CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar"

Transcript

1 CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold. uthemoe theoems of diffeet kids of ecuet ecuet symmetic biecuet biecuet symmetic - ecuet d -ecuet symmetic hypebolic Hsu-stuctue metic mifold ivolvi equivlet coditios with espect to vious cuvtue tesos hve lso bee discussed. Nijehuis d ssocited Nijehuis tesos hve bee defied d decompositios of Nijehuis teso hve bee doe. INEGABILI CONDIION heoem.. he ecessy d sufficiet coditio tht M be hypebolic Hsu-stuctue metic mifold is tht it cotis distibutio π of comple dimesio d distibutio ~ π cojute toπ such tht π d ~ π hve o diectio i commo d sp toethe lie mifold of dimesio pojectios of π d ~ π bei L d M ive by Estel L = M =. Poof. Let M be hypebolic Hsu-stuctue metic mifold coespodi to the eie vlues d. Let thee be liely idepedet eie vectos = 3... d liely idepedet comple cojute eie vectos S. he we hve 3

2 . = 0 = 0 fo ll. b S = 0 b = 0 fo ll. Now y c d S = 0 c d S = 0 hese equtios imply y y c d S = 0. y c = 0 d y S = 0 c = d = 0 fo d y. { S} is liely idepedet set. y Let us put.3 he we hve y L = M =. = L = L S S = M =. M S S y y y Estel hus we hve poved tht thee is distibutio π of comple dimesio d thee is comple cojute distibutio ~ π of dimesio which hs o commo diectio with π d sps with π lie mifold of dimesio pojectios of π d ~ π bei L d M. 4

3 Covesely we suppose tht thee is distibutio π of comple dimesio d distibutio ~ π comple cojute to π hvi o commo diectio with lie mifold of dimesio. Let d S be liely idepedet vectos i π d liely idepedet vectos i π espectively. Let { S} sp lie mifold of Estel dimesio. he { S} is liely idepedet set. Let us defie the ivese set { S} such tht.4 = S S which yields.4b = S S = δ y y y.4c S = S = 0. y y Let us put = = { S S} the.5 = { S S} But fom the equtios.4 d.5 we hve = { S S} =. his is we hve poved tht the mifold dmits lmost hypebolic Hsu-stuctue mifold. 5

4 . ECUENCE AND ECUENCE SMME O DIEEN KINDS Pseudo Pojective Cuvtue eso Defiitio. A cuvtue teso W defied by. W = K is sid to be Pseudo Pojective cuvtue teso. he mifold M is sid to be Pseudo Pojective ecuet if. W = A W whee A is ecuece pmete d Pseudo Pojective symmetic if.b W = 0. heoem.. If the hypebolic Hsu-stuctue metic mifold be ecuet the it is Pseudo Pojective ecuet fo the sme ecuece pmete. Poof. Diffeetiti the equtio. with espect to we hve.3 W = K Estel. Multiplyi the equtio. by A thouhout we et A.4 A W = A K. Now subtcti the equtio.4 fom the equtio.3 we et.5 W A W = K A K A 6

5 A. Now usi the fct tht if the mifold M be ecuet the fom the equtio.5 we et.6 W = A W. Sice the ecuet mifold is ci ecuet which shows tht the mifold is Pseudo Pojective ecuet. heoem.. If the hypebolic Hsu-stuctue metic mifold be ecuet symmetic the it is Pseudo Pojective ecuet symmetic fo the sme ecuece pmete. Poof. Sice the ecuet symmetic mifold is ci symmetic the fom the equtio.5 we hve.7 W = 0 which shows tht the mifold is Pseudo Pojective ecuet symmetic. Pseudo H-Pojective Cuvtue eso Defitio.. A cuvtue teso P defied by.8. P = K Estel is sid to be Pseudo H-Pojective cuvtue teso. he mifold M is sid to be Pseudo H-Pojective ecuet if.9 P = A P d Pseudo Pojective symmetic if.9b P = 0. heoem.3. If the hypebolic Hsu-stuctue metic mifold be ecuet the it is Pseudo H-Pojective ecuet fo the sme ecuece pmete. Poof. Diffeetiti the equtio.8 with espect to we hve 7

6 .0 P = K. Multiplyi the equtio.8 by A thouhout we et A. A P = A K. Now subtcti the equtio. fom the equtio.0 we et. P A P = K A K A A A A A. Now usi the fct tht if the mifold M be ecuet the fom the equtio. we et Estel.3 P = A P. Sice the ecuet mifold is ci ecuet which shows tht the mifold is Pseudo H-Pojective ecuet. heoem.4. If the hypebolic Hsu-stuctue metic mifold be ecuet symmetic the it is Pseudo H-Pojective ecuet symmetic fo the sme ecuece pmete. Poof. Sice the ecuet symmetic mifold is ci symmetic the fom the equtio. we hve.4 P = 0 which shows tht the mifold is Pseudo H-Pojective ecuet symmetic. 8

