Instructor s Solution Manual Introduction to Electrodynamics Fourth Edition. David J. Griffiths

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Instructor s Solution Manual Introduction to Electrodynamics Fourth Edition. David J. Griffiths"

Transcript

1 Instucto s Solution Mnul Intoduction to Electodynmics Fouth Edition Dvid J Giffiths

2 Contents Vecto Anlysis 4 Electosttics 6 3 Potentil 53 4 Electic Fields in Mtte 9 5 Mgnetosttics 6 Mgnetic Fields in Mtte 33 7 Electodynmics 45 8 Consevtion Lws 68 9 Electomgnetic Wves 85 Potentils nd Fields Rdition 3 Electodynmics nd Reltivity 6 c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

3 3 Pefce Although I wote these solutions, much of the typesetting ws done by Jonh Gollub, Chistophe Lee, nd Jmes Tewillige ny mistkes e, of couse, entiely thei fult Chis lso did mny of the figues, nd I would like to thnk him pticully fo ll his help If you find eos, plese let me know giffith@eededu Dvid Giffiths c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

4 4 CHAPTER VECTOR ANALYSIS Chpte Vecto Anlysis Poblem Fom the digm, B + C cos θ 3 = B cos θ + C cos θ Multiply by A A B + C cos θ 3 = A B cos θ + A C cos θ So: A B + C = A B + A C Dot poduct is distibutive Similly: B + C sin θ 3 = B sin θ + C sin θ Mulitply by A ˆn A B + C sin θ 3 ˆn = A B sin θ ˆn + A C sin θ ˆn If ˆn is the unit vecto pointing out of the pge, it follows tht A B + C = A B + A C Coss poduct is distibutive θ 3 }{{}}{{} θ B B + C C θ }{{} B cos θ }{{} C cos θ } C sin θ } B sin θ b Fo the genel cse, see G E Hy s Vecto nd Tenso Anlysis, Chpte, Section 7 dot poduct nd Section 8 coss poduct Poblem The tiple coss-poduct is not in genel ssocitive Fo exmple, suppose A = B nd C is pependicul to A, s in the digm Then B C points out-of-the-pge, nd A B C points down, nd hs mgnitude ABC But A B =, so A B C = A B C B C C A B C A A = B Poblem 3 z A = + ˆx + ŷ ẑ; A = 3; B = ˆx + ŷ + ẑ; B = 3 A B = + + = = AB cos θ = 3 3 cos θ cos θ = 3 θ = cos Poblem 4 x B θ A y The coss-poduct of ny two vectos in the plne will give vecto pependicul to the plne Fo exmple, we might pick the bse A nd the left side B: A = ˆx + ŷ + ẑ; B = ˆx + ŷ + 3 ẑ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

5 CHAPTER VECTOR ANALYSIS 5 ˆx ŷ ẑ A B = = 6 ˆx + 3 ŷ + ẑ 3 This hs the ight diection, but the wong mgnitude To mke unit vecto out of it, simply divide by its length: A B = = 7 ˆn = A B = 6 A B 7 ˆx + 7ŷ 3 + 7ẑ Poblem 5 ˆx ŷ ẑ A B C = A x A y A z B y C z B z C y B z C x B x C z B x C y B y C x = ˆxA y B x C y B y C x A z B z C x B x C z ] + ŷ + ẑ I ll just check the x-component; the othes go the sme wy = ˆxA y B x C y A y B y C x A z B z C x + A z B x C z + ŷ + ẑ BA C CA B = B x A x C x + A y C y + A z C z C x A x B x + A y B y + A z B z ] ˆx + ŷ + ẑ = ˆxA y B x C y + A z B x C z A y B y C x A z B z C x + ŷ + ẑ They gee Poblem 6 A B C+B C A+C A B = BA C CA B+CA B AC B+AB C BC A = So: A B C A B C = B C A = AB C CA B If this is zeo, then eithe A is pllel to C including the cse in which they point in opposite diections, o one is zeo, o else B C = B A =, in which cse B is pependicul to A nd C including the cse B = Conclusion: A B C = A B C eithe A is pllel to C, o B is pependicul to A nd C Poblem 7 = 4 ˆx + 6 ŷ + 8 ẑ ˆx + 8 ŷ + 7 ẑ = ˆx ŷ + ẑ = = 3 ˆ = = 3 ˆx 3ŷ + 3ẑ Poblem 8 Āy B y + Āz B z = cos φa y + sin φa z cos φb y + sin φb z + sin φa y + cos φa z sin φb y + cos φb z = cos φa y B y + sin φ cos φa y B z + A z B y + sin φa z B z + sin φa y B y sin φ cos φa y B z + A z B y + cos φa z B z = cos φ + sin φa y B y + sin φ + cos φa z B z = A y B y + A z B z b A x + A y + A z = Σ 3 i= A ia i = Σ 3 i= Σ 3 j= R ij A j Σ 3 k= R ik A k = Σj,k Σ i R ij R ik A j A k { } if j = k This euls A x + A y + A z povided Σ 3 i= R ijr ik = if j k Moeove, if R is to peseve lengths fo ll vectos A, then this condition is not only sufficient but lso necessy Fo suppose A =,, Then Σ j,k Σ i R ij R ik A j A k = Σ i R i R i, nd this must eul since we wnt A x+a y+a z = Likewise, Σ 3 i= R ir i = Σ 3 i= R i3r i3 = To check the cse j k, choose A =,, Then we wnt = Σ j,k Σ i R ij R ik A j A k = Σ i R i R i + Σ i R i R i + Σ i R i R i + Σ i R i R i But we ledy know tht the fist two sums e both ; the thid nd fouth e eul, so Σ i R i R i = Σ i R i R i =, nd so on fo othe uneul combintions of j, k In mtix nottion: RR =, whee R is the tnspose of R c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

6 6 CHAPTER VECTOR ANALYSIS Poblem 9 z y x Looking down the xis: z x z y y x A ottion cies the z xis into the y = z xis, y into x = y, nd x into z = x So A x = A z, A y = A x, A z = A y R = Poblem No chnge A x = A x, A y = A y, A z = A z b A A, in the sense A x = A x, A y = A y, A z = A z c A B A B = A B Tht is, if C = A B, C C No minus sign, in contst to behvio of n odiny vecto, s given by b If A nd B e pseudovectos, then A B A B = A B So the coss-poduct of two pseudovectos is gin pseudovecto In the coss-poduct of vecto nd pseudovecto, one chnges sign, the othe doesn t, nd theefoe the coss-poduct is itself vecto Angul momentum L = p nd toue N = F e pseudovectos d A B C A B C = A B C So, if = A B C, then ; pseudoscl chnges sign unde invesion of coodintes Poblem f = x ˆx + 3y ŷ + 4z 3 ẑ b f = xy 3 z 4 ˆx + 3x y z 4 ŷ + 4x y 3 z 3 ẑ c f = e x sin y ln z ˆx + e x cos y ln z ŷ + e x sin y/z ẑ Poblem h = y 6x 8 ˆx + x 8y + 8 } ŷ] h = t summit, so y 6x 8 = y 8 4y + 84 = x 8y + 8 = = 6x 4y + 84 = y = 66 = y = 3 = x = = x = Top is 3 miles noth, miles west, of South Hdley b Putting in x =, y = 3: h = = 7 ft c Putting in x =, y = : h = 6 8 ˆx ŷ] = ˆx + ŷ = ˆx + ŷ h = 3 ft/mile; diection: nothwest c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

7 CHAPTER VECTOR ANALYSIS 7 Poblem 3 = x x ˆx + y y ŷ + z z ẑ; = x x + y y + z z = x x +y y +z z ] ˆx+ ŷ+ ẑ = x x ˆx+y y ŷ+z z ẑ = b = x x + y y + z z ] ˆx + ŷ + ẑ = 3 x x ˆx 3 y y ŷ 3 z z ẑ = 3 x x ˆx + y y ŷ + z z ẑ] = / 3 = / ˆ c n = n n = n n Poblem 4 x = n n ˆ x, so n = n n y = +y cos φ + z sin φ; multiply by sin φ: y sin φ = +y sin φ cos φ + z sin φ z = y sin φ + z cos φ; multiply by cos φ: z cos φ = y sin φ cos φ + z cos φ Add: y sin φ + z cos φ = zsin φ + cos φ = z Likewise, y cos φ z sin φ = y So = cos φ; = sin φ; = sin φ; = cos φ Theefoe f y = f = f + f = + cos φ f } y + sin φ f z f z = f = f Poblem 5 + f = sin φ f y + cos φ f z v = x + 3xz + xz = x + x = b v b = xy + yz + 3xz = y + z + 3x c v c = y + xy + z + yz = + x + y = x + y Poblem 6 So f tnsfoms s vecto ˆ ed ] v = x + 3 y + 3 z = 3 xx + y + z 3 ] ] + yx + y + z 3 + zx + y + z 3 = 3 + x 3/ 5 x y 3/ 5 y z 3/ 5 z = x + y + z = = This conclusion is supising, becuse, fom the digm, this vecto field is obviously diveging wy fom the oigin How, then, cn v =? The nswe is tht v = eveywhee except t the oigin, but t the oigin ou clcultion is no good, since =, nd the expession fo v blows up In fct, v is infinite t tht one point, nd zeo elsewhee, s we shll see in Sect 5 Poblem 7 v y = cos φ v y + sin φ v z ; v z = sin φ v y + cos φ v z v y = vy vz cos φ + sin φ = vy + vy v z = vy = vy = vy cos φ + sin φ cos φ + vz vz sin φ + cos φ = vy vy sin φ + cos φ sin φ + vy + vy cos φ + vz sin φ vz cos φ + vz sin φ + vz + vz sin φ + vz vz sin φ + cos φ cos φ So sin φ Use esult in Pob 4: cos φ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

