχάς, ο κατάλογος υποδιαιρείται στη τύχη σε δύο υποκαταλόγους με ίσο αριθμό αντικειμένων (αν υπάρχει μονός αριθμός αντικειμένων, τότε ένας από τους δύο νέους υποκαταλόγους θα περιέχει ένα επιπλέον αντικείμενο). Ταξινομείται καθένας από τους δύο υποκαταλόγους και, στο τέλος, οι 2 κατάλογοι συμπτύσσονται μαζί. Η σύμπτυξη των δύο καταλόγων είναι μία απλή διαδικασία: Αρκεί να απομακρύνουμε κατ' επανάληψη, το πιο μικρό από τα 2 πράγματα που είναι στην κορυφή των 2 καταλόγων. Στην παρακάτω εικόνα, τα βάρη ανάμεσα στα 40 και τα 60 gr, βρίσκονται στην αρχή των 2 καταλόγων, άρα, το επόμενο πράγμα προς απομάκρυνση και προς εισαγωγή στον τελικό κατάλογο που φτιάχνουμε (στ' αριστερά) είναι το αντικείμενο των 40 gr. Πώς ταξινομούνται οι υποκατάλογοι; Απλό, αρκεί να χρησιμοποιήσουμε... το Mergesort! Έτσι, στο τέλος, όλοι οι κατάλογοι θα έχουν συρρικνωθεί και θα αποτελούνται από ένα και μοναδικό στοιχείο, γι' αυτό και δεν θα πρέπει να ανησυχούμε αν θα ξέρουμε πότε να σταματήσουμε... 70

6 Τι σχέση έχουν όλα αυτά; Είναι πολύ πιο εύκολο να βρει κανείς μια πληροφορία μέσα σε έναν ταξινομημένο κατάλογο. Οι τηλεφωνικοί κατάλογοι, τα λεξικά και οι πίνακες περιεχομένων των βιβλίων, χρησιμοποιούν πάντα την αλφαβητική σειρά και η ζωή μας θα ήταν πολύ πιο δύσκολη εάν δεν το έκαναν...! Εάν ένας κατάλογος αριθμών είναι ταξινομημένος, οι ακραίες περιπτώσεις είναι πιο εύκολα εντοπίσιμες, διότι βρίσκονται στην αρχή και στο τέλος του καταλόγου. Οι περιπτώσεις σε διπλό αντίτυπο είναι κι' αυτές πιο εύκολα διακριτές, διότι καταλήγουν στην ίδια θέση. Οι υπολογιστές καταναλώνουν πολύ από το χρόνο λειτουργίας τους βάζοντας σε τάξη τα πράγματα, και γι' αυτό οι πληροφορικάριοι επινόησαν γρήγορες και αποτελεσματικές μεθόδους για να το πετύχουν. Μερικές από τις πιο αργές μεθόδους, όπως το insertion sort, το selection sort ή το bubble sort, μπορεί να αποδειχθούν χρήσιμες σε ειδικές συνθήκες, αλλά γενικά χρησιμοποιούνται οι πιο γρήγορες, όπως το quicksort. Το Quicksort εκμεταλλεύεται ένα concept που λέγεται αναδρομή (recursion). Αυτό σημαίνει ότι συνεχίζουμε να διαιρούμε έναν κατάλογο σε μικρότερα μέρη, εφαρμόζοντας το ίδιο είδος κατάταξης και στα μικρά αυτά κομμάτια. Αυτή η συγκεκριμένη προσέγγιση λέγεται διαίρει και βασίλευε. Ο κατάλογος κατακερματίζεται ( διαίρει ) επαναλαμβανόμενα, μέχρι να γίνει επαρκώς μικρός για να κατακτηθεί ( βασίλευε'). Στη περίπτωση του quicksort, οι κατάλογοι υποδιαιρούνται μέχρι να περιέχουν μόνο ένα στοιχείο. Είναι εύκολο να βάλεις σε τάξη ένα μόνο στοιχείο! Αν και μπορεί να φαίνεται πολύ περίπλοκο, αυτή η μέθοδος είναι απίστευτα πιο γρήγορη από άλλες. 71