7 heoem.5. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i It is Pseudo H-Pojective ecuet ii It is Pseudo Pojective ecuet iii It is ci ecuet. Poof. om the equtios. d.8 we hve.5 P = W. Multiplyi the equtio.5 by A thouhout we et A.6 A P = A W A. Diffeetiti the equtio.5 with espect to we et.7 P = W Estel. Subtcti the equtio.6 fom the equtio.7 we et.8 P A P = W A W A } { { A } { A } { A } { A }. 9

8 Let the hypebolic Hsu-stuctue metic mifold M is Pseudo Pojective ecuet d ci ecuet fo the sme ecuece pmete. he fom the equtio.8 we et.9 P = A P which shows tht the mifold is Pseudo H-Pojective ecuet. heoem.6. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i ii It is Pseudo H-Pojective ecuet symmetic It is Pseudo Pojective ecuet symmetic iii It is ci ecuet symmetic. Poof. If the hypebolic Hsu-stuctue metic mifold is Pseudo Pojective ecuet symmetic d ci ecuet symmetic the fom the equtio.8 we et.0 P = 0 which shows tht the mifold is Pseudo H-Pojective ecuet symmetic. heoem.7. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i ii It is Pseudo Pojective -ecuet It is Pseudo Cocicul - ecuet iii It is ci - ecuet povided Estel {. } =0. Poof. om the equtios. d I.6 we hve. = W. Bi i equtio. we et.3 = W 30

9 . Multiplyi the equtio.3 by A the bi d usi the equtio I. i the esulti equtio we et A.4 A = A W A. Diffeetiti the equtio.3 with espect to d usi the equtio.3 i the esulti equtio we et.5 = W W. Bi i equtio.5 d usi the equtio I. the subtcti the equtio.4 fom the esulti equtio we et Estel.6 A = W W A W A A { A }. 3

10 Now usi the equtio. toethe with the fct tht the hypebolic Hsustuctue metic mifold is Pseudo Cocicul -ecuet d ci - ecuet i equtio.6 we et W W = A W which shows tht the mifold is Pseudo Pojective - ecuet. Similly it c be show tht if the mifold is eithe Pseudo Pojective - ecuet d ci -ecuet o Pseudo Pojective -ecuet d Pseudo Cocicul -ecuet the it is eithe Pseudo Cocicul -ecuet o ci -ecuet povided the equtio. is stisfied. heoem.8. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i ii It is Pseudo Pojective - symmetic It is Pseudo Cocicul - symmetic iii It is ci - symmetic povided {.7 } =0. Poof. Let the hypebolic Hsu-stuctue metic mifold is Pseudo Cocicul - symmetic d ci - symmetic the fom the equtio.6 we et W W = 0 povided the equtio.7 is stisfied which shows tht the mifold is Pseudo Pojective - symmetic. Similly it c be show tht if the mifold is eithe Pseudo Pojective - symmetic d ci - symmetic o Pseudo Pojective - symmetic d Pseudo Cocicul - symmetic the it is eithe Pseudo Cocicul - symmetic o ci - symmetic fo the sme ecuece pmete povided the equtio.7 is stisfied. Estel heoem.9. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i It is Pseudo Pojective -ecuet 3

11 ii It is Pseudo Cocicul - ecuet iii It is ci - ecuet povided.8 { } { } = 0. Poof. Bi d i equtio. we et.9 = W. Multiplyi the equtio.9 by A the bi d usi the equtio I. i the esulti equtio we et A.30 A = A W A. Diffeetiti the equtio.9 with espect to d usi the equtio.9 i the esulti equtio we et.3 = W W W Estel. Bi i equtio.3 d usi the equtio I. the subtcti the equtio.30 fom the esulti equtio we et 33

12 .3 A = W W W A W A A { A }. Now usi the equtio.8 toethe with the fct tht the hypebolic Hsustuctue metic mifold is Pseudo Cocicul -ecuet d ci - ecuet i equtio.3 we et W W = A W W which shows tht the mifold is Pseudo Pojective - ecuet. Similly it c be show tht if the mifold is eithe Pseudo Pojective - ecuet d ci -ecuet o Pseudo Pojective -ecuet d Pseudo Cocicul -ecuet the it is eithe Pseudo Cocicul -ecuet o ci -ecuet povided the equtio.8 is stisfied. Estel heoem.0. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i It is Pseudo Pojective - symmetic ii It is Pseudo Cocicul - symmetic iii It is ci - symmetic povided.33 { } { 34