8 8 CHAPTER VECTOR ANALYSIS v y + vz = vy cos φ + vy = vy vz sin φ cos φ + vz vz sin φ cos φ + cos φ + sin φ + vz vz sin φ cos φ + cos φ sin φ + vy sin φ + cos φ = vy + vz sin φ vy sin φ cos φ Poblem 8 ˆx ŷ ẑ v = x 3xz xz = ˆx 6xz + ŷ + z + ẑ3z = 6xz ˆx + z ŷ + 3z ẑ ˆx ŷ ẑ b v b = = ˆx y + ŷ 3z + ẑ x = y ˆx 3z ŷ x ẑ xy yz 3xz ˆx ŷ ẑ c v c = = ˆxz z + ŷ + ẑy y = y xy + z yz Poblem 9 v A v B z Poblem y v v x As we go fom point A to point B 9 o clock to o clock, x inceses, y inceses, v x inceses, nd v y deceses, so v x / >, while v y / < On the cicle, v z =, nd thee is no dependence on z, so E 4 sys vy v = ẑ v x points in the negtive z diection into the pge, s the ight hnd ule would suggest Pick ny othe neby points on the cicle nd you will come to the sme conclusion I m soy, but I cnnot emembe who suggested this cute illusttion] v = y ˆx + x ŷ; o v = yz ˆx + xz ŷ + xy ẑ; o v = 3x z z 3 ˆx + 3 ŷ + x 3 3xz ẑ; o v = sin xcosh y ˆx cos xsinh y ŷ; etc Poblem i fg = fg fg ˆx + ŷ + fg = f g g ˆx + ŷ + g ẑ ẑ = + g f g + g f f f ˆx + ŷ + f ẑ ˆx + + g f f g ŷ + f g + g f ẑ = f g + g f ed iv A B = A yb z A z B y + A zb x A x B z + A xb y A y B x B = A z y + B z Ay A z By B y Az + A z Bx + B x Az A x Bz v fa = = B x Az faz +A x B y Ay A y Bx fay + B y Ax + B Ax y Bz ˆx + A y Bx Az Az By fax B z Ax B x Ay Ay + Bz Ax A Bz x By Bx = B A A B ed faz ŷ + fay fax ẑ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

9 CHAPTER VECTOR ANALYSIS 9 = Poblem A B = b ˆ = = f f Az Az + A z f f Ay A y f ˆx + + f Ay + A y f f Ax A x f ˆx + A x Ay f A y A z f = f A A f ed A x B x x ˆx+y ŷ+z ẑ = x +y +z ˆ ˆ] x = = = + Az ˆx + + A z Bx ˆx + + A y Bx B A z x + A y Bz f Ax ẑ ŷ + Ay A z f A x f + A z Bz B A y x ẑ + A x f f Az Ax ŷ + + A y By ] ẑ A z f ŷ A x f A y f + A z By ŷ ] ẑ Let s just do the x component x + y + z x x +y +z { ] ] ]} x + x x + yx 3 y + zx 3 z { 3 x x 3 + xy + xz } { = x 3 x x + y + z } = x 3 x = Sme goes fo the othe components Hence: ˆ ˆ = c v v b = x + 3xz xz xy ˆx + yz ŷ + 3xz ẑ Poblem 3 = x y ˆx + ŷ + 3z ẑ + 3xz x ˆx + z ŷ + ẑ xz ˆx + y ŷ + 3x ẑ = x y + 3x z ˆx + 6xz 3 4xyz ŷ + 3x z 6x z ẑ = x y + 3z ˆx + xz 3z y ŷ 3x z ẑ ii A B] x = A xb x + A y B y + A z B z = Ax B B x + A x x By A B] x = A y B z A z B y = A y Ay B A] x = B y Ax Ax Bz Az A B] x = A x + A y + A z B Bx = A x x B A] x = B x A x + B y Ax + B z Ax So A B + B A + A B + B A] x B = A y y A y Bx A z Bx + A z Bz + B y Ay +A x B x = B x A x +B z A x + A y Bx + A z Bx + B x Ax + B y Ax Bx + A y Bx B y Ax + B z Ax + Ay B B y + A y y Az Bx + A z Bx B z Ax + B Ay y / Ax + / Ax By + A y / Bx + / Bx / + Az + / Ax + A z B / x + Bz + / Bx + A x Bx = A B] x sme fo y nd z Bz + B z Az + Az vi A B] x = A B z A B y = A xb y A y B x A zb x A x B z = Ax B B y + A y x Ay B B x A x y B A A B + A B B A] x A = B x x + B y Ax + B z Ax A x Bx A y Bx A z Bx Az B B x A x z + A Bx x + By B B z + A z z + Ax B B z + A z x + Bz Ax Bx + Ay + Az c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

10 = B y A x + A x B x CHAPTER VECTOR ANALYSIS / + / Bx + By + Bz + A y B x + Az B x = A B] x sme fo y nd z Poblem 4 f/g = = g f g = g g + Bz Ax f/g ˆx + f/g ŷ + f/g ẑ g f ˆx + g f g f ŷ + g f g f f f ˆx + g ŷ + f ẑ f + Bx Ax g g A/g = A x/g + A y/g + A z/g = g Ax = g g Ay Ax g g + g Ax + Ay Ay g g + Az A/g] x = A z/g A y/g = g Az = g g Az g g Az g Ay Ay + g Az Ay g g ẑ / / Ax Ay ˆx + g ŷ + g ẑ Az g g ] g A x + A y g + A z g g A z A y g ] = g Ax+A gx g sme fo y nd z ed Poblem 5 ˆx ŷ ẑ A B = x y 3z 3y x = ˆx6xz + ŷ9zy + ẑ x 6y Az = g f f g g ed ] = g A A g g ed A B = 6xz + 9zy + x 6y = 6z + 9z + = 5z A = ˆx 3z y + ŷ x 3z + ẑ y x = ; B A = B = ˆx x + ŷ 3y + ẑ x 3y = 5 ẑ; A B = 5z A B? = B A A B = 5z = 5z b A B = 3xy 4xy = xy ; A B = xy = ˆx xy + ŷ xy = y ˆx x ŷ ˆx ŷ ẑ A B = x y 3z = ˆx y + ŷ5x; B A = 5 A B = x + y + 3z 3y ˆx x ŷ = ˆx6y + ŷ x B A = 3y x x ˆx + y ŷ + 3z ẑ = ˆx3y + ŷ 4x A B + B A + A B + B A = y ˆx + 5x ŷ + 6y ˆx x ŷ + 3y ˆx 4x ŷ = y ˆx x ŷ = A B c A B = ˆx x 6y 9zy + ŷ 6xz x 6y + ẑ 9zy 6xz = ˆx y 9y + ŷ6x + 4x + ẑ = y ˆx + x ŷ A = x + y + 3z = = 6; B = 3y + x = c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

11 CHAPTER VECTOR ANALYSIS B A A B + A B B A = 3y ˆx 4x ŷ 6y ˆx + x ŷ 8y ˆx + x ŷ = y ˆx + x ŷ = A B Poblem 6 T = ; T = T = T = b T b = T b = T b = T b T b = 3T b = 3 sin x sin y sin z c T c d v x v y v z = 5T c ; T c = ; v x = v y = v z Poblem 7 v = = v z v z = 6T c ; T c = 9T c T c = = v x = v x = = ; v y = 6x v y = 6x = v z v = ˆx + 6x ŷ = v z = vz vy + vx + v x v x vz + + vy vx v y v y =, by eulity of coss-deivtives Fom Pob 8: v = 6xz ˆx+z ŷ+3z ẑ v = 6xz+ z+ 3z = 6z+6z = Poblem 8 ˆx ŷ ẑ t = = ˆx t t t t t =, by eulity of coss-deivtives + ŷ t t + ẑ t t In Pob b, f = xy 3 z 4 ˆx + 3x y z 4 ŷ + 4x y 3 z 3 ẑ, so ˆx ŷ ẑ f = xy 3 z 4 3x y z 4 4x y 3 z 3 = ˆx3 4x y z 3 4 3x y z 3 + ŷ4 xy 3 z 3 4xy 3 z 3 + ẑ 3xy z 4 3 xy z 4 = Poblem 9,,,, x :, y = z = ; dl = dx ˆx; v dl = x dx; v dl = x dx = x 3 /3 = /3,,,, x =, y :, z = ; dl = dy ŷ; v dl = yz dy = ; v dl =,,,, x = y =, z : ; dl = dz ẑ; v dl = y dz = dz; v dl = dz = z = Totl: v dl = /3 + + = 4/3 b,,,, x = y =, z : ; dl = dz ẑ; v dl = y dz = ; v dl =,,,, x =, y :, z = ; dl = dy ŷ; v dl = yz dy = y dy; v dl = y dy = y =,,,, x :, y = z = ; dl = dx ˆx; v dl = x dx; v dl = x dx = x 3 /3 = /3 Totl: v dl = + + /3 = 4/3 c x = y = z : ; dx = dy = dz; v dl = x dx + yz dy + y dz = x dx + x dx + x dx = 4x dx; v dl = 4x dx = 4x 3 /3 = 4/3 d v dl = 4/3 4/3 = c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