7 Λύσεις και υποδείξεις 1. Ο καλύτερος τρόπος για να βρούμε το πιο ελαφρύ αντικείμενο, είναι να πάρουμε υπ' όψη μας, ένα προς ένα, όλα τα αντικείμενα, σημειώνοντας το μέχρι εκείνη τη στιγμή ελαφρύτερο. Δηλαδή, να συγκρίνουμε 2 αντικείμενα και να κρατάμε το πιο ελαφρύ, επαναλαμβάνοντας την μέθοδο, μέχρι να έχουν εξετασθεί όλα τα αντικείμενα. 2. Θέστε σε σύγκριση τα βάρη πάνω στη ζυγαριά. Αυτό μπορεί να επιτευχθεί εύκολα με 3 ζυγίσματα και μερικές φορές 2 αν τα παιδιά καταλάβουν πως ο συντελεστής σύγκρισης είναι μεταβατικός (transitive operator), δηλαδή, αν το A είναι ελαφρύτερο από το B και το B είναι ελαφρύτερο από το C, τότε το A πρέπει να είναι πιο ελαφρύ από το C). Ειδικοί: Να μία υπόδειξη για να υπολογίσουμε τον συνολικό αριθμό συγκρίσεων που πραγματοποιούνται από το selection sort. Για να βρούμε ένα ελάχιστο 2 αντικειμένων, θα κάνετε μία μόνο σύγκριση, για 3 αντικείμενα θα κάνετε 2, για 4 αντικείμενα θα κάνετε 3 και πάει λέγοντας. Για να ταξινομήσουμε 8 αντικείμενα χρησιμοποιώντας το selection sort, θα χρειαστείτε 7 συγκρίσεις για να βρείτε τον πρώτο, 6 για να βρείτε τον επόμενο, 5 για τον μεθεπόμενο, και πάει λέγοντας. Αυτό μας κάνει συνολικά: = 28 συγκρίσεις n αντικείμενα θα απαιτήσουν n - 1 συγκρίσεις για να ταξινομηθούν. Το άθροισμα αυτών των αριθμών γίνεται πιο εύκολο, εάν ομαδοποιηθούν διαφορετικά. Για παράδειγμα, για να αθροίσετε τους αριθμούς , ομαδοποιήστε τους ως εξής: (1 + 20) + (2 + 19) + (3 + 18) + (4 + 17) + (5 + 16) + (6 + 15) + (7 + 14) + (8 + 13) + (9 + 12) + ( ) = = 210 Γενικά, το άθροισμα n 1 = n(n 1)/2. 72

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά 6η Δραστηριότητα Ναυμαχία Αλγόριθμοι αναζήτησης Περίληψη Συχνά ζητάμε από τους υπολογιστές να ψάξουν πληροφορίες στο εσωτερικό μεγάλων αρχείων δεδομένων. Για να το καταφέρουν, απαιτούνται ταχείες και αποτελεσματικές

Διαβάστε περισσότερα

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων

5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η

Διαβάστε περισσότερα

Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από

Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από 8η Δραστηριότητα Νίκησε τον χρόνο Δίκτυα ταξινόμησης Περίληψη Αν και οι υπολογιστές είναι γρήγοροι, υπάρχει ένα όριο στο πόσο γρήγορα μπορούν να επιλύουν τα προβλήματα. Ένας τρόπος για να επιταχύνουμε

Διαβάστε περισσότερα

Ταξινόμηση. Σαλτογιάννη Αθανασία

Ταξινόμηση. Σαλτογιάννη Αθανασία Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 7 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 7 η Βασίλης Στεφανής Αλγόριθμοι ταξινόμησης Στην προηγούμενη διάλεξη είδαμε: Binary search Λειτουργεί μόνο σε ταξινομημένους πίνακες Πώς τους ταξινομούμε? Πολλοί τρόποι. Ενδεικτικά:

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 1

Εργαστηριακή Άσκηση 1 Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012 3 5 1 Ταξινόμηση - Sorting Πίνακας Α 1 3 5 5 3 1 Ταξινόμηση (Φθίνουσα) Χωρίς Ταξινόμηση Ταξινόμηση

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Quicksort Κεφάλαιο 7 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Quicksort Ο βασικός αλγόριθµος Χαρακτηριστικά επιδόσεων Μικροί υποπίνακες Μη αναδροµική υλοποίηση Δοµές Δεδοµένων

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Ενδιάμεση εξέταση 1 Φεβρουάριος 2014 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 1. α. Να βάλετε σε αύξουσα σειρά μεγέθους τις παρακάτω συναρτήσεις χρονικής πολυπλοκότητας αλγορίθμων: nlogn, n logn,

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6β: Ταξινόμηση με εισαγωγή και επιλογή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε αντικείμενο μπορούμε να αλλάζουμε

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

5. Κβαντική Διερεύνηση - Κβαντικός αλγόριθμος του Grover

5. Κβαντική Διερεύνηση - Κβαντικός αλγόριθμος του Grover 5. Κβαντική Διερεύνηση - Κβαντικός αλγόριθμος του Grover Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται ο αλγόριθμος του Grover για τη διερεύνηση μη δομημένων βάσεων δεδομένων. Περιγράφονται οι τελεστές και το

Διαβάστε περισσότερα

Το Μπαούλο του κυρ Γιάννη

Το Μπαούλο του κυρ Γιάννη Εισαγωγή Το Μπαούλο του κυρ Γιάννη Ο κυρ Γιάννης έχει κληρονομιά ένα παλιό μπαούλο με ό,τι αντικείμενα μπορείς να φανταστείς! Τα ανίψια του, ο Λευτεράκης και η Βασούλα, θέλουν να τα δουν, αλλά για να τα

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αναζήτηση & Ταξινόμηση. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αναζήτηση & Ταξινόμηση. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αναζήτηση & Ταξινόμηση ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Αναζήτηση Το πρόβλημα της αναζήτησης (searching) ενός στοιχείου σε

Διαβάστε περισσότερα

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1 Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

(1) Επιλέξτε την εντολή QUERIES για να μπείτε στο περιβάλλον δημιουργίας

(1) Επιλέξτε την εντολή QUERIES για να μπείτε στο περιβάλλον δημιουργίας QUERIES Δημιουργία Ερωτήσεων στην ACCESS Ένα από τα πλεονεκτήματα που προσφέρουν τα ΣΔΒΔ (Συστήματα Διαχείρισης Βάσεων Δεδομένων) είναι η δυνατότητα στον χειριστή να δημιουργεί ερωτήσεις βασισμένος στα

Διαβάστε περισσότερα

Πατώντας την επιλογή αυτή, ανοίγει ένα παράθυρο που έχει την ίδια μορφή με αυτό που εμφανίζεται όταν δημιουργούμε μία μεταβλητή.

Πατώντας την επιλογή αυτή, ανοίγει ένα παράθυρο που έχει την ίδια μορφή με αυτό που εμφανίζεται όταν δημιουργούμε μία μεταβλητή. Λίστες Τι είναι οι λίστες; Πολλές φορές στην καθημερινή μας ζωή, χωρίς να το συνειδητοποιούμε, χρησιμοποιούμε λίστες. Τέτοια παραδείγματα είναι η λίστα του super market η οποία είναι ένας κατάλογος αντικειμένων

Διαβάστε περισσότερα

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου;

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου; Πρόβλημα 214 Τα θρανία στην τάξη του Γιάννη είναι τοποθετημένα σε γραμμές και στήλες. Το θρανίο του Γιάννη είναι στην τρίτη γραμμή από την αρχή και στην τέταρτη από το τέλος. Είναι επίσης στην τρίτη στήλη

Διαβάστε περισσότερα

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση 1 Ταξινόµηση! Δεδοµένα: Δίνεται ένας πίνακας data από N ακεραίους! Ζητούµενο: Να ταξινοµηθούν τα περιεχόµενα σε αύξουσα αριθµητική σειρά:!i : 0 data[i]

Διαβάστε περισσότερα

Ταξινόμηση με συγχώνευση Merge Sort

Ταξινόμηση με συγχώνευση Merge Sort Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών

Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών Εισαγωγή στην επιστήμη των Υπολογιστών & Τηλεπικοινωνιών Λογισμικό Υπολογιστών Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα < ενδυμασία1>

Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα < ενδυμασία1> ΕΝΤΟΛΕΣ Επεξήγηση των εντολών που θα χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε χαρακτήρα μπορούμε να αλλάζουμε όψεις (δλδ ενδυμασία). Η εντολή αυτή κάνει ό,τι και

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε χαρακτήρα μπορούμε να αλλάζουμε όψεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

Βρίσκοντας το μικρότερο

Βρίσκοντας το μικρότερο Τετράδιο μαθητή ΘΕ13: Εμφώλευση επιλογής σε επανάληψη Όνομα(τα): Όνομα Η/Υ: Τμήμα: Ημερομηνία: Βρίσκοντας το μικρότερο Ξεκινήστε το Χώρο Δραστηριοτήτων επιλέξτε τη θεματική ενότητα: Εμφώλευση επιλογής

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 9 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 9 ο, Τμήμα Α Γιατί νομίζετε ότι η άλγεβρα είναι το πιο σημαντικό εργαλείο που έχουμε στα μαθηματικά; Είναι ένα από τα λίγα εργαλεία των μαθηματικών που το χρησιμοποιούνε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ Αγαπητέ μαθητή/ αγαπητή μαθήτρια, Διεξάγουμε μια έρευνα και θα θέλαμε να μάθουμε την άποψή σου για τo περιβάλλον μάθησης που επικρατεί στην τάξη σου. Σε παρακαλούμε

Διαβάστε περισσότερα

Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort

Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο

Διαβάστε περισσότερα

Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί)

Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί) 9η Δραστηριότητα Η λασπωμένη πόλη - Minimal Spanning Trees* (*είδος γραφημάτων) Περίληψη Η κοινωνία μας συνδέεται με πολλά δίκτυα: το τηλεφωνικό δίκτυο, το ενεργειακό δίκτυο, το οδικό δίκτυο. Για ένα ιδιαίτερο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :

Διαβάστε περισσότερα

Διάλεξη 17η: Ταξινόμηση και Αναζήτηση

Διάλεξη 17η: Ταξινόμηση και Αναζήτηση Διάλεξη 17η: Ταξινόμηση και Αναζήτηση Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Ταξινόμηση CS100, 2016-2017 1 / 10 Το πρόβλημα της Αναζήτησης

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 2

Αλγόριθμοι Ταξινόμησης Μέρος 2 Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable

Διαβάστε περισσότερα

τις αναδρομικές ακολουθίες (recursive sequences) στις οποίες ορίζαμε

τις αναδρομικές ακολουθίες (recursive sequences) στις οποίες ορίζαμε Κεφάλαιο 9: Αναδρομή Ο τρόπος με τον οποίο σκεφτήκαμε και σχεδιάσαμε τις συναρτήσεις στο προηγούμενο κεφάλαιο ακολουθούσε τη φιλοσοφία του προγραμματισμού που είχαμε αναπτύξει σε όλο το προηγούμενο βιβλίο.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο Κεφάλαιο ο Σπύρος Ζυγούρης Καθηγητής Πληροφορικής Να δοθεί ο ορισμός της ταξινόμησης Ν στοιχείων Η τακτοποίηση των κόμβων μιας δομής με μια ιδιαίτερη σειρά ονομάζεται ταξινόμηση (sorting) ή διάταξη (ordering).

Διαβάστε περισσότερα

Τίτλος: Βάρος και Όγκος: δύο ασύνδετες έννοιες; Θέματα: Βάρος και Όγκος. Ηλικία: μαθητές 7-9 χρονών. Χρόνος:6-7 μαθήματα των 45 λεπτών.

Τίτλος: Βάρος και Όγκος: δύο ασύνδετες έννοιες; Θέματα: Βάρος και Όγκος. Ηλικία: μαθητές 7-9 χρονών. Χρόνος:6-7 μαθήματα των 45 λεπτών. Τίτλος: Βάρος και Όγκος: δύο ασύνδετες έννοιες; Θέματα: Βάρος και Όγκος Χρόνος:6-7 μαθήματα των 45 λεπτών Ηλικία: μαθητές 7-9 χρονών Διαφοροποίηση: Χαρισματικοί μαθητές: Θέματα που προωθούν τη δημιουργικότητα

Διαβάστε περισσότερα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΟΥ ΜΟL. To mol είναι μονάδα ποσότητας στο S.I.

Η ΕΝΝΟΙΑ ΤΟΥ ΜΟL. To mol είναι μονάδα ποσότητας στο S.I. Η ΕΝΝΟΙΑ ΤΟΥ ΜΟL To mol είναι μονάδα ποσότητας στο S.I. Το ερώτημα που τίθεται είναι: Γιατί χρειαζόμαστε άλλη μια μονάδα ποσότητας; Δεν είναι επαρκές το Kgr, τα πολλαπλάσιά του και τα υποπολλαπλάσιά του;

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Η εφαρµογή xsortlab. Οπτικός τρόπος ταξινόµησης

Η εφαρµογή xsortlab. Οπτικός τρόπος ταξινόµησης Η εφαρµογή xsortlab Η ταξινόµηση µιας λίστας πραγµάτων είτε σε αύξουσα είτε σε φθίνουσα σειρά είναι µια πολύ σηµαντική λειτουργία. Η εφαρµογή xsortlab περικλείει 5 διαφορετικές µεθόδους ταξινόµησης. Την

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl

Διαβάστε περισσότερα

Εισαγωγή στην επανάληψη

Εισαγωγή στην επανάληψη Εισαγωγή στην επανάληψη Στο κεφάλαιο αυτό ήρθε η ώρα να μελετήσουμε την επανάληψη στον προγραμματισμό λίγο πιο διεξοδικά! Έχετε ήδη χρησιμοποιήσει, χωρίς πολλές επεξηγήσεις, σε προηγούμενα κεφάλαια τις

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΠΑΡΑΓΡΑΦΟΥ 2.6, Σελ , ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, Δ. ΙΩΑΝΝΙΔΗ, Εκδόσεις Ζήτη (Μέτρα θέσης ή Κεντρικής τάσης)

ΠΕΡΙΛΗΨΗ ΠΑΡΑΓΡΑΦΟΥ 2.6, Σελ , ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, Δ. ΙΩΑΝΝΙΔΗ, Εκδόσεις Ζήτη (Μέτρα θέσης ή Κεντρικής τάσης) ΠΕΡΙΛΗΨΗ ΠΑΡΑΓΡΑΦΟΥ 6, Σελ 30-39, ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, Δ ΙΩΑΝΝΙΔΗ, Εκδόσεις Ζήτη (Μέτρα θέσης ή Κεντρικής τάσης) ΑΡΙΘΜΗΤΙΚΟΙ ΤΡΟΠΟΙ ΠΑΡΟΥΣΙΑΣΗΣ ΤΩΝ ΔΕΔΟΜΕΝΩΝ Είναι πολύ χρήσιμο όταν γίνεται μια έρευνα

Διαβάστε περισσότερα

Κεφάλαιο Ένα Ο ισολογισμός και η θεμελιώδης αρχή

Κεφάλαιο Ένα Ο ισολογισμός και η θεμελιώδης αρχή 1 Κεφάλαιο Ένα Ο ισολογισμός και η θεμελιώδης αρχή Στοιχεία Ενεργητικού, Στοιχεία Παθητικού και Ισολογισμοί Ο προσωπικός ισολογισμός της Ιωάννας Ο ισολογισμός μιας εταιρείας Το διάγραμμα του ισολογισμού

Διαβάστε περισσότερα

Αλγόριθμος. Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος.

Αλγόριθμος. Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος. Αλγόριθμος Αλγόριθμο ονομάζουμε τη σαφή και ακριβή περιγραφή μιας σειράς ξεχωριστών οδηγιών βημάτων με σκοπό την επίλυση ενός προβλήματος. Εντολές ή οδηγίες ονομάζονται τα βήματα που αποτελούν έναν αλγόριθμο.

Διαβάστε περισσότερα

2ο video (επίλυση ανίσωσης 1 ου βαθμού)

2ο video (επίλυση ανίσωσης 1 ου βαθμού) 2ο video (επίλυση ανίσωσης 1 ου βαθμού) 1 Γεια σας και πάλι! Συγχαρητήρια για την επιτυχία σας στην πρώτη ενότητα! 2 Σε αυτό το video θα θυμηθούμε τη διαδικασία επίλυσης πρωτοβάθμιας ανίσωσης, δηλαδή όλα

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Ο 1 : ΤΑΞΙΝΟΜΗΣΗ Δ Ρ Ι Τ Σ Α Σ Η Λ Ι Α Σ Υ Π Ο Ψ Η Φ Ι Ο Σ Δ Ι Δ Α Κ Τ Ο Ρ Α Σ ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΑΞΙΝΟΜΗΣΗΣ Ορισμός ταξινόμησης 2 Κατηγορίες αλγορίθμων ταξινόμησης

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

3 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΠΙΝΑΚΕΣ

3 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΠΙΝΑΚΕΣ Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 23 ΝΟΕ 2016

Διαβάστε περισσότερα

TRIDIO 190016 TRIDIO 1

TRIDIO 190016 TRIDIO 1 TRIDIO 190016 1 Τι είναι το Tridio; Το Tridio είναι μια ανεξάρτητη μέθοδος εργασίας με σκοπό να υποστηρίξει τις τρέχουσες μεθόδους διδασκαλίας μαθηματικών στους τομείς της ανάπτυξης της χωρικής ικανότητας,

Διαβάστε περισσότερα

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή 3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα

Διαβάστε περισσότερα

Φάση 2. Προβληματισμός. μεθόδους, που χρησιμοποιούνται. τάξεις Αναστοχασμός για συγκεκριμένα. προβλήματα

Φάση 2. Προβληματισμός. μεθόδους, που χρησιμοποιούνται. τάξεις Αναστοχασμός για συγκεκριμένα. προβλήματα Μαθήματα: Μέθοδοι Εισαγωγή Αυτή η υπό-ενότητα ενθαρρύνει και καλεί τους συμμετέχοντες να σκεφτούν διδακτικές μεθόδους που να είναι κατάλληλες για τη διδασκαλία τόσο της μοντελοποίησης, αλλά και του μαθηματικού

Διαβάστε περισσότερα

Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και

Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και Παύλος Εφραιµίδης 1 Το πρόβληµα της ταξινόµησης 2 3 ίνεται πολυ-σύνολο Σ µε στοιχεία από κάποιο σύµπαν U (πχ. U = το σύνολο των ακεραίων αριθµών). του Σ είναι η επιβολή µιας διάταξης στα στοιχεία του συνόλου

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort

Διαβάστε περισσότερα

Προγραµµατιστικές Τεχνικές

Προγραµµατιστικές Τεχνικές Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Προγραµµατιστικές Τεχνικές Βασίλειος Βεσκούκης ρ. Ηλεκτρολόγος Μηχανικός & Μηχανικός Υπολογιστών ΕΜΠ v.vescoukis@cs.ntua.gr Ρωµύλος Κορακίτης

Διαβάστε περισσότερα

6 έως 7 ετών Παιχνίδι 1: Εξάσκηση γραφής Παιχνίδι 2: Γεωμετρικά σχήματα: τα στερεά

6 έως 7 ετών Παιχνίδι 1: Εξάσκηση γραφής Παιχνίδι 2: Γεωμετρικά σχήματα: τα στερεά Αγαπητοί γονείς, Το παιχνίδι «Σχολείο Α Β Γ» ανήκει στη σειρά εκπαιδευτικών προϊόντων Εξυπνούλης και απευθύνεται σε παιδιά ηλικίας 6 ετών και άνω. Είναι μια πλούσια συλλογή από εκπαιδευτικά παιχνίδια που

Διαβάστε περισσότερα

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε

Διαβάστε περισσότερα

Άσκηση 5 Firefox Αποθήκευση αρχείων

Άσκηση 5 Firefox Αποθήκευση αρχείων Άσκηση 5 Firefox Αποθήκευση αρχείων Παρουσίαση Γραμμών Εργαλείων Ανοίγουμε τον περιηγητή ιστού Firefox. Αποθήκευση εικόνων Ανοίγουμε την σελίδα www.google.gr Στην πάνω αριστερά γωνία κάνουμε αριστερό κλικ

Διαβάστε περισσότερα

Εισαγωγή στην επανάληψη

Εισαγωγή στην επανάληψη Εισαγωγή στην επανάληψη Στο κεφάλαιο αυτό ήρθε η ώρα να μελετήσουμε την επανάληψη στον προγραμματισμό λίγο πιο διεξοδικά! Έχετε ήδη χρησιμοποιήσει, χωρίς πολλές επεξηγήσεις, σε προηγούμενα κεφάλαια τις

Διαβάστε περισσότερα

Το φύλλο εργασίας: Βρες το δρόμο για τα πλούτη του Νησιού του Θησαυρού (σελ. 95) Στυλό ή Μολύβι

Το φύλλο εργασίας: Βρες το δρόμο για τα πλούτη του Νησιού του Θησαυρού (σελ. 95) Στυλό ή Μολύβι 11η Δραστηριότητα Το κυνήγι του θησαυρού - Finite State Automata (FSA) Περίληψη Τα προγράμματα για υπολογιστές πρέπει συχνά να επεξεργαστούν μία σειρά συμβόλων, όπως γράμματα ή λέξεις μέσα σε ένα κείμενο,

Διαβάστε περισσότερα

Το επαναστατικό καρτοπαίχνιδο. όπου κερδίζετε παίρνοντας κεφάλι.

Το επαναστατικό καρτοπαίχνιδο. όπου κερδίζετε παίρνοντας κεφάλι. Το επαναστατικό καρτοπαίχνιδο όπου κερδίζετε παίρνοντας κεφάλι. Το επαναστατικό παιχνίδι με κάρτες όπου κερδίζετε παίρνοντας κεφάλι. Για δύο έως πέντε παίκτες Περιεχόμενα: Μια τράπουλα 50 καρτών ΕΥΓΕΝΩΝ

Διαβάστε περισσότερα

1 Τ.Ε.Ε.Α.Π.Η. Εργαστηριακές ασκήσεις Γενετικής 16-17

1 Τ.Ε.Ε.Α.Π.Η. Εργαστηριακές ασκήσεις Γενετικής 16-17 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ & ΑΓΩΓΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ «ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΒΙΟΛΟΓΙΑΣ ΑΝΘΡΩΠΟΥ» Μ. Εργαζάκη Ημερομηνία: 15-12-2016 Φύλλο εργασίας 2: Τα γονίδια και η μεταβίβασή τους

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Δείκτες & Πίνακες Δείκτες, Πίνακες

Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες & Πίνακες Δείκτες, Πίνακες Δείκτες Δείκτης είναι μια μεταβλητή που ως δεδομένο περιέχει τη θέση μνήμης (διεύθυνση) μιας άλλης μεταβλητής. Μεταβλητές Τιμές. (*) Δείκτης p Μεταβλητή v Δ1. Δ2. τιμή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ ΡΟΜΠΟΤΙΚΗΣ LEGO MINDSTORMS NXT

ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ ΡΟΜΠΟΤΙΚΗΣ LEGO MINDSTORMS NXT ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΤΟΥ ΠΑΚΕΤΟΥ ΡΟΜΠΟΤΙΚΗΣ LEGO MINDSTORMS NXT Φύλλο Εργασιών 4 ο Πρόκληση με αισθητήρες αφής Όνομα Ημερομηνία Έξοδος από σπηλιά Θα επιδιώξουμε να προγραμματίσουμε το

Διαβάστε περισσότερα

Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική

Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική ΠΠΜ100 & ΜΜΠ100: Εισαγωγή στην Μηχανική Αξιοποίηση Η/Υ και Πληροφορικής στην Μηχανική ιάλεξη 4 η 2 Οκτωβρίου Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Περιεχόµενα ιάλεξη #1:

Διαβάστε περισσότερα