13 } = 0. Poof. Let the hypebolic Hsu-stuctue metic mifold is Pseudo Cocicul - symmetic d ci - symmetic the fom the equtio.3 we et W W W = 0 povided the equtio.33 is stisfied which shows tht the mifold is Pseudo Pojective - symmetic. Similly it c be show tht if the mifold is eithe Pseudo Pojective - symmetic d ci - symmetic o Pseudo Pojective - symmetic d Pseudo Cocicul - symmetic the it is eithe Pseudo Cocicul - symmetic o ci - symmetic fo the sme ecuece pmete povided the equtio.33 is stisfied. heoem.. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i ii It is Pseudo Pojective 3-ecuet It is Pseudo Cocicul 3- ecuet iii It is ci - ecuet povided.34 { } { Estel } = 0. Poof. Bi d i equtio. we et.35 = W. Multiplyi the equtio.35 by A d bi the usi the equtio I. i the esulti equtio we et A.36 A = A W 35

14 A. Diffeetiti the equtio.35 with espect to we et.37 = W W W W. Bi i equtio.37 d usi the I. the subtcti the equtio.36 fom the esulti equtio we et.38 A = W W W A W Estel A A { A } W 36

15 . Now usi the equtio.34 toethe with the fct tht the hypebolic Hsustuctue metic mifold is Pseudo Cocicul 3-ecuet d ci - ecuet i equtio.38 we et W W W W = A W which shows tht the mifold is Pseudo Pojective 3- ecuet. Similly it c be show tht if the mifold is eithe Pseudo Pojective 3- ecuet d ci -ecuet o Pseudo Pojective 3-ecuet d Pseudo Cocicul 3-ecuet the it is eithe Pseudo Cocicul 3-ecuet o ci -ecuet povided the equtio.34 is stisfied. heoem.. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme ecuece pmete the the thid lso holds: i ii It is Pseudo Pojective 3- symmetic It is Pseudo Cocicul 3- symmetic iii It is ci - symmetic povided Estel.39 { } { } = 0. Poof. Let the hypebolic Hsu-stuctue metic mifold is Pseudo Cocicul 3- symmetic d ci - symmetic the fom the equtio.38 we et W W W W = 0 37

16 povided the equtio.39 is stisfied which shows tht the mifold is Pseudo Pojective 3- ecuet symmetic. Similly it c be show tht if the mifold is eithe Pseudo Pojective 3- symmetic d ci - symmetic o Pseudo Pojective 3- symmetic d Pseudo Cocicul 3-symmetic the it is eithe Pseudo Cocicul 3- symmetic o ci - symmetic fo the sme ecuece pmete povided the equtio.39 is stisfied. 3. BIECUENCE AND BIECUENCE SMME O DIEEN KINDS he mifold M is sid to be Pseudo Pojective biecuet if 3. W = A W whee A is biecuece pmete d Pseudo Pojective biecuet symmetic if 3.b W = 0. heoem 3.. If the hypebolic Hsu-stuctue metic mifold be biecuet the it is Pseudo Pojective biecuet fo the sme biecuece pmete. Poof. We hve Estel 3. W = K Diffeetiti the equtio 3. with espect to d we hve 3.3 W = K. Multiplyi the equtio 3. by A thouhout we et A 3.4 A W = A K. 38

17 Now subtcti the equtio 3.4 fom the equtio 3.3 we et 3.5 W A W = K A K A A. Now usi the fct tht if the mifold M be biecuet the fom the equtio 3.5 we et 3.6 W = A W. Sice the biecuet mifold is ci biecuet which shows tht the mifold is Pseudo Pojective biecuet. heoem 3.. If the hypebolic Hsu-stuctue metic mifold be biecuet symmetic the it is Pseudo Pojective biecuet symmetic fo the sme biecuece pmete. Poof. Sice the biecuet symmetic mifold is ci biecuet symmetic the fom the equtio 3.5 we hve 3.7 W = 0 which shows tht the mifold is Pseudo Pojective biecuet symmetic. Estel he mifold M is sid to be Pseudo H-Pojective biecuet if 3.8 P = A P d Pseudo H- Pojective biecuet symmetic if 3.8b P = 0. heoem 3.3. If the hypebolic Hsu-stuctue metic mifold be biecuet the it is Pseudo H-Pojective biecuet fo the sme biecuece pmete. Poof. We hve 3.9 P = K 39

18 . Diffeetiti the equtio 3.9 with espect to d we hve 3.0 P = K. Multiplyi the equtio 3.9 by A thouhout we et A 3. A P = A K. Now subtcti the equtio 3. fom the equtio 3.0 we et 3. P A P = K A K A A A A A. Now usi the fct tht if the mifold M be biecuet the fom the equtio 3. we et Estel 3.3 P = A P. Sice the biecuet mifold is ci biecuet which shows tht the mifold is Pseudo H-Pojective biecuet. heoem3.4. If the hypebolic Hsu-stuctue metic mifold be biecuet symmetic the it is Pseudo H-Pojective biecuet symmetic fo the sme biecuece pmete. 40