12 CHAPTER VECTOR ANALYSIS Poblem 3 x, y :, z = ; d = dx dy ẑ; v d = yz 3 dx dy = 3y dx dy; v d = 3 dx y dy = 3x y = 3 = In Ex 7 we got, fo the sme boundy line the sue in the xy-plne, so the nswe is no: the sufce integl does not depend only on the boundy line The totl flux fo the cube is + = 3 Poblem 3 T dτ = z dx dy dz You cn do the integls in ny ode hee it is simplest to sve z fo lst: z ] dx dy dz The sloping sufce is x+y +z =, so the x integl is y z dx = y z Fo given z, y nges fom to z, so the y integl is z y z dy = zy y /] z = z z /] = z / = / z + z / Finlly, the z integl is z z + z dz = = /6 Poblem 3 T b = = 7; T = T b T = 7 z z3 + z4 z3 dz = 6 z4 4 + z5 = T = x + 4yˆx + 4x + z 3 ŷ + 6yz ẑ; T dl = x + 4ydx + 4x + z 3 dy + 6yz dz Segment : x :, y = z = dy = dz = T dl = x dx = x = Segment : y :, x =, z =, dx = dz = T dl = 4 dy = 4y = 4 b Segment 3: z :, x = y =, dx = dy = T dl = T dl = 7 6z dz = z 3 = b Segment : z :, x = y = dx = dy = T dl = dz = Segment : y :, x =, z =, dx = dz = T dl = dy = y = Segment 3: x :, y = z =, dy = dz = T dl = b T dl = 7 x + 4 dx = x + 4x = + 4 = 5 c x :, y = x, z = x, dy = dx, dz = x dx T dl = x + 4xdx + 4x + x 6 dx + 6xx 4 x dx = x + 4x 6 dx b T dl = x + 4x6 dx = 5x + x 7 = 5 + = 7 Poblem 33 v = y + z + 3x { } vdτ = y + z + 3x dx dy dz = y + z + 3x dx dy dz y + zx + 3 x] = y + z + 6 = { } y + 4z + 6dy dz y + 4z + 6y ] = 4 + 4z + 6 = 8z + 6 = 8z + 6dz = 4z + 6z = = 48 Numbeing the sufces s in Fig 9: c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

13 CHAPTER VECTOR ANALYSIS 3 i d = dy dz ˆx, x = v d = y dy dz v d = y dy dz = y = 8 ii d = dy dz ˆx, x = v d = v d = iii d = dx dz ŷ, y = v d = 4z dx dz v d = 4z dx dz = 6 iv d = dx dz ŷ, y = v d = v d = v d = dx dy ẑ, z = v d = 6x dx dy v d = 4 vi d = dx dy ẑ, z = v d = v d = v d = = 48 Poblem 34 v = ˆx y + ŷ 3z + ẑ x = y ˆx 3z ŷ x ẑ d = dy dz ˆx, if we gee tht the pth integl shll un counteclockwise So v d = y dy dz { } z v d = ydy dz y z = z = 4 4z + z dz = 4z z + z3 3 = = 8 3 y Menwhile, v dl = xydx + yzdy + 3zxdz Thee e thee segments z 3 y z y = z x = z = ; dx = dz = y : v dl = x = ; z = y; dx =, dz = dy, y : v dl = yz dy v dl = y ydy = 4y y dy = y 3 y3 = = x = y = ; dx = dy = ; z : v dl = v dl = So v dl = 8 3 Poblem 35 By Coolly, v d should eul 4 3 v = 4z xˆx + z ẑ i d = dy dz ˆx, x = ; y, z : v d = 4z dy dz; v d = 4z dz = 4 3 z3 z = 4 3 = 3 ii d = dx dy ẑ, z = ; x, y : v d = ; v d = iii d = dx dz ŷ, y = ; x, z : v d = ; v d = iv d = dx dz ŷ, y = ; x, z : v d = ; v d = v d = dx dy ẑ, z = ; x, y : v d = dx dy; v d = v d = 3 + = 4 3 c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

14 4 CHAPTER VECTOR ANALYSIS Poblem 36 Use the poduct ule fa = f A A f : f A d = fa d + A f] d = S I used Stokes theoem in the lst step S S P fa dl + A f] d ed S b Use the poduct ule A B = B A A B : B Adτ = A B dτ + A B dτ = V V I used the divegence theoem in the lst step Poblem 37 = x + y + z ; θ = cos z ; φ = tn y x +y +z x V S A B d + A B dτ V ed Poblem 38 Thee e mny wys to do this one pobbly the most illuminting wy is to wok it out by tigonomety fom Fig 36 The most systemtic ppoch is to study the expession: = x ˆx + y ŷ + z ẑ = sin θ cos φ ˆx + sin θ sin φ ŷ + cos θ ẑ If I only vy slightly, then d = d is shot vecto pointing in the diection of incese in To mke it unit vecto, I must divide by its length Thus: ˆ = ; ˆθ = θ θ ; ˆφ = = sin θ cos φ ˆx + sin θ sin φ ŷ + cos θ ẑ; = sin θ cos φ + sin θ sin φ + cos θ = θ = cos θ cos φ ˆx + cos θ sin φ ŷ sin θ ẑ; θ = cos θ cos φ + cos θ sin φ + sin θ = φ = sin θ sin φ ˆx + sin θ cos φ ŷ; φ = sin θ sin φ + sin θ cos φ = sin θ ˆ = sin θ cos φ ˆx + sin θ sin φ ŷ + cos θ ẑ ˆθ = cos θ cos φ ˆx + cos θ sin φ ŷ sin θ ẑ ˆφ = sin φ ˆx + cos φ ŷ φ φ Check: ˆ ˆ = sin θcos φ + sin φ + cos θ = sin θ + cos θ =, ˆθ ˆφ = cos θ sin φ cos φ + cos θ sin φ cos φ =, etc sin θ ˆ = sin θ cos φ ˆx + sin θ sin φ ŷ + sin θ cos θ ẑ cos θ ˆθ = cos θ cos φ ˆx + cos θ sin φ ŷ sin θ cos θ ẑ Add these: sin θ ˆ + cos θ ˆθ = + cos φ ˆx + sin φ ŷ; ˆφ = sin φ ˆx + cos φ ŷ Multiply by cos φ, by sin φ, nd subtct: ˆx = sin θ cos φˆ + cos θ cos φ ˆθ sin φ ˆφ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

15 CHAPTER VECTOR ANALYSIS 5 Multiply by sin φ, by cos φ, nd dd: ŷ = sin θ sin φˆ + cos θ sin φ ˆθ + cos φ ˆφ cos θ ˆ = sin θ cos θ cos φ ˆx + sin θ cos θ sin φ ŷ + cos θ ẑ sin θ ˆθ = sin θ cos θ cos φ ˆx + sin θ cos θ sin φ ŷ sin θ ẑ Subtct these: ẑ = cos θ ˆ sin θ ˆθ Poblem 39 v = = 4 3 = 4 v dτ = 4 sin θ d dθ dφ = 4 R v d = ˆ sin θ dθ dφˆ = 4 sin θ dθ = v dτ = 3 d sin θ dθ dφ = 4 R 4 4 = 4R 4 dφ = 4R 4 Note: t sufce of sphee = R b v = v d = ˆ sin θ dθ dφˆ = sin θ dθ dφ = 4 They don t gee! The point is tht this divegence is zeo except t the oigin, whee it blows up, so ou clcultion of v is incoect The ight nswe is 4 Poblem 4 v = cos θ + sin θ θ sin θ sin θ + sin θ φ sin θ cos φ = 3 cos θ + sin θ sin θ cos θ + sin θ sin θ sin φ = 3 cos θ + cos θ sin φ = 5 cos θ sin φ vdτ = 5 cos θ sin φ sin θ d dθ dφ = R d θ ] 5 cos θ sin φ dφ dθ sin θ R = 3 3 = 5 3 R3 sin θ cos θ dθ sin θ = 5 cos θ Two sufces one the hemisphee: d = R sin θ dθ dφˆ; = R; φ :, θ : v d = cos θr sin θ dθ dφ = R 3 sin θ cos θ dθ dφ = R 3 = R 3 othe the flt bottom: d = d sin θ dφ+ˆθ = d dφ ˆθ hee θ = : R, φ : R v d = sin θ d dφ = d dφ = R3 3 Totl: v d = R R3 = 5 3 R3 Poblem 4 t = cos θ + sin θ cos φˆ + sin θ + cos θ cos φˆθ + / sin θ sin/ θsin φ ˆφ t = t = cos θ + sin θ cos φ + sin θ θ sin θ sin θ + cos θ cos φ + sin θ = cos θ + sin θ cos φ + sin θ sin θ cos θ + cos θ cos φ sin θ cos φ = sin θ sin θ cos θ + sin θ cos φ sin θ cos θ + cos θ cos φ sin θ cos φ cos φ] sin θ + cos θ cos φ cos φ ] = = sin θ φ sin φ sin θ cos φ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

16 6 CHAPTER VECTOR ANALYSIS t = Check: cos θ = z, sin θ cos φ = x in Ctesin coodintes t = x + z Obviously Lplcin is zeo Gdient Theoem: b t dl = tb t Segment : θ =, φ =, : dl = d ˆ; t dl = cos θ + sin θ cos φd = + d = d t dl = d = Segment : θ =, =, φ : dl = sin θ dφ ˆφ = dφ ˆφ t dl = sin φ dφ = sin φ dφ t dl = sin φ dφ = cos φ = Segment 3: =, φ = ; θ : dl = dθ ˆθ = dθ ˆθ; t dl = sin θ + cos θ cos φ dθ = sin θ dθ t dl = sin θ dθ = cos θ = Totl: b t dl = + = Menwhile, tb t = + ] ] = Poblem 4 Fom Fig 4, ŝ = cos φ ˆx + sin φ ŷ; ˆφ = sin φ ˆx + cos φ ŷ; ẑ = ẑ Multiply fist by cos φ, second by sin φ, nd subtct: ŝ cos φ ˆφ sin φ = cos φ ˆx + cos φ sin φ ŷ + sin φ ˆx sin φ cos φ ŷ = ˆxsin φ + cos φ = ˆx So ˆx = cos φ ŝ sin φ ˆφ Multiply fist by sin φ, second by cos φ, nd dd: ŝ sin φ + ˆφ cos φ = sin φ cos φ ˆx + sin φ ŷ sin φ cos φ ˆx + cos φ ŷ = ŷsin φ + cos φ = ŷ So ŷ = sin φ ŝ + cos φ ˆφ ẑ = ẑ Poblem 43 v = s s s s + sin φ + s φ s sin φ cos φ + 3z = s s + sin φ + s scos φ sin φ + 3 = 4 + sin φ + cos φ sin φ + 3 = 4 + sin φ + cos φ + 3 = 8 b vdτ = 8s ds dφ dz = 8 s ds dφ 5 dz = 8 5 = 4 Menwhile, the sufce integl hs five pts: top: z = 5, d = s ds dφ ẑ; v d = 3z s ds dφ = 5s ds dφ v d = 5 s ds dφ = 5 bottom: z =, d = s ds dφ ẑ; v d = 3z s ds dφ = v d = bck: φ =, d = ds dz ˆφ; v d = s sin φ cos φ ds dz = v d = left: φ =, d = ds dz ˆφ; v d = s sin φ cos φ ds dz = v d = font: s =, d = s dφ dz ŝ; v d = s + sin φs dφ dz = 4 + sin φdφ dz v d = 4 + sin φdφ 5 dz = = 5 So v d = = 4 c v = s φ 3z s sin φ cos φ ŝ + s + sin φ s 3z ˆφ + s s s sin φ cos φ φ s + sin φ ẑ s sin φ cos φ s sin φ cos φ ẑ = = s c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

17 CHAPTER VECTOR ANALYSIS 7 Poblem = 7 6 = b cos = - c zeo d ln + 3 = ln = zeo Poblem 45 x δx dx = = b By E 94, δ x = δx, so = 6 c 9x 3 δx + 3 dx = = 3 d if > b, if < b Poblem 46 fx x d dx δx] dx = x fxδx The fist tem is zeo, since δx = t ± ; d So the integl is So, x d dxδx = δx ed x df dx + f dx d dx x fx δx dx x fx = x df dx + dx dx f = x df δx dx = f = f = dx + f fxδx dx b dθ fx dx dx = fxθx df dx θxdx = f df dx dx = f f f = f = dθ fxδx dx So dx = δx ed Poblem 47 ρ = δ 3 Check: ρdτ = δ 3 dτ = b ρ = δ 3 δ 3 c Evidently ρ = Aδ R To detemine the constnt A, we euie Q = ρ dτ = Aδ R4 d = A 4R So A = Q 4R ρ = Q 4R δ R Poblem = 3 b b 5 3 δ 3 dτ = 5 b = = 5 c c = = 38 > 36 = 6, so c is outside V, so the integl is zeo d e ˆx + ŷ + ẑ = ˆx + ŷ + ẑ = + = < 5 = 5, so e is inside V, nd hence the integl is e d e = 3,,,, = = -4 Poblem 49 Fist method: use E 99 to wite J = e 4δ 3 dτ = 4e = 4 Second method: integting by pts use E 59 c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

18 8 CHAPTER VECTOR ANALYSIS J = = V ˆ e dτ + e 4 d + S ˆ e d But e = e ˆ = e ˆ ˆ e sin θ dθ dφˆ = 4 R e d + e R sin θ dθ dφ = 4 e R + 4e R = 4 e R + e + 4e R = 4 Hee R =, so e R = Poblem 5 F = + + x = ; F = + + = + + = 3 ˆx ŷ ẑ F = x = ŷ x ˆx ŷ ẑ = xŷ ; F = x y z = F is gdient; F is cul U = Ay Fo A, we wnt Az = A x x 3 + y + z would do F = U Az = ; A y Ax = x A y = x3 3, A x = A z = would do it A = 3 x ŷ F = A But these e not uniue b F 3 = yz + xz + xy = ; F ˆx ŷ ẑ 3 = = ˆx x x + ŷ y y + ẑ z z = yz xz xy So F 3 cn be witten s the gdient of scl F 3 = U 3 nd s the cul of vecto F 3 = A 3 In fct, U 3 = xyz does the job Fo the vecto potentil, we hve A z Ay A x Az A y Ax = yz, which suggests A z = 4 y z + fx, z; A y = 4 yz + gx, y = xz, suggesting = xy, so A x = 4 z x + hx, y; A z = 4 zx + jy, z y = 4 x y + ky, z; A x = 4 xy + lx, z Putting this ll togethe: A 3 = 4 { x z y ˆx + y x z ŷ + z y x ẑ } gin, not uniue Poblem 5 d : F = U = E 44 cul of gdient is lwys zeo c: F dl = F d = E 57 Stokes theoem c b: b F dl b I F dl = b II F dl + I b F dl = F dl =, so II b I F dl = b II F dl b c: sme s c b, only in evese; c : sme s c Poblem 5 d : F = W = E 46 divegence of cul is lwys zeo c: F d = F dτ = E 56 divegence theoem c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

19 CHAPTER VECTOR ANALYSIS 9 c b: I F d II F d = F d =, so I F d = II F d Note: sign chnge becuse fo F d, d is outwd, whees fo sufce II it is inwd b c: sme s c b, in evese; c : sme s c Poblem 53 In Pob 5 we found tht v = ; in Pob 8 we found tht v c = So v c cn be witten s the gdient of scl; v cn be witten s the cul of vecto To find t: t = y t = y x + fy, z t = xy + z 3 t = yz f Fom & 3 we get = yz f = yz + gy t = y x + yz + gy, so t = xy + z + g = xy + z fom g = We my s well pick g = ; then t = xy + yz b To find W: W z Pick W x = ; then Wy = x ; W x Wz = 3z x; W y Wx = xz W z W z = 3xz W z = 3 x z + fy, z W y = xz W y = x z + gy, z Wy = f + x g = x f g = My s well pick f = g = W = x z ŷ 3 x z ẑ ˆx ŷ ẑ Check: W = x z 3 x z = ˆx x + ŷ 3xz + ẑ xz You cn dd ny gdient t to W without chnging its cul, so this nswe is f fom uniue Some othe solutions: W = xz 3 ˆx x z ŷ; W = xyz + xz 3 ˆx + x y ẑ; W = xyz ˆx x z ŷ + x y 3z ẑ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

20 CHAPTER VECTOR ANALYSIS Poblem 54 v = cos θ + sin θ sin θ cos φ + θ = 43 cos θ + sin θ cos θ cos φ + sin θ = cos θ sin θ 4 sin θ + cos φ cos φ] = 4 cos θ cos θ sin φ sin θ φ cos θ cos φ v dτ = 4 cos θ sin θ d dθ dφ = 4 = R 4 = R4 4 R 3 d / cos θ sin θ dθ / dφ Sufce consists of fou pts: Cuved: d = R sin θ dθ dφˆ; = R v d = R cos θ R sin θ dθ dφ v d = R 4 / cos θ sin θ dθ / dφ = R 4 = R4 4 Left: d = d dθ ˆφ; φ = v d = cos θ sin φ d dθ = v d = 3 Bck: d = d dθ ˆφ; φ = / v d = cos θ sin φ d dθ = 3 cos θ d dθ v d = R 3 d / cos θ dθ = 4 R4 + = 4 R4 4 Bottom: d = sin θ d dφ ˆθ; θ = / v d = cos φ d dφ R v d = 3 d / cos φ dφ = 4 R4 Totl: v d = R 4 /4 + 4 R4 + 4 R4 = R4 4 Poblem 55 ˆx ŷ ẑ v = y bx = ẑ b So v d = b R v dl = y ˆx + bx ŷ dx ˆx + dy ŷ + dz ẑ = y dx + bx dy; x + y = R x dx + y dy =, so dy = x/y dx So v dl = y dx + bx x/y dx = y y bx dx c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

21 CHAPTER VECTOR ANALYSIS Fo the uppe semicicle, y = R x, so v dl = R x bx R x dx v dl = R R R + bx { dx = R x = R b sin x/r = R b R +R R sin x R + b x R x + R x ]} R sin R +R = R b sin sin + = R b And the sme fo the lowe semicicle y chnges sign, but the limits on the integl e evesed so v dl = R b Poblem 56 x = z = ; dx = dz = ; y : v dl = yz dy = ; v dl = x = ; z = y; dz = dy; y : v dl = yz dy +3y +z dz = y y dy 3y + y dy; v dl = y y 3 4y 4 + y dy = 4y3 3 + y y = x = y = ; dx = dy = ; z : v dl = 3y + z dz = z dz; v dl = z dz = z = Totl: v dl = = 8 3 Menwhile, Stokes theeom sys v dl = v d Hee d = dy dz ˆx, so ll we need is v x = 3y + z yz = 3 yz Theefoe v d = 3 yz dy dz = Poblem 57 Stt t the oigin = y 3 y y y] dy = = y y3 5y + 6y ] 3 yz dz dy = = 8 3 4y 3 + 8y y + 6 dy θ =, φ = ; : v dl = cos θ d = v dl = =, θ = ; φ : / v dl = 3 sin θ dφ = 3 dφ / v dl = 3 dφ = 3 c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

22 CHAPTER VECTOR ANALYSIS 3 φ = ; sin θ = y =, so = sin θ, d = sin θ cos θ dθ, θ : θ tn / v dl = cos θ d cos θ sin θ dθ = cos θ cos θ sin θ sin dθ θ cos 3 θ = sin 3 θ + cos θ dθ = cos θ cos θ + sin θ sin θ sin θ sin θ cos θ sin θ sin θ dθ = cos θ sin 3 θ dθ dθ Theefoe v dl = θ / cos θ sin 3 θ dθ = sin θ θ / = /5 = 5 = 4 θ = θ, φ = ; : 5 v dl = cos θ d = 4 5 d v dl = 4 d = = = Totl: v dl = = 3 Stokes theoem sys this should eul v d v = ] sin θ 3 sin θ cos θ ˆ + cos θ ] sin θ θ φ sin θ φ 3 ˆθ + cos θ sin θ cos θ ] ˆφ θ = sin θ 3 cos θ]ˆ + 6] ˆθ + cos θ sin θ + cos θ sin θ] ˆφ = 3 cot θ ˆ 6 ˆθ Bck fce: d = d dθ ˆφ; v d = v d = Bottom: d = sin θ d dφ ˆθ; v d = 6 sin θ d dφ θ =, so v d = 6 d dφ v d = 6 d / dφ = 6 = 3 Poblem 58 v dl = y dz Left side: z = x; dz = dx; y = Theefoe v dl = Bottom: dz = Theefoe v dl = c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

23 CHAPTER VECTOR ANALYSIS 3 3 Bck: z = y; dz = / dy; y : v dl = y dy = y = 4 4 = Menwhile, v = ˆx, so v d is the pojection of this sufce on the x y plne = = Poblem 59 v = sin θ + sin θ sin θ 4 cos θ + θ = 43 sin θ + sin θ 4 cos θ sin θ = = 4 cos θ sin θ 4 sin θ tn θ sin θ φ sin θ + cos θ sin θ v dτ = 4 cos θ sin θ d dθ dφ R = sin θ = R 4 sin 6 + = R d /6 = R4 cos θ dθ dφ = R ] θ sin θ /6 + 4 Sufce coinsists of two pts: The ice cem: = R; φ : ; θ : /6; d = R sin θ dθ dφˆ; v d = R sin θ R sin θ dθ dφ = R 4 sin θ dθ dφ v d = R 4 /6 sin θ dθ dφ = R 4 θ ] /6 sin θ = R sin 6 = R4 3 6 The cone: θ = 6 ; φ : ; : R; d = sin θ dφ d ˆθ = 3 d dφ ˆθ; v d = 3 3 d dφ Theefoe v d = R4 v d = 3 R d = R4 dφ = 3 R4 4 = R4 Poblem 6 Coolly sys T dl = Stokes theoem sys T dl = T ] d So T ] d =, nd since this is tue fo ny sufce, the integnd must vnish: T =, confiming E 44 b Coolly sys v d = Divegence theoem sys v d = v dτ So v dτ =, nd since this is tue fo ny volume, the integnd must vnish: v =, confiming E 46 Poblem 6 Divegence theoem: v d = v dτ Let v = ct, whee c is constnt vecto Using poduct ule #5 in font cove: v = ct = T c + c T But c is constnt so c = Theefoe we hve: c T dτ = T c d Since c is constnt, tke it outside the integls: c T dτ = c T d But c 3 c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

24 4 CHAPTER VECTOR ANALYSIS is ny constnt vecto in pticul, it could be be ˆx, o ŷ, o ẑ so ech component of the integl on left euls coesponding component on the ight, nd hence T dτ = T d ed b Let v v c in divegence theoem Then v cdτ = v c d Poduct ule #6 v c = c v v c = c v Note: c =, since c is constnt Menwhile vecto indentity sys d v c = c d v = c v d Thus c v dτ = c v d Tke c outside, nd gin let c be ˆx, ŷ, ẑ then: v dτ = v d ed c Let v = T U in divegence theoem: T U dτ = T U d Poduct ule #5 T U = T U + U T = T U + U T Theefoe T U + U T dτ = T U d ed d Rewite c with T U : U T + T U dτ = U T d Subtct this fom c, noting tht the U T tems cncel: T U U T dτ = T U U T d ed e Stokes theoem: v d = v dl Let v = ct By Poduct Rule #7: ct = T c c T = c T since c is constnt Theefoe, c T d = T c dl Use vecto indentity # to ewite the fist tem c T d = c T d So c T d = c T dl Pull c outside, nd let c ˆx, ŷ, nd ẑ to pove: T d = T dl ed Poblem 6 d = R sin θ dθ dφˆ Let the sufce be the nothen hemisphee The ˆx nd ŷ components clely integte to zeo, nd the ẑ component of ˆ is cos θ, so = R sin θ cos θ dθ dφ ẑ = R ẑ / sin θ cos θ dθ = R ẑ sin θ / = R ẑ b Let T = in Pob 6 Then T =, so d = ed c This follows fom b Fo suppose ; then if you put them togethe to mke closed sufce, d = d Fo one such tingle, d = dl since dl is the e of the pllelogm, nd the diection is pependicul to the sufce, so fo the entie conicl sufce, = dl e Let T = c, nd use poduct ule #4: T = c = c + c But =, nd c = c x + c y + c z x ˆx + y ŷ + z ẑ = c x ˆx + c y ŷ + c z ẑ = c So Pob 6e sys T dl = c dl = T d = c d = c d = c = c ed c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

25 CHAPTER VECTOR ANALYSIS 5 Poblem 63 Fo sphee of dius R: v = = = v d = R ˆ R sin θ dθ dφˆ = R sin θ dθ dφ = 4R v dτ = sin θ d dθ dφ R = Evidently thee is no delt function t the oigin d sin θ dθ dφ = 4R n ˆ = n = n+ = n + n+ = n + n So divegence theoem checks except fo n =, fo which we ledy know E 99 tht the divegence is 4δ 3 Geometiclly, it should be zeo Likewise, the cul in the spheicl coodintes obviously gives zeo To be cetin thee is no luking delt function hee, we integte ove sphee of dius R, using Pob 6b: If n ˆ =, then v dτ =? = v d But v = n ˆ nd d = R sin θ dθ dφˆ e both in the ˆ diections, so v d = Poblem 64 Since the gument is not function of ngle, E 73 sys D = d 4 ] = d d + ɛ 3/ 4 d = ɛ 3 3 ] 3/ + ɛ 5/3 b Setting : 3 + ɛ 3/ = ɛ 5/ + ɛ = D, ɛ = 3ɛ 4ɛ 5 = 3 4ɛ 3, which goes to infinity s ɛ c Fom it is cle tht D, = fo d D, ɛ 4 d = 3ɛ d = + ɛ 3ɛ 5/ 3ɛ = I looked up the integl Note tht b, c, nd d e the defining conditions fo δ 3 ] 3ɛ 4 + ɛ 5/ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

26 6 CHAPTER ELECTROSTATICS Chpte Electosttics Poblem Zeo b F = Q, whee is the distnce fom cente to ech numel F points towd the missing 4ɛ Explntion: by supeposition, this is euivlent to, with n ext t 6 o clock since the foce of ll twelve is zeo, the net foce is tht of only c Zeo Q d, pointing towd the missing Sme eson s b Note, howeve, tht if you explined b s 4ɛ cncelltion in pis of opposite chges o clock ginst 7 o clock; ginst 8, etc, with one unpied doing the job, then you ll need diffeent explntion fo d Poblem This time the veticl components cncel, leving E = 4ɛ sin θ ˆx, o E = 4ɛ z + d d 3/ ˆx E θ z x Fom f wy, z d, the field goes like E z ẑ, which, s we shll see, is the field of dipole If we 3 set d, we get E =, s is ppopite; to the extent tht this configution looks like single point chge fom f wy, the net chge is zeo, so E 4ɛ d c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

27 CHAPTER Poblem 3 ELECTROSTATICS 7 Poblem 3 Poblem 3 z E z = L λ dx 4ɛ η cos θ; η = z + x ; cos θ = z z η E z E= z = L L λ dx λ dx 4ɛ = 4ɛ λz cos θ; = z + x ; cos θ = zθη 4ɛ z η cos θ; η = z + x ; cos θ = z = λdx η d L L } x {{} x dx = z θ +x = 3/ ] z 4ɛ d = λdx = λz L 4ɛ λz L dx z dx z x 4ɛ λz z +x L +x 3/ ] 3/ ] = λ L z +x 4ɛ z z +L = 4ɛ L E x = L λ dx 4ɛ }{{} η sin θ = 4ɛ λ λz z x L = z = λ L 4ɛ +x 4ɛ z x dx λz z x L = λ L z +x 4ɛ z z +L x +z E ] 3/ x = L λ dx x x = 4ɛ λ L ] 4ɛ sin θ = = 4ɛ λ z +L E x = L λ dx x dx 4ɛ η sin θ = 4ɛ λ x dx x x x +z 4ɛ λ +z z ] +z 3/ z +L = 4ɛ E = λ L ] 3/ ] = x = +z ] 4ɛ λ z 4ɛ λ L ] = x +z 4ɛ z λ z z +L +L λ z L + ˆx + ẑ E = 4ɛ ] E = ] λ λ z z + z z L + + L ˆx + ˆx + z L + L ẑ ẑ 4ɛ 4ɛ z Fo z L you z z expect it to z + look + L L z like point z + chge + L L = λl: E λl 4ɛ z ẑ It checks, fo with z L the ˆx Fo Fo z tem z L Lyou, youexpect nd expect it the ẑ tem it to tolook looklike like λ L point 4ɛ z z ẑ point chge chge = = λl: λl: EE λl λl 4ɛ 4ɛ z ẑ z ẑ It It checks, checks, fo fo with withz z L Lthe the ˆx ˆx tem tem,, nd ndthe the ẑ tem ẑ tem λ L λ L 4ɛ 4ɛ Poblem 4 z ẑ z z ẑ Poblem Poblem4 Fom Ex 4, with L z nd z + distnce fom cente of edge to P, field of one edge is: Fom FomEx Ex,, with withl L z nd z + z nd z + distnce E = distnce fom fomcente cente of of edge edge to to P, P, field fieldof of one oneedge edge is: is: λ E E 4ɛ = = λ λ z + 4 z + 4ɛ 4 + 4ɛ 4 z z z 4 z z Thee e 4 sides, nd we wnt veticl components only, so multiply by 4 cos θ = 4 : Thee Thee e e 4 sides, 4 sides, nd nd we we wnt wnt veticl veticl components components only, only, so so multiply multiply by by 4 cos 4 cos θ = θ = 4 z 4 z + : 4 : E = z + z 4λz + 4 4ɛ 4 ẑ E E = = 4λz 4λz 4ɛ z + 4 z + 4ɛ ẑ ẑ z z + + z z + + Poblem 5 Poblem 5 Poblem 5 θ θ z z { Hoizontl components cncel, leving: E = { { λdl 4ɛ η cos ẑ Hee, η = + z, cos θ = z η both constnts, E = λdl } } Hoizontl components cncel, leving: E = 4ɛ while λdl η cos θ ẑ 4ɛ dl = So η = + z, cos θ = z η both while cos θ ẑ Hee, = + z, cos θ = z both constnts, while dl = dl = So So E E = = λz λz 4ɛ 4ɛ 4ɛ z + + z z 4 4 ẑ 3/ ẑ ẑ 3/ 3/ Poblem 6 Bek it into ings of dius, nd thickness d, nd use Pob 5 to expess the field of ech ing Totl chge of ing is σ d = λ, so λ = σd is the line chge of ech ing E ing = σdz 4ɛ + z ; E 3/ disk = R σz 4ɛ + z E disk = ] σz 4ɛ z ẑ R + z c 5 Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is c 5 potected Peson unde Eduction, ll copyight Inc, lws Uppe s Sddle they cuently Rive, NJ exist AllNo ights potion eseved of this This mteil mteil myis be potected epoduced, unde inll ny copyight fom o lws by ny s mens, they cuently withoutexist pemission No potion in witing of this fom mteil the publishe my be 3/ d

28 8 CHAPTER ELECTROSTATICS Fo R z the second tem, so E plne = 4ɛ σẑ = / Fo z R, = R +z z + R z z nd E = R σ 4ɛ z = Q 4ɛ z, whee Q = R σ Poblem 7 E is clely in the z diection Fom the digm, d = σd = σr sin θ dθ dφ, = R + z Rz cos θ, z R cos θ cos ψ = So σ ɛ ẑ R z, so ] z z + R z = R 3 z, 3 z E z = σr sin θ dθ dφz R cos θ 4ɛ R + z Rz cos θ dφ = 3/ = 4ɛ R σ = 4ɛ R σ = 4ɛ R σ z z x z R cos θ sin θ dθ Let u = cos θ; du = sin θ dθ; R + z Rz cos θ 3/ zu R R + z Rzu Fo z > R outside the sphee, E z = 4ɛ 4R σ z = 4ɛ Fo z < R inside, E z =, so E = φ ψ θ R y { } θ = u = + θ = u = z Ru du Integl cn be done by ptil fctions o look it up R + z Rzu 3/ ] = R { } σ z R z R 4ɛ z z R z + R z, so E = 4ɛ z ẑ Poblem 8 Accoding to Pob 7, ll shells inteio to the point ie t smlle contibute s though thei chge wee concentted t the cente, while ll exteio shells contibute nothing Theefoe: E = Q int 4ɛ ˆ, whee Q int is the totl chge inteio to the point Outside the sphee, ll the chge is inteio, so E = 4ɛ Q ˆ Inside the sphee, only tht fction of the totl which is inteio to the point counts: Q int = Q = Q, so E = R3 R3 4ɛ R 3 Q ˆ = Q 4ɛ R 3 Poblem 9 ρ = ɛ E = ɛ k 3 = ɛ k5 4 = 5ɛ k c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

29 3 CHAPTER ELECTROSTATICS Poblem 5 i Q enc =, so E = ii E d = E4 = ɛ Q enc = ɛ ρ dτ = ɛ k sin θ d dθ dφ ˆ = 4k ɛ 4k d = ɛ E = k ɛ E iii E4 = 4k ɛ E = k ɛ b b ˆ 4k d = ɛ b, so b Poblem 6 i l Gussin sufce E d = E s l = ɛ Q enc = ɛ ρs l; E = ρs ɛ ŝ ii s l Gussin sufce E d = E s l = ɛ Q enc = ɛ ρ l; E = ρ ɛ sŝ iii s Gussin sufce E d = E s l = ɛ Q enc = ; E = l E Poblem 7 On the x z plne E = by symmety Set up Gussin pillbox with one fce in this plne nd the othe t y b s y Gussin pillbox E d = E A = ɛ Q enc = ɛ Ayρ; E = ρ ɛ y ŷ fo y < d c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

30 CHAPTER ELECTROSTATICS 3 Q enc = ɛ Adρ E = ρ ɛ d ŷ fo y > d d E ρd ɛ d y Poblem 8 Fom Pob, the field inside the positive sphee is E + = ρ 3ɛ +, whee + is the vecto fom the positive cente to the point in uestion Likewise, the field of the negtive sphee is ρ 3ɛ So the totl field is But see digm + = d So E = Poblem 9 E = 4ɛ ˆ ρ dτ = = since ˆ E = ρ 3ɛ d ρ 3ɛ + + d + ] ˆ ρ dτ since ρ depends on, not 4ɛ =, fom Pob 63 Poblem ˆx ŷ ẑ E = k = k ˆx y + ŷ 3z + ẑ x], xy yz 3zx so E is n impossible electosttic field ˆx ŷ ẑ E = k = k ˆxz z + ŷ + ẑy y] =, y xy + z yz so E is possible electosttic field Let s go by the indicted pth: z E dl = y dx + xy + z dy + yz dzk Step I: y = z = ; dy = dz = E dl = ky dx = Step II: x = x, y : y, z = dx = dz = E dl = kxy + z dy = kx y dy II E dl = kx y y dy = kx y Step III : x = x, y = y, z : z ; dx = dy = E dl = kyz dz = ky z dz I II x x, y, z III y c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

31 3 CHAPTER ELECTROSTATICS III E dl = y k z z dz = ky z x,y,z V x, y, z = E dl = kx y + y z, o V x, y, z = kxy + yz Check: V =k xy +yz ˆx+ xy +yz ŷ+ xy +yz ẑ]=ky ˆx+xy+z ŷ+yz ẑ]=e Poblem V = E dl So fo > R: V = nd fo < R: V = R When > R, V = When < R, V = Outside the sphee > R : E = 4ɛ Inside the sphee < R : E = 4ɛ = 4ɛ R 4ɛ 4ɛ R 4ɛ ˆ d = 4ɛ = 4ɛ, 4ɛ 3 d R R ˆ = 4ɛ 3 R ˆ = 4ɛ R 3 d = ˆ, so E = V = 4ɛ R R 3 ˆ 4ɛ R R 3 4ɛ ˆ R ˆ = 4ɛ ] R R 3ˆ; so E = V = 4ɛ R 3 ˆ V In the figue, is in units of R, nd V is in units of /4ɛ R Poblem E = λ 4ɛ s ŝ Pob 3 In this cse we cnnot set the efeence point t, since the chge itself extends to Let s set it t s = Then V s = s λ 4ɛ s d s = s λ ln 4ɛ In this fom it is cle why = would be no good likewise the othe ntul point, = V = 4ɛ λ s ln s ŝ = 4ɛ λ s ŝ = E Poblem 3 V = E dl = b k b ɛ d k b ɛ d d = k b ɛ b k ɛ ln b + b { = k ɛ b ln b + b } = k ɛ ln b Poblem 4 Using E nd the fields fom Pob 6: V b V = b E dl = E dl b E dl = ρ ρ ɛ s ds ɛ b s ds c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

32 CHAPTER ELECTROSTATICS 33 = ρ s ɛ + ρ ɛ Poblem 5 V = 4ɛ b V = 4ɛ L L = λ 4ɛ ln z + d λ dx = λ z +x 4ɛ ln s b = ρ 4ɛ + ln b lnx + z + x L L L + ] z + L L + = λ L + z ln + L z + L ɛ z z c V = R σ d 4ɛ + z = σ 4ɛ + z R = σ R + z ɛ z x In ech cse, by symmety V = V = E = V ẑ E = 4ɛ z z + d 3/ ẑ = 4ɛ z + d z 3/ ẑ gees with Ex b E = λ { } 4ɛ L + z + L z + L z L + z + L z + L z ẑ { = λ z L + z + L L } z + L 4ɛ z + L z + L L ẑ = Lλ 4ɛ z ẑ gees with Ex z + L c E = σ ɛ { } R + z z ẑ = σ ɛ ] z ẑ gees with Pob 6 R + z If the ight-hnd chge in is, then V =, which, nively, suggests E = V =, in contdiction with the nswe to Pob The point is tht we only know V on the z xis, nd fom this we cnnot hope to compute E x = V o E y = V Tht ws OK in pt, becuse we knew fom symmety tht E x = E y = But now E points in the x diection, so knowing V on the z xis is insufficient to detemine E Poblem 6 b h h V = 4ɛ h σ d = σ h = σh 4ɛ ɛ whee = / c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

33 34 CHAPTER ELECTROSTATICS V b = 4ɛ h = σ 4ɛ h = = σ ɛ σ ɛ σ d whee = h + h h + h d h + h + h ln h + h + h] h + h lnh + h h h h lnh ] h ] = σh + ln 4ɛ = σ ɛ h lnh + h lnh h = σh ɛ ln + V V b = σh ln + ] ɛ = σh ln 4ɛ h + Poblem 7 V = Cut the cylinde into slbs, s shown in the figue, nd use esult of Pob 5c, with z x nd σ ρ dx: ρ z+l/ ɛ z L/ = ρ ɛ 8 < = ρ 4ɛ R + x x dx x R + x + R lnx + R + x x ] z+l/ : z+ L R +z+ L z L R +z L +R ln z L/ 4 z+ L + R +z+ L z L + R + z L 3 9 = 5 zl ; z {}} L { L {}}{ }{{ } x dx Note: z + L + z L = z zl L 4 + z zl + L 4 = zl { E = V = ẑ V = ẑρ R 4ɛ + z + L + E = ẑρ 4ɛ R + z + L R + z L L z + L R + R + z + L z L z L R + z L z+ + L z + L ] } + R R +z+ L R z + L R + + +z L z + L z L R + + L z L }{{} R + z + L R + z L c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

34 Hello CHAPTER ELECTROSTATICS 35 = ρ L R ɛ + z + L + R + z L ẑ Poblem 8 z Oient xes so P is on z xis { P V = ρ Hee ρ is constnt, dτ = sin θ d dθ dφ, 4ɛ dτ z = z + z cos θ θ V = ρ 4ɛ sin θ d dθ dφ ; z dφ = + z cos θ sin θ dθ = z + z cos θ z + z z cos θ = z V = ρ 4ɛ { z = z + z z = { /z, if < z, /, if > z R z d + z d } x + z + z + z z } { } = ρ z 3 ɛ z 3 + R z = ρ ɛ R z 3 φ y But ρ = Poblem 9 4, so V z = 3 R3 ɛ 3 4R 3 R z 3 = 8ɛ R 3 z R ; V = 3 8ɛ R R V = 4ɛ ρ dτ = 4ɛ ρ dτ since ρ is function of, not = 4ɛ ρ 4δ 3 ] dτ = ɛ ρ Poblem 3 Ex 5: E bove = σ ɛ ˆn; E below = σ ɛ ˆn ˆn lwys pointing up; E bove E below = σ ɛ ˆn Ex 6: At ech sufce, E = one side nd E = σ ɛ othe side, so E = σ ɛ Pob : E out = σr ɛ ˆ = σ ɛ ˆ ; E in = ; so E = σ ɛ ˆ b s R Outside: E d = Esl = ɛ Q enc = σ ɛ Rl E = σ ɛ R s ŝ = σ ɛ ŝ t sufce c 5 Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is potected }{{ unde } ll copyight Inside: lws Q enc s they =, cuently so E = exist No E potion = σ ɛ of ŝ this mteil my be l c V out = R σ ɛ = Rσ ɛ t sufce; V in = Rσ ɛ ; so V out = V in V out = R σ ɛ = σ ɛ t sufce; Vin = ; so Vout Vin = σ ɛ c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

35 36 CHAPTER ELECTROSTATICS Poblem 3 V = 4ɛ i ij = W 4 = V = { 4ɛ + + 4ɛ + } = 4ɛ b W =, W = 4ɛ W tot = 4ɛ ; W 3 = 4ɛ { } + + = 4ɛ ; W 4 = see Poblem 3 Consevtion of enegy kinetic plus potentil: At elese v A = v B =, =, so m AvA + m BvB + A B 4ɛ E = 4ɛ A B When they e vey f pt the potentil enegy is zeo, so = E m AvA + m BvB = A B 4ɛ Menwhile, consevtion of momentum sys m A v A = m B v B, o v B = m A /m B v A So m Av A + m B v A = ɛ ma m B A B m A + m B Poblem 33 Fom E 4, the enegy of one chge is v A = ma m B ma m B ; v B = m A + m B v A = 4ɛ A B ɛ A B m A + m B mb m A W = V = n= n = 4ɛ n 4ɛ n n The fcto of out font counts the chges to the left s well s to the ight of The sum is ln you cn get it fom the Tylo expnsion of ln + x: ln + x = x x + 3 x3 4 x4 + with x = Evidently α = ln c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

36 CHAPTER ELECTROSTATICS 37 Poblem 34 W = ρv dτ Fom Pob o Pob 8: V = W = ρ 4ɛ R R = ρ 5ɛ R = R 5ɛ b W = ɛ W = ɛ 3 R 4 = 3 R3 4 d = 4ɛ 3 5 R ρ 4ɛ R E dτ Outside > R E = 4ɛ { 4ɛ = 4ɛ = { R 4 4 d + R + } 5 R R 6 5 R ρ ɛ R 3 = 4ɛ ] 5 R R = ρ 5 4ɛ R ˆ ; Inside < R E = 4ɛ } 4 R 3 d R 3 R R 3 R3 5 R 3 ˆ = 4ɛ R + = 3 5R 4ɛ 5 R { c W = ɛ S V E d + V E dτ }, whee V is lge enough to enclose ll the chge, but othewise bity Let s use sphee of dius > R Hee V = 4ɛ { W = ɛ R 4ɛ 4ɛ sin θ dθ dφ + E dτ + 4ɛ 4 d} = ɛ { 4ɛ ɛ 5R + 4ɛ 4 = { 4ɛ + 5R + } = 3 R 4ɛ 5 R As, the contibution fom the sufce integl 4ɛ 6 5R picks up the slck Poblem 35 dw = d V = d 4ɛ, = ρ = 3 R 3 } R 4ɛ = chge on sphee of dius = totl chge on sphee d = 4 d ρ = d = 3R3 R 3 d dw = 3 3 4ɛ R 3 R 3 d = 3 4ɛ W = 3 4ɛ R 6 R R 6 4 d 4 d = 4ɛ 3 R 6 R 5 5 = 4ɛ 3 5 R R goes to zeo, while the volume integl d c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

37 38 CHAPTER ELECTROSTATICS Poblem 36 W = ɛ W = ɛ b W = E E = E dτ E = 4ɛ b 4ɛ 4 d = 8ɛ 4ɛ 8ɛ < < b, zeo elsewhee = 8ɛ b 8ɛ b W tot = W + W + ɛ E E dτ = 8ɛ + b b Poblem 37, W = b, E = 4ɛ ˆ >, E = ˆ > b So, > b, nd hence E 4 E dτ = 4ɛ b = 8ɛ b 4ɛ 4 4 d = 4ɛ b z b x y whee fom the figue Theefoe E = 4ɛ ˆ; E = 4ɛ ˆ ; W i = ɛ 4ɛ = + cos θ, cos β = cos β sin θ d dθ dφ, cos θ W i = cos θ 4 ɛ 3 sin θ d dθ It s simplest to do the integl fist, chnging vibles to : As :, :, so The integl is /, so d = cos θ d cos θ d = d W i = 8ɛ W i = 8ɛ d sin θ dθ sin θ dθ = 4ɛ Of couse, this is pecisely the intection enegy of two point chges Poblem 38 σ R = 4R ; σ = 4 ; σ b = 4b c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

38 CHAPTER ELECTROSTATICS 39 b V = E dl = b 4ɛ d b d R 4ɛ d R d = 4ɛ b + R c σ b the chge dins off ; V = d R 4ɛ d R d = 4ɛ R Poblem 39 σ = 4 ; σ b = b 4b ; σ R = + b 4R b E out = + b 4ɛ ˆ, whee = vecto fom cente of lge sphee c E = 4ɛ ˆ, E b = b ˆ b, whee b is the vecto fom cente of cvity b 4ɛ d Zeo b e σ R chnges but not σ o σ b ; E outside chnges but not E o E b ; foce on nd b still zeo Poblem 4 No Fo exmple, if it is vey close to the wll, it will induce chge of the opposite sign on the wll, nd it will be ttcted b No Typiclly it will be ttctive, but see footnote fo extodiny counteexmple Poblem 4 Between the pltes, E = ; outside the pltes E = σ/ɛ = Q/ɛ A So P = ɛ E = ɛ Q ɛ = A Q ɛ A Poblem 4 Inside, E = ; outside, E = 4ɛ Q ˆ; so E ve = 4ɛ Q R ˆ; f z = σe ve z ; σ = Q 4R z θ E F z = f z d = Q Q 4R 4ɛ R cos θ R sin θ dθ dφ = Q / ɛ 4R sin θ cos θ dθ = Q ɛ 4R sin θ / = Q Q ɛ 4R = 3R ɛ Poblem 43 Sy the chge on the inne cylinde is Q, fo length L The field is given by Guss s lw: E d = E s L = ɛ Q enc = ɛ Q E = Q ɛ L s ŝ Potentil diffeence between the cylindes is V b V = b E dl = Q ɛ L As set up hee, is t the highe potentil, so V = V V b = b s ds = Q b ɛ L ln Q ɛ L ln b c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

39 4 CHAPTER ELECTROSTATICS C = Q V ln, so cpcitnce pe unit length is ɛ b ln b = ɛl Poblem 44 W = foce distnce = pessue e distnce = ɛ E Aɛ b W = enegy pe unit volume decese in volume = enegy lost is eul to the wok done Poblem 45 ɛ E Aɛ Sme s, confiming tht the Fom Pob 4, the field t height z bove the cente of sue loop side is Hee λ σ d E = 4ɛ z + 4 4λz z + see figue, nd we integte ove fom to ā: ẑ d +d d E = ā σz 4ɛ = ā /4 4σz 4ɛ = σ ɛ {tn z + 4 d z + du u + z u + z = σz ɛ ā + } z tn ; z Let u =, so d = du 4 z tn ]ā /4 u + z z E = σ ] tn + ɛ z ẑ = σ tn 4 ɛ 4z ẑ z + / ] infinite plne: E = σ ɛ tn 4 = σ ɛ 4 = σ ɛ z point chge: Let fx = tn + x 4, nd expnd s Tylo seies: Hee f = tn 4 = 4 4 = ; f x = Thus since z = x, E σ fx = f + xf + x f + ɛ 4 z ++x +x = fx = 4 x + x + x 3 + = 4ɛ σ z = 4ɛ z +x +x, so f = 4, so c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

40 CHAPTER ELECTROSTATICS 43 The double integl is pue numbe; Mthemtic sys it is So V = σr ɛ Poblem 5 Potentil of +λ is V + = λ ɛ ln s +, whee s+ is distnce fom λ + Pob Potentil of λ is V = + λ ɛ ln s, whee s is distnce fom λ Totl V = λ ɛ ln s s + Now s + = y + z, nd s = y + + z, so V x, y, z = λ y+ +z ɛ ln = λ y + + z ] ln y +z 4ɛ y + z s s + y λ λ b Euipotentils e given by y+ +z y +z = e 4ɛV/λ = k = constnt Tht is: y + y + + z = ky y + + z y k + z k + k yk + =, o y + z + y = The eution fo cicle, with cente t y, nd dius R, is k+ k y y + z = R, o y + z + y R yy = Evidently the euipotentils e cicles, with y = = y R R = y = k+ k R = k k ; o, in tems of V : z k+ k nd = k +k+ k +k k = 4k k, o y = e4ɛv/λ + eɛv/λ e 4ɛV/λ = + e ɛv/λ ɛ V = coth e ɛv/λ e ɛv/λ λ R = eɛv/λ e 4ɛV/λ = e ɛv/λ e ɛv/λ = sinh ɛ V ɛ V = csch λ z λ x, y, z λ λ y R y c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

41 44 CHAPTER ELECTROSTATICS Poblem 53 V = ρ ɛ E 4, so d V dx = ɛ ρ b V = mv v = V m c d = Aρ dx ; d dx dt = ρ dt = Aρv = I constnt Note: ρ, hence lso I, is negtive d d V dx = ɛ ρ = I ɛ Av = I m ɛ A V d V dx = βv /, whee β = I m ɛ A Note: I is negtive, so β is positive; is positive e Multiply by V = dv dx : V dv dx = βv / dv dx V dv = β V / dv V = βv / + constnt But V = V = cthode is t potentil zeo, nd field t cthode is zeo, so the constnt is zeo, nd V = 4βV / dv dx = β V /4 V /4 dv = β dx; V /4 dv = β dx 4 3 V 3/4 = β x + constnt But V =, so this constnt is lso zeo V 3/4 = 3 β x, so V x = 3 4/3 /3 9 8I β x 4/3, o V x = 4 β x 4/3 /3 m = 3ɛ x 4/3 A Intems of V insted of I: V x = V x d 4/3 see gph Without spce-chge, V would incese linely: V x = V x d V V d V ρ = ɛ dx = ɛ 4 V d 4/3 3 3 x /3 = 4ɛ V 9d x /3 without with v = f V d = V = x /3 V = V /m m d 8I m 3ɛ A /3d 4/3 V 3 = 8md4 I = 4 ɛ A 9 m d V 3/ = KV 3/, whee K = 4ɛ A 9d Poblem 54 E = 4ɛ ρ ˆ + e /λ dτ λ 8md V 3 4 ; 3ɛ A I ; I = 3ɛ A m d x c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

42 CHAPTER ELECTROSTATICS 45 b Yes The field of point chge t the oigin is dil nd symmetic, so E =, nd hence this is lso tue by supeposition fo ny collection of chges c V = E dl = 4ɛ + e /λ d λ = 4ɛ + e /λ d = { λ 4ɛ e /λ d + } λ e /λ d d e /λ Now e /λ d = e /λ λ d exctly ight to kill the lst tem Theefoe { V = } e /λ 4ɛ = e /λ 4ɛ S V E d = 4ɛ R V dτ = 4ɛ + R e R/λ 4 R = + R λ ɛ λ R e /λ = λ { e R/λ + R ɛ λ S E d + λ V e R/λ 4 d = R e /λ d = e /λ ɛ ɛ + } /λ λ ]R V dτ = { + R e R/λ + R } e R/λ + ɛ λ λ ] } = ed ɛ e Does the esult in d hold fo nonspheicl sufce? Suppose we mke dent in the sphee pushing ptch e R sin θ dθ dφ fom dius R out to dius S e S sin θ dθ dφ R S E d = 4ɛ = 4ɛ { S + S e S/λ S sin θ dθ dφ R λ + R } e R/λ R sin θ dθ dφ λ e S/λ + R ] e R/λ sin θ dθ dφ λ + S λ λ V dτ = e /λ λ sin θ d dθ dφ = 4ɛ λ = sin θ dθ dφ e /λ + S 4ɛ λ R = + S e S/λ + R 4ɛ λ λ S sin θ dθ dφ e /λ d 4ɛ R e R/λ ] sin θ dθ dφ So the chnge in λ V dτ exctly compenstes fo the chnge in E d, nd we get ɛ fo the totl using the dented sphee, just s we did with the pefect sphee Any closed sufce cn be built up by successive distotions of the sphee, so the esult holds fo ll shpes By supeposition, if thee e mny chges inside, the totl is ɛ Q enc Chges outside do not contibute in the gument bove we found tht t fo this volume E d + λ V dτ = nd, gin, the sum is not chnged by distotions of the sufce, s long s emins outside So the new Guss s Lw holds fo ny chge configution c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

43 46 CHAPTER ELECTROSTATICS f In diffeentil fom, Guss s lw eds: E + λ V = ɛ ρ, o, putting it ll in tems of E: E λ E dl = ɛ ρ Since E = V, this lso yields Poisson s eution : V + λ V = ɛ ρ ρ V = 4ɛ R ρ e /λ dτ ɛ λ V = ρ E E= V E= 4ɛ R ρ + λ e /λ dτ ˆ R λ E dl= ρ ɛ ; E= V V = R E dl E g Refe to Guss s lw in diffeentil fom f Since E is zeo, inside conducto othewise chge would move, nd in such diection s to cncel the field, V is constnt inside, nd hence ρ is unifom, thoughout the volume Any ext chge must eside on the sufce The fction t the sufce depends on λ, nd on the shpe of the conducto Poblem 55 ρ = ɛ E = ɛ x = ɛ constnt eveywhee The sme chge density would be comptible s f s Guss s lw is concened with E = yŷ, fo instnce, o E = 3, etc The point is tht Guss s lw nd E = by themselves do not detemine the field like ny diffeentil eutions, they must be supplemented by ppopite boundy conditions Odinily, these e so obvious tht we impose them lmost subconsciously E must go to zeo f fom the souce chges o we ppel to symmety to esolve the mbiguity the field must be the sme in mgnitude on both sides of n infinite plne of sufce chge But in this cse thee e no ntul boundy conditions, nd no pesusive symmety conditions, to fix the nswe The uestion Wht is the electic field poduced by unifom chge density filling ll of spce? is simply ill-posed: it does not give us sufficient infomtion to detemine the nswe Incidentlly, it won t help to ppel to Coulomb s lw the integl is hopelessly indefinite, in this cse E = 4ɛ ρ ˆ dτ Poblem 56 Compe Newton s lw of univesl gvittion to Coulomb s lw: F = G m m ˆ; F = 4ɛ ˆ Evidently 4ɛ G nd m The gvittionl enegy of sphee tnslting Pob 34 is theefoe W gv = 3 5 GM R c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

44 CHAPTER ELECTROSTATICS 47 Now, G = 667 N m /kg, nd fo the sun M = 99 3 kg, R = m, so the sun s gvittionl enegy is W = 8 4 J At the cuent te this enegy would be dissipted in time t = W P = = 59 4 s = 87 7 yes Poblem 57 Fist eliminte z, using the fomul fo the ellipsoid: σx, y = Q 4b c x / 4 + c y /b 4 + x / y /b Now fo pts nd b set c, sushing the ellipsoid down to n ellipse in the x y plne: σx, y = Q b x/ y/b I multiplied by to count both sufces Fo the cicul disk, set = b = R nd let x + y σ = Q R R b Fo the ibbon, let Q/b Λ, nd then tke the limit b : σx = Λ x c Let b = c, y + z, mking n ellipsoid of evolution: x + Q =, with σ = c 4c x / 4 + /c 4 The chge on ing of width dx is d = σ ds, whee ds = dx + d = dx + d/dx Now x dx + d c = d dx = x c, so ds = dx + c4 x 4 = dxc x / 4 + /c 4 Thus λx = d dx = Q c x 4c / x / 4 + /c /c 4 = Q Constnt! c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

45 48 CHAPTER ELECTROSTATICS Poblem 58 y _, 3 _ b,- x _,- 3 _ One such point is on the x xis see digm t x = Hee the field is cos θ Ex = =, 4 + b o cos θ = b + Now, / cos θ = ; b b = +! 3 = + Theefoe / ] To simplify, let = + + 3/ u =, 3/ + u u + u o u: u + u4 = u + u 3 c Peson Eduction, Inc, Uppe Sddle Rive, NJ All ights eseved This mteil is

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

8πε0. 4πε. 1 l. πε0 Φ =

8πε0. 4πε. 1 l. πε0 Φ = . Two concentic sphees hve dii, b (b nd ech is divided into two heisphees by the se hoizont pne. The uppe heisphee of the inne sphee nd the owe heisphee of the oute sphee e intined t potenti V. The othe

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Optimal Placing of Crop Circles in a Rectangle

Optimal Placing of Crop Circles in a Rectangle Optiml Plcing of Cop Cicles in Rectngle Abstct Mny lge-scle wteing configutions fo fming e done with cicles becuse of the cicle s pcticlity, but cicle obviously cnnot tessellte plne, no do they fit vey

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Problems in curvilinear coordinates

Problems in curvilinear coordinates Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 ) 九十七學年第一學期 PHY 電磁學期中考試題 ( 共兩頁 ) [Giffiths Ch.-] 補考 8// :am :am, 教師 : 張存續記得寫上學號, 班別及姓名等 請依題號順序每頁答一題 Useful fomulas V ˆ ˆ V V = + θ+ V φ ˆ an θ sinθ φ v = ( v) (sin ) + θvθ + v sinθ θ sinθ φ φ. (8%,%) cos

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

2 Cosmological Models with Idealized Matter

2 Cosmological Models with Idealized Matter Cosmologicl Models with Idelized Mtte. Model spces: Constuction Spces nd spcetimes of high symmety ply vey impotnt ole in cosmologicl modelbuilding, nd s emples solvble models of genel eltivity. The most

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

3.7 Governing Equations and Boundary Conditions for P-Flow

3.7 Governing Equations and Boundary Conditions for P-Flow .0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

26. [Surface Area] sq. units. sq. units. Area of 1 face = Area: base & top = 2 20 3 = 120. Area: front & back = 2 30 3 = 180 S.A.

26. [Surface Area] sq. units. sq. units. Area of 1 face = Area: base & top = 2 20 3 = 120. Area: front & back = 2 30 3 = 180 S.A. 6. [Suface Aea] Skill 6.1 Calculating the suface aea of ectangula pisms and cubes by using nets (1). Find any unknown side lengths. Calculate the aea of each face as shown on the net. Hint: Rectangula

Διαβάστε περισσότερα

Synthetic Aperture Radar Processing

Synthetic Aperture Radar Processing Synthetic Apetue Rd Pocessing SAR nd IFSAR Giogio Fnceschetti Univesit Fedeico II Npoli Itly 1 REFERENCE TEXT Giogio Fnceschetti Riccdo Lni SYNTHETIC APERTURE RADAR PROCESSING TECHNIQUES CRC Pess BOCA

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα