Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί)"

Transcript

1 9η Δραστηριότητα Η λασπωμένη πόλη - Minimal Spanning Trees* (*είδος γραφημάτων) Περίληψη Η κοινωνία μας συνδέεται με πολλά δίκτυα: το τηλεφωνικό δίκτυο, το ενεργειακό δίκτυο, το οδικό δίκτυο. Για ένα ιδιαίτερο δίκτυο, υπάρχουν συνήθως κάποιες επιλογές για το πως να σχεδιασθούν οι δρόμοι, οι καλωδιώσεις ή οι ασύρματες συνδέσεις. Θα πρέπει, λοιπόν, να βρούμε τους πιο αποτελεσματικούς τρόπους για να συνδέσουμε τα διάφορα αντικείμενα σε ένα δίκτυο. Αντιστοιχία με το σχολικό πρόγραμμα * (*Σημ. μτφ.: αναφέρεται στη Νέα Ζηλανδία) Μαθηματικά: Γεωμετρία, επιπέδου 2/3 και άνω. Εξερευνώντας τα σχήματα και τον χώρο: Βρίσκοντας τις βραχύτερες διαδρομές σε έναν χάρτη Ηλικία: Άνω των 9 ετών Ικανότητες: Επίλυση προβλημάτων Υλικά: Το κάθε παιδί θα χρειασθεί: Πρακτική δραστηριότητα: Το πρόβλημα της λασπωμένης πόλης (σελ. 80) Πλακάκια ή τετράγωνα κομματάκια από χαρτόνι (περίπου 40 για κάθε παιδί) 78

2 Η λασπωμένη πόλη Εισαγωγή Αυτή η δραστηριότητα θα σας δείξει πως χρησιμοποιούνται οι υπολογιστές για να βρίσκουμε την καλύτερη λύση σε καθημερινά προβλήματα, όπως π.χ. το να συνδέσουμε τις γραμμές ηλεκτρικού ρεύματος ανάμεσα στα σπίτια. Τα παιδιά πρέπει να χρησιμοποιήσουν το φύλλο εργασίας της σελ. 94, που εξηγεί το πρόβλημα της Λασπωμένης Πόλης. Η συζήτηση που ακολουθεί Μοιραστείτε τη λύση που βρήκαν τα παιδιά. Τι στρατηγικές ακολούθησαν; Μία καλή στρατηγική για να βρείτε την καλύτερη λύση, είναι να αρχίσετε με ένα άδειο χάρτη και βαθμιαία να τοποθετείτε τα πλακάκια (ή κομμάτια από χαρτόνι), μέχρι που όλα τα σπίτια να είναι συνδεδεμένα μεταξύ τους, προσθέτοντας διαδρομές με σταδιακά αυξανόμενο μήκος, και προσέχοντας να μη συνδέσουμε τα ήδη συνδεδεμένα σπίτια. Μπορεί να βρούμε διαφορετικές λύσεις αν αλλάξουμε τη σειρά με την οποία προσθέτουμε διαδρομές σύνδεσης του ίδιου μήκους. Δύο πιθανές λύσεις αναδεικνύονται πιο κάτω. Μία άλλη στρατηγική είναι να αρχίσουμε με όλα τα ήδη πλακοστρωμένα μονοπάτια, απομακρύνοντάς τα σταδιακά, αν δεν είναι απαραίτητα. Αυτό, πάντως, απαιτεί πολύ μεγαλύτερη προσπάθεια από την προηγούμενη στρατηγική. Πού μπορείτε να βρείτε τέτοιου τύπου δίκτυα στην καθημερινή μας ζωή; Οι πληροφορικάριοι ονομάζουν την αναπαράσταση αυτών των δικτύων γράφους ή γραφήματα. Τα πραγματικά δίκτυα μπορούν να αναπαρίστανται με γράφους, ούτως ώστε να μπορέσουμε να επιλύσουμε διάφορα προβλήματα, όπως π.χ. τον σχεδιασμό για την βέλτιστη τοποθέτηση ενός οδικού δικτύου σε μία πόλη, είτε την ανεύρεση του καλύτερου τρόπου για τη σύνδεση διαφόρων πόλεων με αεροπορικά δρομολόγια. Υπάρχουν επίσης πολλοί αλγόριθμοι που μπορούν να βρουν εφαρμογή στους γράφους (ή και γραφήματα ), όπως το να βρούμε την ελάχιστη απόσταση μεταξύ 2 σημείων, ή τη συντομώτερη διαδρομή που να περνάει αγγίζοντας όλα τα σημεία. 79

3 Φύλλο εργασίας: Το πρόβλημα της Λασπωμένης Πόλης Πριν πολύ-πολύ καιρό, ήταν μία πόλη που δεν είχε δρόμους. Ήταν πολύ δύσκολο να τριγυρνάς σ' αυτή την πόλη μετά από μία μπόρα, γιατί μόνο λάσπη έβρισκες παντού. Τα αυτοκίνητα παγιδεύονταν στη λάσπη και ο κόσμος λέρωνε συνεχώς τα παπούτσια τους. Ο Δήμαρχος της πόλης αποφάσισε ότι ήταν καιρός να αρχίσει να πλακοστρώνει μερικούς δρόμους, αλλά δεν ήθελε να ξοδέψει και πιο πολλά από το στενά απαραίτητο, διότι ο Δήμος ήθελε να φτιάξει και ένα κολυμβητήριο. Τότε, λοιπόν, ο Δήμαρχος έθεσε δύο όρους: 1. Θα πρέπει να πλακοστρωθούν αρκετοί δρόμοι για να μπορεί ο καθένας να πάει από το σπίτι του μέχρι ένα άλλο οποιοδήποτε σπίτι. Και επίσης, 2. Η πλακόστρωση θα πρέπει να κοστίσει το ελάχιστο δυνατό. Αυτό που ακολουθεί είναι ο χάρτης της πόλης. Ο αριθμός των πλακιδίων (πέτρες) ανάμεσα στα σπίτια, αντιπροσωπεύει το κόστος για την πλακόστρωση εκείνου του τμήματος. Να βρείτε την καλύτερη διαδρομή που να συνδέει όλα τα σπίτια, αλλά με τη χρήση του μικρότερου δυνατού αριθμού πλακών (πετρών). (Η γέφυρα δεν μετράει, διότι δεν χρειάζεται πλακόστρωση). Τι στρατηγική θα χρησιμοποιούσατε για να λύσετε το πρόβλημα; 80

4 Ποικιλίες και επεκτάσεις Αυτό που ακολουθεί είναι είναι ένας εναλλακτικός τρόπος για την αναπαράσταση πόλεων και δρόμων: Τα σπίτια συμβολίζονται με τους κύκλους, οι λασπωμένοι δρόμοι με γραμμές, και το μήκος των δρόμων διευκρινίζεται από έναν αριθμό πάνω στη γραμμή. Οι Πληροφορικάριοι και οι Μαθηματικοί χρησιμοποιούν συχνά αυτό το διάγραμμα, για να απεικονί ζουν αυτά τα προβλήματα. Το ονομάζουν γράφο ή γράφημα. Αυτό μπορεί και να δημιουργήσει λίγη σύγχυση, διότι η λέξη αυτή καθ' εαυτή, μοιάζει με εκείνη που χρησιμοποιείται στη Στατιστική, για την αναπαράσταση αριθμητικών δεδομένων, δηλ. τη γραφική παράσταση, αλλά πρόκειται για δύο διαφορετικά πράγματα, ακόμη κι' αν το όνομα μοιάζει. Σε έναν γράφο στην Πληροφορική, τα μήκη των γραμμών μπορεί να μην σχεδιασθούν στην σωστή κλίμακα. Φτιάξτε ένα δικό σας παράδειγμα μιας λασπωμένης πόλης και βρείτε τη λύση με τους φίλους σας. Μπορείτε να βρείτε έναν κανόνα που να περιγράφει πόσοι δρόμοι ή συνδέσεις απαιτούνται για την καλύτερη λύση; Εξαρτάται από το πόσα σπίτια υπάρχουν στην πόλη; 81

5 Τι σχέση έχουν όλα αυτά; Υποθέστε ότι πρέπει να σχεδιάσετε πως να μεταφέρετε ένα κοινό αγαθό, όπως το ρεύμα ή την ενέργεια, ή το αέριο, ή το νερό, σε μία νέα κοινότητα. Ένα δίκτυο καλωδίων ή σωλήνων, πρέπει να συνδέσει όλα τα σπίτια με το εργοστάσιο παραγωγής ηλεκτρικής ενέργειας ή την κεντρική εταιρεία διανομής νερού. Κάθε σπίτι πρέπει να συνδεθεί στο δίκτυο σε κάποιο σημείο, αλλά ακριβής διαδρομή σύνδεσης ανάμεσα στο σπίτι και το εργοστάσιο δεν ενδιαφέρει και πολύ, αρκεί να είναι συνδεδεμένο το σπίτι. Το πρόβλημα της σχεδίασης ενός δικτύου με μία ελάχιστη συνολική διαδρομή λέγεται το πρόβλημα του διακλαδούμενου δένδρου ( Minimal spanning tree, MST). Τα MST δεν είναι χρήσιμα μόνο για το αέριο ή το ηλεκτρικό ρεύμα. Μας βοηθούν επίσης να λύνουμε προβλήματα στα δίκτυα υπολογιστών, στα τηλεφωνικά δίκτυα, στους πετρελαιαγωγούς, στον καθορισμό των εναέριων διαδρομών. Σε κάθε περίπτωση, όταν αποφασίζουμε ποια ρότα ταξιδιού είναι η καλύτερη για ένα άτομο, θα πρέπει πάντα να λαμβάνουμε υπ' όψη μας τόσο το πόσο βολική θα είναι για τον ταξιδιώτη, αλλά και το πόσο θα κοστίσει. Κανείς δε θα ήθελε να περάσει ώρες ολόκληρες στο αεροπλάνο, παίρνοντας την πιο μακρινή ρότα, διότι είναι η πιο οικονομική. Ο αλγόριθμος της λασπωμένης πόλης θα μπορούσε και να μην είναι τόσο χρήσιμος γι' αυτά τα δίκτυα, διότι απλά ελαχιστοποιεί την ελάχιστη συνολική διαδρομή των οδών ή των εναέριων πτήσεων. Τα Minimal spanning trees είναι χρήσιμα και σαν ένα στάδιο προς την επίλυση άλλων προβλημάτων με γράφους, όπως το πρόβλημα του περιοδεύοντος πωλητή που προσπαθεί να βρει την πιο σύντομη διαδρομή για να μπορέσει να επισκεφθεί κάθε σημείο του δικτύου του. Υπάρχουν αποτελεσματικοί αλγόριθμοι (μέθοδοι) για την επίλυση των minimal spanning trees προβλημάτων. Μία απλή μέθοδος που οδηγεί σε μία άριστη λύση, είναι να ξεκινήσουμε χωρίς καμία σύνδεση, προσθέτοντάς τες κατ' αύξουσα τάξη μεγέθους, και συνδέοντας μόνο τμήματα του δικτύου που δεν είχαν ακόμη συνδεθεί. Αυτός λέγεται αλγόριθμος του Kruskal (Ο J.B. Kruskal τον δημοσίευσε το 1995). Για πολλά προβλήματα με τους γράφους, συμπεριλαμβανομένου του προβλήματος του περιοδεύοντος πωλητή, οι Πληροφορικάριοι πρέπει ακόμη να εφεύρουν μεθόδους επαρκώς γρήγορες για την βέλτιστη δυνατή λύση. Λύσεις και υποδείξεις Ποικιλίες και επεκτάσεις (σελ. 81) Πόσοι δρόμοι ή συνδέσεις είναι απαραίτητες, αν υπάρχει n αριθμός σπιτιών στην πόλη; Προκύπτει ότι μία βέλτιστη λύση θα έχει, πάντα, ακριβώς n 1 συνδέσεις, διότι αυτές είναι αρκετές για να να συνδέσουν τα n σπίτια, ενώ μία επιπλέον σύνδεση θα δημιουργούσε αχρείαστες εναλλακτικές διαδρομές ανάμεσά τους. 82

Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από

Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από 8η Δραστηριότητα Νίκησε τον χρόνο Δίκτυα ταξινόμησης Περίληψη Αν και οι υπολογιστές είναι γρήγοροι, υπάρχει ένα όριο στο πόσο γρήγορα μπορούν να επιλύουν τα προβλήματα. Ένας τρόπος για να επιταχύνουμε

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά

6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά 6η Δραστηριότητα Ναυμαχία Αλγόριθμοι αναζήτησης Περίληψη Συχνά ζητάμε από τους υπολογιστές να ψάξουν πληροφορίες στο εσωτερικό μεγάλων αρχείων δεδομένων. Για να το καταφέρουν, απαιτούνται ταχείες και αποτελεσματικές

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού)

4.6 Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) . Critical Path Analysis (Μέθοδος του κρίσιμου μονοπατιού) Η πετυχημένη διοίκηση των μεγάλων έργων χρειάζεται προσεχτικό προγραμματισμό, σχεδιασμό και συντονισμό αλληλοσυνδεόμενων δραστηριοτήτων (εργσιών).

Διαβάστε περισσότερα

Θεωρία Γράφων - Εισαγωγή

Θεωρία Γράφων - Εισαγωγή Θεωρία Γράφων - Εισαγωγή Τοπολογιές απειονίσεις Τοπολογία Κλάδος των μαθηματιών που μελετά ανάμεσα σε άλλα τις ιδιότητες εείνες των γεωμετριών σχημάτων οι οποίες παραμένουν αναλλοίωτες ατά τις τοπολογιές

Διαβάστε περισσότερα

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά

5η Δραστηριότητα. Λύσε το γρίφο Η Θεωρία της Πληροφορίας. Περίληψη. Λπν τ φνντ π τν πρτσ. Ικανότητες. Ηλικία. Υλικά 5η Δραστηριότητα Λύσε το γρίφο Η Θεωρία της Πληροφορίας Περίληψη Πόση πληροφορία περιέχεται σε ένα βιβλίο των 1000 σελίδων; Υπάρχει περισσότερη πληροφορία σε έναν τηλεφωνικό κατάλογο των 1000 σελίδων ή

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων

Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων 2η Δραστηριότητα Ζωγραφίζοντας με τους αριθμούς - Η αναπαράσταση των εικόνων Περίληψη Οι υπολογιστές απομνημονεύουν τα σχέδια, τις φωτογραφίες και άλλα σχήματα, χρησιμοποιώντας μόνον αριθμούς. Με την επόμενη

Διαβάστε περισσότερα

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης

Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης 7η Δραστηριότητα Ελαφρύτερος και βαρύτερος Αλγόριθμοι ταξινόμησης Περίληψη Οι υπολογιστές χρησιμοποιούνται συχνά για την ταξινόμηση καταλόγων, όπως για παράδειγμα, ονόματα σε αλφαβητική σειρά, ραντεβού

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Μετρήσεις σε ράβδους γραφίτη.

Μετρήσεις σε ράβδους γραφίτη. 13 η ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΚΦΕ ΧΑΛΑΝΔΡΙΟΥ Τοπικός διαγωνισμός στη ΦΥΣΙΚΗ 13 Δεκεμβρίου2014 Σχολείο: Ονόματα μαθητών:1) 2) 3) Μετρήσεις σε ράβδους γραφίτη. Για να γράψουμε χρησιμοποιούμε τα μολύβια,

Διαβάστε περισσότερα

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου)

Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ο ξεναγός (Συνοδευτική δραστηριότητα του γύρου του ίππου) Ηλικίες: Προαπαιτούμενες δεξιότητες: Χρόνος: Μέγεθος ομάδας: 8 ενήλικες Καμία 15 λεπτά για τη βασική δραστηριότητα, περισσότερο για τις επεκτάσεις

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ 1 ο Γενικό Λύκειο Ηρακλείου Αττικής Σχ έτος 2011-2012 Εργαστήριο Φυσικής Υπεύθυνος : χ τζόκας 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ Η γραφική παράσταση

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Λυμένη άσκηση Φυσική γ γυμνασίου. Ηλεκτρικό φορτίο. Λύση

Λυμένη άσκηση Φυσική γ γυμνασίου. Ηλεκτρικό φορτίο. Λύση Λυμένη άσκηση Φυσική γ γυμνασίου Ηλεκτρικό φορτίο Μεταλλική σφαίρα A φέρει φορτίο A +0μC κι έρχεται σε επαφή με όμοια αφόρτιστη σφαίρα Β. α. Να υπολογίσετε τον αριθμό των στοιχειωδών φορτίων που χαρακτηρίζουν

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων.

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το φτερό του αεροπλάνου Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου

4.4 Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου . Το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου Σ αυτή την παράγραφο θα εξεταστεί μια παραλλαγή του προβλήματος της συντομότερης διαδρομής, το πρόβλημα του ελάχιστου ζευγνύοντος δένδρου. Σ αυτό το πρόβλημα

Διαβάστε περισσότερα

Ένα παιχνίδι των πολυγώνων

Ένα παιχνίδι των πολυγώνων Ένα παιχνίδι των πολυγώνων Το παιγνίδι αυτό, αναπτύχθηκε στα πλαίσια του μαθήματος πληροφορικής της Γ τάξης, στην ενότητα που αφορά στο σχεδιασμό πολυγώνων, απ όλα τα παιδιά, της Γ τάξης του σχολείου μας.

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

Δρομολόγηση (Routing)

Δρομολόγηση (Routing) Δρομολόγηση (Routing) Περίληψη Flooding Η Αρχή του Βέλτιστου και Δυναμικός Προγραμματισμός ijkstra s Algorithm Αλγόριθμοi Δρομολόγησης Link State istance Vector Δρομολόγηση σε Κινητά Δίκτυα Δρομολόγηση

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

Μοντέλο δηµιουργίας «Ταξίδια»

Μοντέλο δηµιουργίας «Ταξίδια» Μοντέλο δηµιουργίας «Ταξίδια» Στην εποχή µας, η ανάπτυξη των µέσων έχει διευκολύνει την πραγµατοποίηση ταξιδιών, ιδιαίτερα σε τόπους που µερικές δεκαετίες πριν φαίνονταν µακρινοί και απροσπέλαστοι στην

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5 ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

Γ Γυμνασίου Τμήμα. Ημερομηνία. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 2 Νόμος του Ohm. Θεωρία που πρέπει να γνωρίζεις

Γ Γυμνασίου Τμήμα. Ημερομηνία. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 2 Νόμος του Ohm. Θεωρία που πρέπει να γνωρίζεις Ονοματεπώνυμο Καθηγήτρια: Εγγλεζάκη Φρίντα Γ Γυμνασίου Τμήμα Βαθμός Ημερομηνία ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 2 Νόμος του Ohm. Θεωρία που πρέπει να γνωρίζεις Η ένταση (Ι) του ηλεκτρικού ρεύματος που διαρρέει έναν μεταλλικό

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες έννοιες και τους αλγορίθµους της Θεωρίας ένδρων.

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ Ιστότοπος Βιβλίου http://www.iep.edu.gr/ και «Νέα Βιβλία ΙΕΠ ΓΕΛ και ΕΠΑΛ» 2 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ: Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Εργασία στο εκπαιδευτικό λογισµικό Function Probe

Εργασία στο εκπαιδευτικό λογισµικό Function Probe Γιάννης Π. Πλατάρος -1-20/10/2003 ΚΑΤΑΣΚΕΥΗ ΑΝΑΛΥΤΙΚΗΣ ΕΚΦΡΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΙΑΤΡΙΚΟ ΠΡΟΒΛΗΜΑ Εργασία στο εκπαιδευτικό λογισµικό Function Probe Περίληψη: ίνεται στους µαθητές η διαπραγµάτευση ενός προβλήµατος

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

i. ένας προβολέας πολύ μικρών διαστάσεων ii. μια επίπεδη φωτεινή επιφάνεια αποτελούμενη από πολλές λάμπες σε λειτουργία

i. ένας προβολέας πολύ μικρών διαστάσεων ii. μια επίπεδη φωτεινή επιφάνεια αποτελούμενη από πολλές λάμπες σε λειτουργία ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΩΝ ΔΗΜΟΤΙΚΟΥ «ΑΡΙΣΤΟΤΕΛΗΣ» 2016 Πανεπιστήμιο Αθηνών Τμήμα Φυσικής α φάση Ε Ε

ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΩΝ ΔΗΜΟΤΙΚΟΥ «ΑΡΙΣΤΟΤΕΛΗΣ» 2016 Πανεπιστήμιο Αθηνών Τμήμα Φυσικής α φάση Ε Ε Ημερομηνία:. Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα:. Θέμα 1ο Οι μαθητές ενός δημοτικού σχολείου σχεδίασαν την ηλεκτρική εγκατάσταση της τάξης τους, όπως φαίνεται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

Β τάξη. ΕΝΟΤΗΤΑ 4 Κεφάλαιο 10: Νέες Τεχνολογίες και Επάγγελμα

Β τάξη. ΕΝΟΤΗΤΑ 4 Κεφάλαιο 10: Νέες Τεχνολογίες και Επάγγελμα Η Αργυρώ και ο Βασίλης μετά το τέλος της σχολικής χρονιάς αποφάσισαν να επισκεφτούν το θείο Αριστείδη, που διαμένει τα τελευταία χρόνια στην Τήνο, το όμορφο νησί των Κυκλάδων. Βασίλης: «Πρέπει σύντομα

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 5 Γραμμικότητα (Linearity), Αναλογικότητα (Proportionality), και Επαλληλία (Superposition)

Διαβάστε περισσότερα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα:

Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα: Ημερομηνία:. Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα: Στο σχολείο, στο μάθημα των φυσικών, οι μαθητές παρατηρούν, ενδιαφέρονται, ερευνούν και, με πειράματα, ανακαλύπτουν.

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

Το φύλλο εργασίας: Βρες το δρόμο για τα πλούτη του Νησιού του Θησαυρού (σελ. 95) Στυλό ή Μολύβι

Το φύλλο εργασίας: Βρες το δρόμο για τα πλούτη του Νησιού του Θησαυρού (σελ. 95) Στυλό ή Μολύβι 11η Δραστηριότητα Το κυνήγι του θησαυρού - Finite State Automata (FSA) Περίληψη Τα προγράμματα για υπολογιστές πρέπει συχνά να επεξεργαστούν μία σειρά συμβόλων, όπως γράμματα ή λέξεις μέσα σε ένα κείμενο,

Διαβάστε περισσότερα

Κεφάλαιο 4 : Λογική και Κυκλώματα

Κεφάλαιο 4 : Λογική και Κυκλώματα Κεφάλαιο 4 : Λογική και Κυκλώματα Σύνοψη Τα κυκλώματα που διαθέτουν διακόπτες ροής ηλεκτρικού φορτίου, χρησιμοποιούνται σε διατάξεις που αναπαράγουν λογικές διαδικασίες για τη λήψη αποφάσεων. Στην ενότητα

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ

Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων

Διαβάστε περισσότερα

Να κόψει κανείς ή να μην κόψει;

Να κόψει κανείς ή να μην κόψει; Να κόψει κανείς ή να μην κόψει; Του Νίκου Παναγιωτίδη, Φυσικού και Ραδιοερασιτέχνη (SV6 DBK) Συντονίζω στους 145,510 MHz με στάσιμα 1,5:1. Να κοντύνω μερικά εκατοστά το καλώδιο μήπως καλυτερέψει; κι αν

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003

ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003 ΠΑΡΑΔΕΙΓΜΑ ΔΗΜΙΟΥΡΓΙΑΣ ΓΡΑΦΗΜΑΤΟΣ ΣΤΟ MICROSOFT EXCEL 2003 Μία από τις βασικές λειτουργίες του Excel είναι και η παραγωγή γραφημάτων για την απεικόνιση επεξεργασμένων αριθμητικών δεδομένων στα φύλλα εργασίας.

Διαβάστε περισσότερα

Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ

Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ Τεχνολογία Α! Τάξης Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ Μελέτη Πριν από κάθε κατασκευή προηγούνται : 1. Μελέτη 2. Σχεδίαση *Τι σχήμα να τις δώσω; *Τι μέγεθος θα έχει (διαστάσεις); Σχεδίαση * Ποιοι είναι οι κανόνες

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί.

2. Όλες οι απαντήσεις να δοθούν στο εξεταστικό δοκίμιο το οποίο θα επιστραφεί. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ- ΙΟΥΝΙΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ. Ονοματεπώνυμο :.. Τμήμα :...

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ- ΙΟΥΝΙΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ. Ονοματεπώνυμο :.. Τμήμα :... ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ- ΙΟΥΝΙΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία:28/05/2013 Βαθμός :.. 100. 20 Διάρκεια: 2,5 ώρες Υπογραφή καθηγητή : Ονοματεπώνυμο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Φαινόμενο Hall

ΑΣΚΗΣΗ 4 Φαινόμενο Hall ΑΣΚΗΣΗ 4 Φαινόμενο all Απαραίτητα όργανα και υλικά 4.1 Απαραίτητα όργανα και υλικά 1. Τροφοδοτικό ρυθμιζόμενης DC τάσης 0 έως 20V, 10Α. 2. Ενισχυτής ηλεκτρικής τάσης. 3. Ηλεκτρομαγνήτης ο οποίος αποτελείται:

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Ηλεκτρικό κύκλωµα. Βασική θεωρία

Ηλεκτρικό κύκλωµα. Βασική θεωρία 8 Ηλεκτρικό κύκλωµα Ηλεκτρικό κύκλωµα Βασική θεωρία Ηλεκτρικό κύκλωμα ονομάζεται κάθε διάταξη που αποτελείται από κλειστούς αγώγιμους «δρόμους», μέσω των οποίων μπορεί να διέλθει ηλεκτρικό ρεύμα. Κλειστό

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.5 Εφαρμογές των αρχών διατήρησης στη μελέτη απλών ηλεκτρικών κυκλωμάτων Λέξεις κλειδιά: σύνδεση σε σειρά, παράλληλη σύνδεση, κόμβος, κλάδος, αντίσταση, τάση. Υπάρχουν δυο τρόποι σύνδεσης των ηλεκτρικών

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κλάση NP, NP-Complete Προβλήματα

Κλάση NP, NP-Complete Προβλήματα Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που

Διαβάστε περισσότερα

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β

Διαβάστε περισσότερα

Ένα σοβαρότερο δίκτυο θα αποτελείται από τρεις ή περισσότερους υπολογιστές και ένα hub.

Ένα σοβαρότερο δίκτυο θα αποτελείται από τρεις ή περισσότερους υπολογιστές και ένα hub. ΕΙΣΑΓΩΓΗ Ο σκοπός αυτού του άρθρου είναι να σας δείξει πώς να φτιάξετε τα δύο είδη των καλωδίων που μπορούν να χρησιμοποιηθούν σε ένα τοπικό δίκτυο (LAN) με δύο ή περισσότερους υπολογιστές στο σπίτι ή

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

ΤΟ ΗΛΕΚΤΡΙΚΟ ΚΥΚΛΩΜΑ: ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ

ΤΟ ΗΛΕΚΤΡΙΚΟ ΚΥΚΛΩΜΑ: ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ 1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΚΥΚΛΩΜΑ: ΚΑΤΑΣΚΕΥΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 Δες στην εικόνα μια ηλεκτρική πηγή (μπαταρία) που συνήθως χρησιμοποιούμε για να κατασκευάσουμε ηλεκτρικά κυκλώματα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΤΑΞΗ: ΕΝΟΤΗΤΕΣ: ΕΙΣΗΓΗΤΗΣ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ και ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ (ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ) ΜΙΧΕΛΑΚΑΚΗΣ ΗΛΙΑΣ 1.Διδακτικός στόχοι: Να ορίζουν το στάσιμο

Διαβάστε περισσότερα

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Clements & Sarama, 2009; Sarama & Clements, 2009 Χωρική αντίληψη και σκέψη Προσανατολισμός στο χώρο Οπτικοποίηση (visualization) Νοερή εικονική αναπαράσταση Νοερή

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1 ο B Λυκείου 12 Μαρτίου 2011 A. Στα δύο όμοια δοχεία του σχήματος υπάρχουν ίσες ποσότητες νερού με την ίδια αρχική θερμοκρασία θ 0 =40 ο C. Αν στο αριστερό δοχείο η θερμοκρασία του

Διαβάστε περισσότερα

Παρατηρώ, μαθαίνω. και υπολογίζω!

Παρατηρώ, μαθαίνω. και υπολογίζω! Παρατηρώ, μαθαίνω και υπολογίζω! Δραστηριότητες μαθηματικών για την προσχολική αγωγή, Common core aligned for τις πρώτες τάξεις Δημοτικού και PreK Kindergarten 1 s t την Ειδική αγωγή Grade www.schoolessons.gr

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος - Δικτυωτή Ανάλυση Δίκτυο είναι ένα διάγραμμα το οποίο το οποίο αναπαριστά τη

Διαβάστε περισσότερα