19 Poof. Sice the biecuet symmetic mifold is ci biecuet symmetic the fom the equtio 3. we hve 3.4 P = 0 which shows tht the mifold is Pseudo H-Pojective biecuet symmetic. heoem 3.5. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i It is Pseudo H-Pojective biecuet ii It is Pseudo Pojective biecuet iii It is ci biecuet. Poof. om the equtios. d.8 we hve 3.5 P = W. Multiplyi the equtio 3.5 by A thouhout we et 3.6 A P = A W A Estel A. Diffeetiti the equtio 3.5 with espect to d we et 3.7 P = W. Subtcti the equtio 3.6 fom the equtio 3.7 we et 3.8 P A P = W 4

20 A W A } { { A } { A } { A } A }. { Let the hypebolic Hsu-stuctue metic mifold M is Pseudo Pojective biecuet d ci biecuet fo the sme biecuece pmete. he fom the equtio 3.8 we et 3.9 P = A P which shows tht the mifold is Pseudo H-Pojective biecuet. heoem 3.6. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i It is Pseudo H-Pojective biecuet symmetic ii It is Pseudo Pojective biecuet symmetic iii It is ci biecuet symmetic. Poof. If the hypebolic Hsu-stuctue metic mifold is Pseudo Pojective biecuet symmetic d ci biecuet symmetic the fom the equtio 3.8 we et Estel 3.0 P = 0 which shows tht the mifold is Pseudo H-Pojective biecuet symmetic. heoem 3.7. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i It is Pseudo Pojective -biecuet ii It is Pseudo Cocicul - biecuet 4

21 iii It is ci - biecuet povided 3. { } { } 0. = Poof. om the equtios. d I.6 we hve 3. = W Bi i equtio 3. we et. 3.3 = W. Multiplyi the equtio 3.3 by A the bi d usi the equtio I. i the esulti equtio we et 3.4 A = A W Estel A A. Diffeetiti the equtio 3.3 with espect to d usi the equtio 3.3 i the esulti equtio we et 3.5 = W W W W 43

22 . Bi i equtio 3.5 d usi the equtio I. the subtcti the equtio 3.4 fom the esulti equtio we et 3.6 A = W W W Estel W A W A A { A } 44

23 { } { } }. { Now usi the equtio 3. toethe with the fct tht the hypebolic Hsustuctue metic mifold is Pseudo Cocicul -biecuet d ci - biecuet i equtio 3.6 we et W W W W = A W which shows tht the mifold is Pseudo Pojective - biecuet. Similly it c be show tht if the mifold is eithe Pseudo Pojective - biecuet d ci -biecuet o Pseudo Pojective -biecuet d Pseudo Cocicul -biecuet the it is eithe Pseudo Cocicul -biecuet o ci -biecuet povided the equtio 3. is stisfied. heoem 3.8. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i It is Pseudo Pojective -biecuet symmetic ii It is Pseudo Cocicul - biecuet symmetic iii It is ci - biecuet symmetic povided Estel 3.7 { } { } 0. = 45

24 Poof. Let the hypebolic Hsu-stuctue metic mifold is Pseudo Cocicul - biecuet symmetic d ci -biecuet symmetic the fom the equtio 3.6 we et W W W W = 0 povided the equtio 3.7 is stisfied which shows tht the mifold is Pseudo Pojective - biecuet symmetic. Similly it c be show tht if the mifold is eithe Pseudo Pojective - biecuet symmetic d ci -biecuet symmetic o Pseudo Pojective - biecuet symmetic d Pseudo Cocicul -biecuet symmetic the it is eithe Pseudo Cocicul -biecuet symmetic o ci -biecuet symmetic fo the sme biecuece pmete povided the equtio 3.7 is stisfied. heoem 3.9. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i ii It is Pseudo Pojective -biecuet It is Pseudo Cocicul - biecuet iii It is ci - biecuet povided Estel 3.8 { } { 46

25 } 0. Poof. Bi d i equtio 3. we et = 3.9 = W. Multiplyi the equtio 3.9 by A the bi d usi the equtio I. i the esulti equtio we et 3.30 A = A W A A. Diffeetiti the equtio 3.9 with espect to d usi the equtio 3.9 i the esulti equtio we et Estel 3.3 = W W W W W W W W W 47

26 Estel. Bi i equtio 3.3 d usi the equtio I. the subtcti the equtio 3.30 fom the esulti equtio we et 3.3 A = W W 48

27 W W W W W W W A W A A { A } { } Estel { } { }. Now usi the equtio 3.8 toethe with the fct tht the hypebolic Hsustuctue metic mifold is Pseudo Cocicul -biecuet d ci - biecuet i equtio 3.3 we et 49

28 W W W W W W W W W = A W which shows tht the mifold is Pseudo Pojective - biecuet. Similly it c be show tht if the mifold is eithe Pseudo Pojective - biecuet d ci -biecuet o Pseudo Pojective -biecuet d Pseudo Cocicul -biecuet the it is eithe Pseudo Cocicul -biecuet o ci -biecuet povided the equtio 3.8 is stisfied. heoem 3.0. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i ii It is Pseudo Pojective -biecuet symmetic It is Pseudo Cocicul - biecuet symmetic iii It is ci - biecuet symmetic povided 3.33 { Estel } { 50

29 } 0. = Poof. Let the hypebolic Hsu-stuctue metic mifold is Pseudo Cocicul - biecuet symmetic d ci -biecuet symmetic the fom the equtio 3.3 we et W W W W W W W W W = 0 povided the equtio 3.33 is stisfied which shows tht the mifold is Pseudo Pojective - biecuet symmetic. Similly it c be show tht if the mifold is eithe Pseudo Pojective - biecuet symmetic d ci -biecuet symmetic o Pseudo Pojective - biecuet symmetic d Pseudo Cocicul -biecuet symmetic the it is eithe Pseudo Cocicul -biecuet symmetic o ci -biecuet symmetic fo the sme biecuece pmete povided the equtio 3.33 is stisfied. heoem 3.. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i ii Estel It is Pseudo Pojective 3-biecuet It is Pseudo Cocicul 3- biecuet iii It is ci - biecuet povided 3.34 { 5

30 } { } 0. = Estel Poof. Bi d i equtio 3. we et 3.35 = W. Multiplyi the equtio 3.35 by A the bi d usi the equtio I. i the esulti equtio we et 3.36 A = A W A 5

31 A. Diffeetiti the equtio 3.35 with espect to d we et 3.37 = W W W W W W W W W W W W W W W W Estel 53

32 Estel. Bi i equtio 3.37 d usi the equtio I. the subtcti the equtio 3.36 fom the esulti equtio we et 54

33 A W = W W W W W W W W W W W W W W W W A A Estel

34 A { A } { } { } { Estel }. Now usi the equtio 3.34 toethe with the fct tht the hypebolic Hsustuctue metic mifold is Pseudo Cocicul 3-biecuet d ci - biecuet i equtio 3.38 we et 56

35 W W W W W W W W W W W W W W W W = A W which shows tht the mifold is Pseudo Pojective 3- biecuet. Similly it c be show tht if the mifold is eithe Pseudo Pojective 3-biecuet d ci -biecuet o Pseudo Pojective 3-biecuet d Pseudo Cocicul 3-biecuet the it is eithe Pseudo Cocicul 3- biecuet o ci -biecuet povided the equtio 3.34 is stisfied. heoem 3.. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme biecuece pmete the the thid lso holds: i ii It is Pseudo Pojective 3-biecuet symmetic It is Pseudo Cocicul 3- biecuet symmetic iii It is ci - biecuet symmetic povided Estel 3.39 { 57

36 } { } 0. = Poof. Let the hypebolic Hsu-stuctue metic mifold is Pseudo Cocicul 3- biecuet symmetic d ci -biecuet symmetic the fom the equtio 3.38 we et W W W W Estel W W W W W W W W W W W W = 0 58

37 povided the equtio 3.39 is stisfied which shows tht the mifold is Pseudo Pojective 3-biecuet symmetic. Similly it c be show tht if the mifold is eithe Pseudo Pojective 3-biecuet symmetic d ci -biecuet symmetic o Pseudo Pojective 3-biecuet symmetic d Pseudo Cocicul 3-biecuet symmetic the it is eithe Pseudo Cocicul 3-biecuet symmetic o ci -ecuet symmetic fo the sme biecuece pmete povided the equtio 3.39 is stisfied. 4. -ECUENCE AND -ECUENCE SMME O DIEEN KINDS he mifold M is sid to be Pseudo Pojective -ecuet if W... = A. W whee A. is -ecuece pmete d Pseudo Pojective -ecuet symmetic if 4.b... W = Estel heoem 4.. If the hypebolic Hsu-stuctue metic mifold be -ecuet the it is Pseudo Pojective -ecuet fo the sme -ecuece pmete. Poof. We hve 4. W = K Diffeetiti the equtio 4. with espect to we hve W... =... K

38 Multiplyi the equtio 4. by A... thouhout we et 4.4 A... W A... K = A... Now subtcti the equtio 4.4 fom the equtio 4.3 we et 4.5. W... A... W =... K... A... K A... A Now usi the fct tht if the mifold M be -ecuet the fom the equtio 4.5 we et 4.6. W... = A.. W. Sice the -ecuet mifold is ci -ecuet which shows tht the mifold is Pseudo Pojective -ecuet. heoem 4.. If the hypebolic Hsu-stuctue metic mifold be -ecuet symmetic the it is Pseudo Pojective -ecuet symmetic fo the sme - ecuece pmete. Estel Poof. Sice the -ecuet symmetic mifold is ci -ecuet symmetic the fom the equtio 4.5 we hve 4.7. W... 0 = which shows tht the mifold is Pseudo Pojective -ecuet symmetic. he mifold M is sid to be Pseudo H-Pojective -ecuet if P... = A... P 60

39 d Pseudo H- Pojective -ecuet symmetic if 4.8b... P = heoem 4.3. If the hypebolic Hsu-stuctue metic mifold be -ecuet the it is Pseudo H-Pojective -ecuet fo the sme -ecuece pmete. Poof. We hve 4.9 P = K. Diffeetiti the equtio 4.9 with espect to. we hve P... =... K Multiplyi the equtio 4.9 by A.. thouhout we et 4. A.. P A.. K = Estel A... Now subtcti the equtio 4. fom the equtio 4.0 we et P... A. P =... K. { A... A }... K A... A... 6

40 A A.... Now usi the fct tht if the mifold M be -ecuet the fom the equtio 4. we et P... A. P. = Sice the -ecuet mifold is ci -ecuet which shows tht the mifold is Pseudo H-Pojective -ecuet. heoem 4.4. If the hypebolic Hsu-stuctue metic mifold be -ecuet symmetic the it is Pseudo H-Pojective -ecuet symmetic fo the sme - ecuece pmete. Poof. Sice the -ecuet symmetic mifold is ci -ecuet symmetic the fom the equtio 4. we hve P... = 0 which shows tht the mifold is Pseudo H-Pojective -ecuet symmetic. heoem 4.5. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme -ecuece pmete the the thid lso holds: i ii It is Pseudo H-Pojective -ecuet It is Pseudo Pojective -ecuet iii It is ci -ecuet. Poof. om the equtios. d.8 we hve 4.5 P = W Estel. Multiplyi the equtio 4.5 by A.. thouhout we et 4.6 A.. P A... W = 6

41 A. A... Diffeetiti the equtio 4.5 with espect to.. we et P... =... W Subtcti the equtio 4.6 fom the equtio 4.7 we et P... A... P = W... A... W { Estel A } A.. } { { A... } { A... } A. }.... {... Let the hypebolic Hsu-stuctue metic mifold M is Pseudo Pojective -ecuet d ci -ecuet fo the sme -ecuece pmete. he fom the equtio 4.8 we et 63

42 4.9. P. A. P = which shows tht the mifold is Pseudo H-Pojective -ecuet. heoem 4.6. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme -ecuece pmete the the thid lso holds: i It is Pseudo H-Pojective -ecuet symmetic ii It is Pseudo Pojective -ecuet symmetic iii It is ci -ecuet symmetic. Poof. If the hypebolic Hsu-stuctue metic mifold is Pseudo Pojective - ecuet symmetic d ci -ecuet symmetic the fom the equtio 4.8 we et 4.0. P. = 0 which shows tht the mifold is Pseudo H-Pojective -ecuet symmetic. heoem 4.7. I the hypebolic Hsu-stuctue metic mifold if y two of the followi coditios hold fo the sme -ecuece pmete the the thid lso holds: i It is Pseudo Pojective --ecuet ii It is Pseudo Cocicul - -ecuet iii It is ci - -ecuet povided 4. {.... Estel

43 } { Estel

44 } = 0. Poof. om the equtios. d I.6 we hve 4. = W. Bi i equtio 4. we et 4.3 = W. Multiplyi the equtio 4.3 by A. the bi d usi the Estel equtio I. i the esulti equtio we et 4.4 A. A... W = A. A.... Diffeetiti the equtio 4.3 with espect to... usi the equtio 4.3 the bi d usi the equtio I. the subtcti the equtio 4.4 fom the esulti equtio we et

45 W =..... W W W W W W W W W Estel

46 W.... W A A Estel

47 69 } { A..... { } { Estel

48 }. Now usi the equtio 4. toethe with the fct tht the hypebolic Hsustuctue metic mifold is Pseudo Cocicul --ecuet d ci - - ecuet i equtio 4.6 we et... W W.... W W W 3.. Estel 3 70

49 ... W W W W W.... W W.... = A... W which shows tht the mifold is Pseudo Pojective - -ecuet. Similly it c be show tht if the mifold is eithe Pseudo Pojective - -ecuet d ci --ecuet o Pseudo Pojective --ecuet d Pseudo Cocicul --ecuet the it is eithe Pseudo Cocicul --ecuet o ci --ecuet povided the equtio 4. is stisfied. heoem 4.8. I the hypebolic Hsu-stuctue metic mifold if y two of the Estel followi coditios hold fo the sme -ecuece pmete the the thid lso holds: i It is Pseudo Pojective --ecuet symmetic ii It is Pseudo Cocicul - -ecuet symmetic iii It is ci - -ecuet symmetic povided the equtio 5. is stisfied. Poof. Let the hypebolic Hsu-stuctue metic mifold is Pseudo Cocicul -ecuet symmetic d ci --ecuet symmetic the fom the equtio 4.6 we et.. W W... 7

50 ... W W W W W W W W.... W W = 0 povided the equtio 4. is stisfied which shows tht the mifold is Pseudo Pojective - -ecuet symmetic. Similly it c be show tht if the mifold is eithe Pseudo Pojective - -ecuet symmetic d ci --ecuet symmetic o Pseudo Pojective - -ecuet symmetic d Pseudo Cocicul --ecuet symmetic the it is eithe Pseudo Cocicul --ecuet symmetic o ci --ecuet symmetic fo the sme -ecuece pmete povided the equtio 4. is stisfied. Estel 5. Nijehuis eso he Nijehuis teso with espect to i hypebolic Hsu-stuctue metic mifold is defied by 5. N =. 7

51 73 heoem 5.. I the hypebolic Hsu-stuctue metic mifold we hve 5. N N = = i.e. Nijehuis teso is skew-symmetic i d. 5.3 } { N N = = i.e. N is pue i d. 5.4 N N = = 5.5 N N N = = = 5.6 } { N N N = = = 5.7 } { N N = =. Poof. Itechi the vectos d i equtio 5. d usi the fct tht = we obti the equtio 5.. Bi the vectos d i equtio 5. usi I. d 5. we et the equtio 5.3. Bi the equtio 5. thouhout d usi the equtio I. we obti 5.4. Bi d septely i equtio 5. usi I. d 5.4 the equti the esulti equtios we hve the equtio 5.5. Poof of the equtios 5.6 d 5.7 follows the sme ptte. heoem 5.. Let us put 5.8 P = he 5.9 P P = = 5.9b P P = = 5.9c P P = = 5.9d P P = =. Cosequetly 5.0 N P P = 5.0b N P P = 5.0c N P P =. Estel

52 Poof. Bi the equtio 5.8 thouhout o diffeet vectos i it the usi the equtio I. we et the equtios 5.9 to 5.9d. Now subtcti the equtios 5.9 fom 5.9c usi the equtio 5.3 we hve the equtio 5.0. Poof of the equtios 5.0b d 5.0c follows similly. heoem 5.3. Let us put 5. Q =. he 5. Q = Q 5.b Q = Q 5.c Q = Q 5.d Q = Q. Cosequetly 5.3 Q Q = N = N 5.3b Q Q = N 5.3c Q Q = N 5.3d Q Q = N = N. Poof. Bi the equtio 5. thouhout o diffeet vectos i it usi the equtios I. we et the equtios 5. to 5.d. Now subtcti the equtio 5.b fom 5.d we et Estel 5.4 Q Q =. Usi the equtio 5.3 i 5.4 d usi the fct tht Nijehuis teso is pue i d we et the equtio 5.3. Similly we c obti the othe equtios. Coolly 5.. I the hypebolic Hsu-stuctue metic mifold we hve 5.5 P = Q 5.5b P = Q 5.5c P = Q 74

53 5.5d P = Q 5.5e P = Q. Poof. Bi d i equtios 5.8 d 5. espectively the compi the esulti equtios we et 5.5. Similly we c obti the othe equtios. Coolly 5.. I the hypebolic Hsu-stuctue metic mifold we hve 5.6 P Q = N 5.6b P Q = N = N 5.6c P Q = N = N 5.6d P Q = N = N. Poof. Addi the equtios 5.8 d 5. the compi the esulti equtio with 5. we et 5.6. Bi i 5.8 i 5. the ddi the esulti equtios d compi this equtio with 5.4 we obti the equtio 5.6b. Poof of the equtios 5.6c d 5.6d follows similly. heoem 5.4. Let us put 5.7 =. he 5.8 = = { } i.e. is skew-symmetic i d. Estel 5.8b = = { } 5.8c = = 5.8d = 5.8e = = { } 5.8f = = { }. Cosequetly 5.9 = N 5.9b = N 5.9c = N 75

54 5.9d = N 5.9e = N. Poof. Itechi the vectos d i equtio 5.7 d usi the fct tht = we et the equtio 5.8. Bi the vectos d i equtio 5.7 the usi the equtios I. d 5.7 we et the equtio 5.8b. Bi d septely i equtio 5.7 d usi the equtio I. the equti the esulti equtios we obti the equtio 5.8c. Bi the equtio 5.7 thouhout d usi the equtio I. the we et the equtio 5.8d. Poof of the equtios 5.8e d 5.8f follows the sme ptte. Now subtcti the equtio 5.8d fom the equtio 5.8c d usi the equtio 5.4 we et the equtio 5.9. Similly we c pove the equtios 5.9b.5.9e. heoem 5.5. Let us put 5.0 =. he 5. = = i.e. is skew-symmetic i d. 5.b = = { } 5.c = = 5.d = = 5.e = = { } 5.f =. Cosequetly Estel 5. = N 5.b = N 5.c = N = N. Poof. Itechi d i equtio 5.0 the compi the esulti equtio with 5.0 we et 5.. Bi d i 5.0 d compi the 76

55 esulti equtio with the equtio obtied by multiplyi the equtio 5.0 by we et 5.b. Similly we c obti 5.c. 5.f. Multiplyi the equtio 5.c by d ddi the esulti equtio with the equtio 5.e the compi this equtio with 5.7 we et 5.. Similly we c pove the equtios 5.b d 5.c. Coolly 5.3. I the hypebolic Hsu-stuctue metic mifold we hve 5.3 = 5.3b = 5.3c = 5.3d =. Cosequetly 5.4 = N 5.4b = N 5.4c = N 5.4d = N 5.4e = N. Poof. Compi the equtios 5.8c d 5.f we et 5.3. Multiplyi the equtio 5.c by d compi the esulti equtio with 5.8f we obti 5.3b. Similly we c obti the equtios 5.3c d 5.3d. Subtcti the equtio 5.8c fom 5.c the compi the esulti equtio with 5.5 we et 5.4. Poof of the emii equtios follows similly. Estel 6. Associted Nijehuis teso I the hypebolic Hsu-stuctue metic mifold the ssocited Nijehuis teso is defied s 6. N = N. 77

56 78 heoem 6.. I the hypebolic Hsu-stuctue metic mifold we hve 6. N N = i.e. N is skew-symmetic i d. 6.b N N N = = 6.c N N = i.e. N is pue i d. Poof. om the equtios 5. d 6. we et 6. which shows tht N is skew-symmetic i d. Usi the equtio 6. i 5.5 toethe with the fct tht = we hve the equtio6.b. om the equtios 5.3 d 6. we obti 6.c which shows tht N is pue i d. Coolly 6.. Let us defie 6.3 P P def =. he 6.4 P P = 6.4b P P = 6.4c P P = 6.4d P P = 6.4e P P = 6.4f N P P = 6.4 N P P =. Poof. Usi the equtio 6.3 i equtios 5.9 d 5.0 toethe with the fct tht = we et the equtios 6.4. Coolly 6.. Let us defie 6.5 Q Q def =. he 6.6 Q Q = 6.6b Q Q = Estel

57 79 6.6c Q Q = 6.6d Q Q =. Poof. Usi the equtio 6.5 i equtios 5. toethe with fct tht = we obti the equtios 6.6. Coolly 6.3. Let us defie 6.7 def =. he 6.8 = 6.8b = 6.8c =. 6.8d = 6.8e =. Poof. Usi the equtio 6.7 i 5.8 toethe with the fct tht = we et the equtios e. Coolly 6.4. Let us put 6.9 def =. he 6.0 = 6.0b = 6.0c = 6.0d =. Poof. Usi the equtio 6.9 i equtios 5. toethe with the fct tht = we et the equtios d. Estel

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS Математичнi Студiї. Т.39, Matematychni Studii. V.39, No. УДК 59.23.2+57.53 М. I. Paolya, М. М. Sheemeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS M. I. Paolya, M. M. Sheemeta.

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Differential Equations (Mathematics)

Differential Equations (Mathematics) H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

2 Cosmological Models with Idealized Matter

2 Cosmological Models with Idealized Matter Cosmologicl Models with Idelized Mtte. Model spces: Constuction Spces nd spcetimes of high symmety ply vey impotnt ole in cosmologicl modelbuilding, nd s emples solvble models of genel eltivity. The most

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Orthogonal polynomials

Orthogonal polynomials Orthogol polyomils We strt with Defiitio. A sequece of polyomils {p x} with degree[p x] for ech is clled orthogol with respect to the weight fuctio wx o the itervl, b with < b if { b, m wxp m xp x dx h

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Product of two generalized pseudo-differential operators involving fractional Fourier transform

Product of two generalized pseudo-differential operators involving fractional Fourier transform J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

SHORT REVISION. FREE Download Study Package from website:  2 5π (c)sin 15 or sin = = cos 75 or cos ; 12 SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ Γιουνανλής Παναγιώτης Επιβλέπων: Γ.Βουγιατζής Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation.

1 Additional lemmas. Supplementary Material APPENDIX. that N 1 N } E } E { N } E + O(N 3 ), Proof. The results follow by straightforward calculation. 1 Additional lemmas Supplementay Mateial APPENDIX Lemma A1. Let (T 1,1, T 2,1, T 3,1, T 4,1 ),..., (T 1,N, T 2,N, T 3,N, T 4,N ) be independent andom vectos of length 4 such that E(T,i ) = 0 (i = 1,...,

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα