Στοιχεία Μηχανών ΙΙ. Α. Ασκήσεις άλυτες. Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση
|
|
- Πατρίκιος Λαιμός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Στοιχεία Μηχανών ΙΙ Α. Ασκήσεις άλυτες Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση Περιγραφή της κατασκευής: Σε μία αποθήκη υλικών σιδήρου χρησιμοποιείται μία γερανογέφυρα ανυψωτικής ικανότητας πέντε (5) τόννων. Tο σύστημα πορείας της γερανογέφυρας, το οποίο εξασφαλίζει ταχύτητα πορείας 31,5 m/min, αποτελείται από τα εξής μέρη: α) τον κινητήρα (Κ) (βλ. σχήμα παρακάτω), ισχύος 2,5 PS, ο οποίος λειτουργεί στις 940 στρ/min, β) τον μονοβάθμιο μειωτήρα (Μ) με μετωπικούς τροχούς με κεκλιμένη (πλάγια) οδόντωση με συνολική σχέση μετάδοσης i = 5,45 και γ) το ζεύγος οδοντοτροχών (2) και (3), με ευθεία (παράλληλη) οδόντωση, που είναι στερεωμένοι: ο πρώτος στην άτρακτο εξόδου του μειωτήρα και ο δεύτερος στον κινητήριο τροχό (Τ) του συστήματος πορείας. H διάμετρος των κινητήριων τροχών (Τ) της γερανογέφυρας είναι 250 mm και η αξονική απόσταση του ζεύγους οδοντοτροχών (2) (3) περιορίζεται για κατασκευαστικούς λόγους στα 200 mm. H διάμετρος της ατράκτου εισόδου του μειωτήρα είναι 20 mm. Zητούνται: α) Ο υπολογισμός μελέτης του ζεύγους οδοντοτροχών (2) (3) (στοιχείο (γ) της παραπάνω περιγραφής). β) Ο υπολογισμός ελέγχου της ίδιας οδόντωσης. Σημείωση: Nα μην ληφθούν υπόψη οι βαθμοί απόδο- Κ σης. Tα υλικά των οδοντωτών 1 Μ τροχών να επιλε- γούν με βάση οικονομικά κριτήρια (από τα υλικά που καλύπτουν τις απαιτήσεις αντοχής να επιλεγούν αυτά με το μικρότερο κόστος). 2 3 Τ Από την περιστροφική ταχύτητα (σε στρ/min) Ρ του κινητήρα και τη σχέση μετάδοσης του μειωτήρα, μπορεί να υπολογισθεί η περιστροφική ταχύτητα (σε στρ/min) του οδοντοτροχού (2), που βρίσκεται στην έξοδο του μειωτήρα. Ο τροχός (Τ) μοιράζεται το βάρος του γερανού με τους άλλους τροχούς του συστήματος πορείας. Το βάρος αυτό το μεταβιβάζει στην ακίνητη ράγα (Ρ). Η περιστροφική ταχύτητα (σε στρ/min) του τροχού (Τ) προσδιορίζεται με βάση την επιδιωκόμενη ταχύτητα πορείας (31,5 m/min) και τη διάμετρο του τροχού (Τ). Ακριβώς ίδια είναι και η περιστροφική ταχύ- 200 Φ250
2 τητα του οδοντοτροχού (3). Με γνωστές τις περιστροφικές ταχύτητες των τροχών (2) και (3) σύμφωνα με τα παραπάνω, μπορεί να βρεθεί η σχέση μετάδοσης μεταξύ των τροχών (2) και (3). Άσκηση Α.2: Πλήρης υπολογισμός οδοντοτροχών με κεκλιμένη οδόντωση Για την κατασκευή που περιγράφηκε στην άσκηση Α.1, ζητούνται επιπλέον: α) Ο υπολογισμός μελέτης των μετωπικών τροχών με κεκλιμένη οδόντωση του μονοβάθμιου μειωτήρα (Μ) (στοιχείο (β) της περιγραφής που δίνει η ασκ. Α.1). β) Ο υπολογισμός ελέγχου της ίδιας οδόντωσης. Άσκηση Α.3: Υπολογισμός μελέτης οδοντοτροχών με ευθεία οδόντωση Μορφή υπολογισμού 1 Δύο άτρακτοι συνδέονται μεταξύ τους με ζεύγος οδοντοτροχών με ευθεία οδόντωση, που δημιουργούν σχέση μετάδοσης i = 2,4. Κινητήρια είναι η γρήγορη άτρακτος, η οποία έχει περιστροφική ταχύτητα n 1 =1430 Σ/min. Ο μικρός οδοντοτροχός είναι ολόσωμος με την άτρακτό του, η οποία έχει διάμετρο d=30mm (βλ. σχήμα). Η ποιότητα των οδοντοτροχών είναι η συνηθισμένη του εμπορίου. Η έδραση (σε κιβώτιο μειωτήρα) είναι καλή. Να βρεθούν οι αριθμοί δοντιών των οδοντοτροχών, οι διάμετροι των αρχικών κύκλων τους, το μέτρο οδοντώσεως (modul), τα πλάτη των τροχών και η περιστροφική ταχύτητα της κινούμενης ατράκτου. Άσκηση Α.4: Υπολογισμός μελέτης οδοντοτροχών με ευθεία οδόντωση Μορφή υπολογισμού 2 Δεδομένα όπως στην άσκηση A.3, αλλά δεν δίνεται το d=30mm. Δίνεται η ισχύς που μεταδίδεται από τον μικρό στον μεγάλο τροχό, ίση με Ν1 = 20 PS. Ζητούμενα όπως στην άσκηση Α.3
3 Άσκηση Α.5: Υπολογισμός μελέτης οδοντοτροχών με ευθεία οδόντωση Μορφή υπολογισμού 3 Δεδομένα όπως στην άσκηση A.3, αλλά δεν δίνεται το d=30mm, ούτε η ισχύς. Δίνεται όμως ότι: Η αξονική απόσταση των τροχών πρέπει να είναι a = 255 mm. Ζητούμενα όπως στην άσκηση Α.3 Άσκηση Α.6: Υπολογισμοί μελέτης οδοντοτροχών με κεκλιμένη οδόντωση Δεδομένα όπως στην άσκηση Α.3 ή Α.4 ή Α.5, με τη διαφορά ότι προδιαγράφεται κεκλιμένη οδόντωση. Ζητούμενα: Οι αριθμοί δοντιών των οδοντοτροχών, η γωνία κλίσεως δοντιών, το μέτρο οδοντώσεως (modul) σε κάθετη τομή, το μέτρο οδοντώσεως σε μετωπική τομή, οι διάμετροι των αρχικών κύκλων των τροχών, τα πλάτη των τροχών και η περιστροφική ταχύτητα της κινούμενης ατράκτου. Άσκηση Α.6: Υπολογισμοί ελέγχου οδοντοτροχών με κεκλιμένη οδόντωση, όταν δίνονται όλες οι διαστάσεις των τροχών Σε ζεύγος οδοντοτροχών με κεκλιμένη οδόντωση ισχύουν τα εξής: Αριθμοί δοντιών: z1=15, z2=37 Μέτρο οδοντώσεως (modul) σε τομή κάθετη προς το δόντι: mn=2,5mm Γωνία κλίσης δοντιών: β=22, συντελεστές μετατόπισης κατατομής: χ1=0,5, χ2=0,2, πλάτος οδοντοτροχών: b=20mm Με βάση τα παραπάνω, η αρχική διάμετρος του μικρού τροχού προκύπτει ίση με d1=40,445mm, ενώ οι φανταστικοί αριθμοί δοντιών προκύπτουν ίσοι με z 1n =18,5 και z 2n =45,6 Η περιστροφική ταχύτητα του μικρού τροχού είναι n 1 = 3000 Σ/min, άρα η περιφερειακή (γραμμική) ταχύτητα των δοντιών είναι υ=6,35 m/s Υλικό κατασκευής: χάλυβας St60, φόρτιση κυματοειδής. Ζητείται ο έλεγχος αντοχής των δοντιών σε θραύση, αν στην άτρακτο του μικρού τροχού ασκείται στρεπτική ροπή Mt1 = 140 Nm. Επίσης ζητείται ο έλεγχος αντοχής των δοντιών σε επιφανειακή πίεση. Β. Ασκήσεις λυμένες Άσκηση Β.1: Πλήρης υπολογισμός οδοντοτροχών με κεκλιμένη οδόντωση Δεδομένα: Ισχύς κινητήριας ατράκτου: Ν 1 = 50 kw Περιστροφική ταχύτητα κινητήριας ατράκτου: n 1 = 4000 Σ/min Επιθυμητή σχέση μετάδοσης: i = 2,5 (επιτρέπεται μία μικρή απόκλιση) Υλικό οδοντοτροχών: χάλυβας C15
4 Λύση: α) Άλλα μεγέθη λειτουργίας: Περιστροφική ταχύτητα κινητήριας ατράκτου, σε Σ/s=Hz: 4000 Σ/min ν 1 = = 66,7Σ/s = 66,7Hz 60s/min Γωνιακή ταχύτητα κινητήριας ατράκτου: ω 1 = 2 π ν = 2 * 3,14 * 66,7 rad/s = 418,9 rad/s (Β' τρόπος υπολογισμού της γων. ταχύτητας της κινητήριας ατράκτου ω 1 : 1 rad/s είναι 9,55 Σ/min x είναι 4000 Σ/min 4000 Σ/min Ισχύει x = * 1 rad/s = 418,9 rad/s ) 9,55 Σ/min Στρεπτική ροπή κινητήριας ατράκτου: N W Μ t 1 = T 1 = = ω 1 418,9 rad/s = 119,4 Nm β) Μέγεθος οδοντοτροχού, προσεγγιστικά: Εάν τα d και do1 (που θα έχει την ίδια σημασία με το dos1) είναι αυτά που εξηγούνται στο σχήμα (α) παρακάτω, τότε μπορούμε να πάρουμε: ³ T 1 ³ Nmm Διάμετρο κινητήριας ατράκτου: d = => 0,2 τεπ 0,2 * 25 N/mm² => d 28,8 mm d = 30 mm α) β) Εικόνα: (α) Οδοντοτροχός ολόσωμος με την άτρακτο (β) Οδοντοτροχός συνδεδεμένος με την άτρακτο με σφήνα Εκτιμούμε ότι do1 1,5 d = 1,5 * 30mm = 45mm Πρώτη εκτίμηση γραμμικής ταχύτητας: υ = π d 01 n 1 60 s/min = 3,14 0,045 m 4000 Σ/min 60s/min = 9,42 m/s
5 Επειδή υ > 5 m/s παίρνουμε z 1 = 25 Διάμετρος οδοντοτροχού (ακριβέστερος υπολογισμός): 1,1*d*z 1 1,1*30mm*25 d 01 = d 0s1 = = = 36,7mm z 1 2,5 25 2,5 Μέτρο οδοντώσεως (modul) σε μετωπική τομή: d 0s1 36,7mm ms = = = 1,468mm z 1 25 Υπολογισμός πλάτους: Πρέπει b 1 = ψ d d 0s1 (1) αλλά ταυτόχρονα b 1 ψ m m n (2) Δεχόμαστε περίπτωση (β) για το ψ d (μέση ποιότητα οδόντωσης και έδρασης) οπότε για i = 2,5 προκύπτει ψ d = 0,62 και b 1 = ψ d d 0s1 = 0,62 * 36,7mm 23mm Ο έλεγχος κατά τον τύπο (2) δεν μπορεί να εκτελεσθεί ακόμη. Υπολογισμός γωνίας κλίσεως: m s tanβ 0 3, (3) b 1 Άρα 1,468mm tanβ 0 3, = 0,22339 => β 0 = 12,59 ο 23mm Μέτρο οδοντώσεως σε κάθετη τομή: mn,προσεγγιστικό = ms cosβ 0 = 1,468mm * cos12,59 o = 1,433mm Εκλέγεται η τυποποιημένη τιμή mn,τυπ = 1,50mm γ) Μέγεθος οδοντοτροχών, οριστικές τιμές: Αφού προσδιορίσθηκε η τυποποιημένη τιμή του μέτρου οδοντώσεως σε κάθετη τομή (δηλ. η mn,τυπ = 1,50mm), μπορούν να βρεθούν οι οριστικές τιμές και των υπόλοιπων διαστάσεων των δύο οδοντοτροχών του ζεύγους που μελετούμε. Η οριστική τιμή του μέτρου οδοντώσεως σε μετωπική τομή είναι mn,τυπ 1,50mm ms' = = = 1,537mm cosβ 0 cos12,59 o Διαλέγουμε z 2 = z 1 * i = 25 * 2,5 = 62,5 => z 2 = 63 Άρα η σχέση μετάδοσης γίνεται: i = z 2 / z 1 = 63 / 25 = 2,52 Οι διάμετροι των οδοντοτροχών θα είναι: του μικρού οδοντοτροχού: d 0s1 ' = m s ' * z 1 = 1,537mm * 25 = 38,425mm του μεγάλου οδοντοτροχού: d 0s2 ' = m s ' * z 2 = 1,537mm * 63 = 96,831mm Με βάση τη διάμετρο του μικτού οδοντοτροχού, η γραμμική ταχύτητα θα είναι:
6 υ = π d ' n 0s1 1 3,14 0,038425m 4000 Σ/min = = 8,05m/s 60s/min 60s/min Εξακολουθεί να ισχύει υ > 5 m/s, οπότε παραμένει η εκλογή z 1 = 25 Το πλάτος με βάση τις οριστικές τιμές των υπόλοιπων μεγεθών: Από τη σχέση του πλάτους με τον βαθμό πλάγιας επικαλύψεως ε sp (δηλ. από τύπο ανάλογο με τον (3) παραπάνω) προκύπτει: m s ' π b 2 = ε sp (4) tanβ 0 Στον παραπάνω τύπο θα δεχθούμε τις τιμές ε sp = 1,1 (που είναι μία εύστοχη τιμή για τον βαθμό πλάγιας επικαλύψεως) και tanβ 0 = 0,22339 (όσο ακριβώς είχε βρεθεί νωρίτερα). Στον τύπο τοποθετείται το πλάτος b 2, επειδή ο βαθμός πλάγιας επικαλύψεως προκύπτει από το μικρότερο από τα δύο πλάτη τροχών, που είναι το b 2. Ισχύει: m s ' π 1,537mm * π b 2 = ε sp = * 1,1 = 23,8mm 24mm tanβ 0 0,22339 Αυτό είναι το πλάτος του μικρού τροχού. Για το πλάτος του μεγάλου τροχού θα δεχθούμε ότι b 2 = b 1 3mm άρα b 1 = b 2 + 3mm = 24mm + 3mm = 27mm Έλεγχος για το πλάτος: Αναφέρθηκε (βλ. τύπο (2) παραπάνω) ότι πρέπει b 1 ψ m m n Στην περίπτωσή μας ισχύει ψ m = 25, άρα πρέπει b 1 25 * 1,5mm = 37,5mm Παρατηρούμε ότι το πλάτος b 1 = 27mm δεν ξεπερνά την επιτρεπόμενη τιμή. ε) Δυνάμεις στα δόντια: P u = 2Τ 1 d 0s1 ' = Nmm 38,425 mm = 6215N P r = P tanα n tan 20o u = 6215Ν = 2318N cosβ ο cos12,59 o (όπου α n = 20 από το κοπτικό εργαλείο). P a = P u tanβο = 6215N * tan12,59 = 1388N στ) Αντοχή του ποδιού σε δυναμική θραύση: P u Πρέπει b 1 m n φ q κ σ επ (5) Από τη σελ. 58α του βιβλίου του εργαστηρίου παίρνουμε β = 12,59 => φ = 1,305
7 Ο φανταστικός αριθμός δοντιών είναι z n1 = z 1 1 sin 2 β o cos 2 α n cosβ o = = 26,7 Με z n1 = 26,7 και χ 1 = 0, από το διάγραμμα της σελ. 45 του βιβλίου του εργαστηρίου παίρνουμε qκ = 2,7 Για υλικό C15, από τη σελ. 46 του βιβλίου του εργαστηρίου παίρνουμε σ ο = 22 kp/mm² 220 Ν/mm² Δεχόμαστε συντελεστή ασφάλειας ίσο με 1,5 οπότε η επιτρεπόμενη τάση γίνεται: σ επ = = 146Ν /mm 1,5 Αντικαθιστούμε στην ανισότητα (5) τις αριθμητικές τιμές των μεγεθών και βλέπουμε αν επαληθεύεται: 6215Ν 27mm 1,5mm 1,305 * 2,7 146N/mm 2 => 317,5N/mm 2 146N/mm 2 Η ανισότητα δεν επαληθεύεται, άρα το πόδι του οδοντοτροχού δεν αντέχει σε θραύση. ζ) Αντοχή των δοντιών σε επιφανειακή πίεση: Πρέπει: P u b 2 d 0s1 ' * i 1 i y w y c y L p o y 1 y 2 S (6) (Χρησιμοποιείται το μικρότερο από τα δύο πλάτη, δηλ. το b 2, επειδή σε αυτό ασκείται η επιφανειακή πίεση) Από προηγούμενους υπολογισμούς γνωρίζουμε ότι: P u = 6215N 621,5 kp, b 2 = 24mm, d 0s1 ' = 38,425mm, i = 63/25 = 2,52 Για συνδυασμό υλικών χάλυβα και χάλυβα παίρνουμε y w = 86 και y 1 = 1 Βρέθηκε νωρίτερα ότι ο φανταστικός αριθμός δοντιών του μικρού οδοντοτροχού είναι z n1 = 26,7. Επομένως του μεγάλου οδοντοτροχού είναι z n2 = i z n1 = 2,52 * 26,7 = 67,3 και το άθροισμα των αριθμών δοντιών είναι z n1 + z n2 = 26,7 + 67,3 = 94 Δεχόμαστε ότι οι τροχοί δεν έχουν μετατόπιση κατατομής, άρα χ 1 + χ 2 = 0 Με βάση τα z n1 + z n2 = 94, χ 1 + χ 2 = 0 και β 0 = 12,59, από το σχήμα Α3 της σελίδας 49 παίρνουμε y c = 1,72 Για τον συντελεστή y L δεχόμαστε, χάριν απλοποίησης του υπολογισμού, την τιμή y L =1 Για υλικό C15, από τη σελ. 46 του βιβλίου του εργαστηρίου παίρνουμε p ο = 190 kp/mm² Για περιφερειακή ταχύτητα υ = 8,05m/s, από τον πίνακα Α9 της σελ. 50 εκλέγουμε ιξώδες λιπαντικού ίσο με 70cSt. Επομένως, σύμφωνα με το σχήμα Α5 της σελ. 51, ο παράγοντας λιπάνσεως είναι y 2 = 0,9 Εκλέγεται συντελεστής ασφάλειας S = 1,5
8 Αντικαθιστούμε στην ανισότητα (6) τις αριθμητικές τιμές των μεγεθών και βλέπουμε αν επαληθεύεται: 621,5 24 * 38,425 * 2, * 1 * 0,9 * 86 1,72 1,0 => 2,52 1,5 => Παρατηρούμε ότι η ανισότητα δεν επαληθεύεται, άρα τα δόντια δεν αντέχουν σε επιφανειακή πίεση. η) Συμπέρασμα: Βρέθηκε ότι δεν επαληθεύεται κανένας από τους δύο ελέγχους αντοχής των οδοντοτροχών. Απαιτείται κάποια τροποποίηση (π.χ. αύξηση των αριθμών δοντιών με διατήρηση του ίδιου i, αύξηση του m n, καλύτερη έδραση ώστε να επιτρέπεται μεγαλύτερο ψ d άρα και μεγαλύτερο πλάτος) ώστε να επαληθεύονται οι ανισότητες που εξετάζουμε.
Παράδειγμα υπολογισμού μελέτης και ελέγχου ζεύγους ατέρμονα-κορώνας
Παράδειγμα υπολογισμού μελέτης και ελέγχου ζεύγους ατέρμονα-κορώνας Δεδομένα: Στρεπτική ροπή στον ατέρμονα: Τ1 = Μ t1 = 10 Νm Περιστροφική ταχύτητα του ατέρμονα: n1 = 600 Σ/min Σχέση μετάδοσης: i = 40
ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ
1. Σημασίες δεικτών και σύμβολα ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ - Σημασίες δεικτών: 1 Μικρός οδοντοτροχός («πινιόν») ενός ζεύγους Μεγάλος οδοντοτροχός (ή σκέτα «τροχός») ούτε 1 ούτε : Εξετάζεται ο οδοντοτροχός
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ ΜΕ ΠΛΑΓΙΟΥΣ ΟΔΟΝΤΕΣ Απαραίτητα δεδομένα : αριθμός στροφών
Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς.
ΑΣΚΗΣΗ 1 Ένας οδοντωτός τροχός με ευθείς οδόντες, z = 80 και m = 4 mm πρόκειται να κατασκευασθεί με συντελεστή μετατόπισης x = + 0,5. Να προσδιοριστούν με ακρίβεια 0,01 mm: Τα μεγέθη της οδόντωσης h α,
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ \ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΚΩΝΙΚΩΝ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ Απαραίτητα δεδομένα : αριθμός στροφών κινητήριου
Οδοντωτοί τροχοί. Εισαγωγή. Είδη οδοντωτών τροχών. Σκοπός : Μετωπικοί τροχοί με ευθύγραμμους οδόντες
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Διδάσκοντες : X. Παπαδόπουλος Λ. Καικτσής Οδοντωτοί τροχοί Εισαγωγή Σκοπός : Μετάδοση περιστροφικής κίνησης, ισχύος και ροπής από έναν άξονα
ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ
ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ β ελκόμενος κλάδος β n 2 n 1 α 1 d d 2 α 1 2 (α) κινητήρια τροχαλία έλκων κλάδος a β κινούμενη τροχαλία F 2 n 1 α 1 F 2 FA κινητήρια τροχαλία F 1 (β) F 1 Σχήμα 1 (α) Γεωμετρικά
ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)
ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) Η εξεταστέα ύλη για τις περιγραφικές ερωτήσεις (στο πρώτο μέρος της γραπτής εξέτασης) θα είναι η παρακάτω: - Κεφ. 1: Ποια είναι τα δύο πλεονεκτήματα
ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ
1. Σημασίες δεικτών και σύμβολα ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ - Σημασίες δεικτών: 1 Κινητήριος οδοντοτροχός ενός ζεύγους 2 Κινούμενος οδοντοτροχός ούτε 1 ούτε 2: Εξετάζεται ο οδοντοτροχός μόνος του, και όχι σε
ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ Κώστας Κιτσάκης Μηχανολόγος Μηχανικός ΤΕ MSc Διασφάλιση ποιότητας Επιστημονικός Συνεργάτης Άσκηση 1 Στο κιβώτιο ταχυτήτων
ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ
ΤΥΠΟΛΟΓΙΟ ΙΜΑΝΤΟΚΙΝΗΣΕΩΝ β ελκόμενος κλάδος β n 2 n 1 α 1 d d 2 α 1 2 (α) κινητήρια τροχαλία έλκων κλάδος a β κινούμενη τροχαλία F 2 n 1 α 1 F 2 FA κινητήρια τροχαλία F 1 (β) F 1 Σχήμα 1 (α) Γεωμετρικά
Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΠΙΝΑΚΕΣ ΓΙΑ ΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι
Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΥΠΟΛΟΓΙΟ ΚΑΙ ΠΙΝΑΚΕΣ ΓΙΑ ΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι Διδάσκων: Ν. Μοσχίδης ΣΕΡΡΕΣ, Φεβρουάριος 2007 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο Σελίδα Πιν. 1 Ευρετήριο φυσικών μεγεθών 3 Πιν. 2 Ευρετήριο
ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι
ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι Το τεστ θα περιλαμβάνει ασκήσεις στα παρακάτω κεφάλαια: Υπολογισμός ελέγχου συγκόλλησης Υπολογισμός μελέτης δοκού που φορτίζεται σε κάμψη Υπολογισμός
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ - ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ
Δυνάμεις στήριξης και καμπτικές ροπές σε άτρακτο που δέχεται φόρτιση στον χώρο T Ε T Ε. A z. A y
υνάμεις στήριξης και καμπτικές ροπές σε άτρακτο που δέχεται φόρτιση στον χώρο ίδεται μία άτρακτος ΑΒ που φέρει οδοντοτροχό στη θέση. Στο δεξιό της άκρο είναι συνδεδεμένη με κινητήρα ο οποίος ασκεί στρεπτική
ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΕΠΑΛ
ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΕΠΑΛ Προτεινόμενα θέματα 2017-2018 ΕΚΠΑΙΔΕΥΤΙΚΟΣ: ΒΑΝΤΣΗΣ Β. ΓΕΩΡΓΙΟΣ ΜΗΧΑΝΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΠΕ17 1 ο Θ Ε Μ Α Α. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις
2 β. ιάμετρος κεφαλών (ή κορυφών) 3 γ. Βήμα οδόντωσης 4 δ. ιάμετρος ποδιών 5 ε. Πάχος δοντιού Αρχική διάμετρος
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ 11 ΙΟΥΝΙΟΥ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Στοιχεία Μηχανών ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στοιχεία Μηχανών ΙΙ Ενότητα 1: Γενικά στοιχεία οδοντωτών τροχών - Γεωμετρία οδόντωσης Μετωπικοί τροχοί με ευθεία οδόντωση Δρ Α.
Ηλοσυνδέσεις. = [cm] Μαυρογένειο ΕΠΑΛ Σάμου. Στοιχεία Μηχανών - Τυπολόγιο. Χατζής Δημήτρης
Ηλοσυνδέσεις Ελάχιστη επιτρεπόμενη διάμετρος ήλου που καταπονείται σε διάτμηση 4Q = [cm] zxπτ επ : διάμετρος ήλου σε [cm] Q : Μέγιστη διατμητική δύναμη σε [an] τ επ : επιτρεπόμενη διατμητική τάση σε [an/cm
Τα πλεονεκτήματα των οδοντωτών τροχών με ελικοειδή δόντια είναι:
Οδοντώσεις 1. Ποιος είναι ο λειτουργικός σκοπός των οδοντώσεων (σελ. 227) Λειτουργικός σκοπός των οδοντώσεων είναι η μετάδοση κίνησης σε περιπτώσεις ατράκτων με γεωμετρικούς άξονες παράλληλους, τεμνόμενους
Σχήμα 12-7: Σκαρίφημα άξονα με τις φορτίσεις του
1.6.1 ΑΣΚΗΣΗ Ζητείται να υπολογιστεί ένας άξονας μετάδοσης κίνησης και ισχύος με είσοδο από την τρίτη τροχαλία του σχήματος, όπου φαίνονται οι με βασικές προδιαγραφές του προβλήματος. Ο άξονας περιστρέφεται
Σχήμα 1: Βασικές διαστάσεις μετωπικών οδοντωτών τροχών
hπ hκ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Πάτρα 9 Μαΐου 2016 ΠΑΡΑΜΕΤΡΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΤΩΠΙΚΩΝ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ: ΕΡΓΑΣΤΗΡΙΟ 11 Ο Να σχεδιαστεί παραμετρικά ένας μετωπικός οδοντωτός τροχός. Οι παράμετροι σχεδιασμού πρέπει
Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων
1 Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων Πρόβλημα 3.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές.
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α
Ασκήσεις κοπής σε τόρνο
Ασκήσεις κοπής σε τόρνο. Σε τόρνο γίνεται κατεργασία άξονα από χάλυβα St 60. µε δύο παράλληλα εργαλειοφορεία ταυτόχρονα, όπως φαίνεται στο Σχ.. ίνονται: ιάµετροι κατεργασίας: d = 300 mm, d = 00 mm. Κοινή
Φρεζάρισμα. Με το φρεζάρισμα μπορούμε να κατεργαστούμε επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτούς τροχούς.
ΦΡΕΖΕΣ ΦΡΕΖΕΣ Είναι εργαλειομηχανές αφαίρεσης υλικού από διάφορες εργασίες με μηχανική κοπή. Η κατεργασία διαμόρφωσης των μεταλλικών υλικών στη φρέζα, ονομάζεται φρεζάρισμα. Φρεζάρισμα Με το φρεζάρισμα
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι. ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ: ΕΙΣΑΓΩΓΗ ΣΤΑ ΚΙΒΩΤΙΑ ΤΑΧΥΤΗΤΩΝ - ΟΔΟΝΤΟΚΙΝΗΣΗ ΓΚΛΩΤΣΟΣ ΔΗΜΗΤΡΗΣ dimglo@teiath.gr Εργαστήριο Επεξεργασίας Ιατρικού Σήματος και
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065
Ανυψωτικές & Μεταφορικές Μηχανές Ακαδημαϊκό έτος: 010-011 Άσκηση (Θέμα Επαναληπτικής Γραπτής Εξέτασης Σεπ010 / Βαρύτητα: 50%) Έστω η εγκατάσταση της ευθύγραµµης µεταφορικής ταινίας του Σχήµατος 1, η οποία
ΑΡΧΗ ΜΑ: ΘΕΜΑ Α1. Να
Γ ΤΑΞΗΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 21 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ
10 Ν 100 εκ (1 μέτρο) Άγνωστο Ψ (N) 20 εκ (0.2 Μ)
Τεχνολογία A τάξης Λυκείου Μάθημα 20 ον - Μηχανισμοί Φύλλο εργασίας Μοχλοί σελίδες Dan-78-87 Collins 167-208 1. Ο άνθρωπος όταν πρωτοεμφανίστηκε στην γη ανακάλυψε πολύ σύντομα την χρήση του μοχλού για
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΚΑΙ ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΚΑΙ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 4
α. Οι ήλοι κατασκευάζονται από ανθρακούχο χάλυβα, χαλκό ή αλουμίνιο. Σ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 6/04/206 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις
ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ Κώστας Κιτσάκης Μηχανολόγος Μηχανικός ΤΕ MSc Διασφάλιση ποιότητας Επιστημονικός Συνεργάτης Άσκηση Να βρεθεί η περιστροφική
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ειδική αντίσταση κοπής Assistnt Pro. John Kehgis Mehnil Engineer, Ph.D. Περίγραμμα Στο κεφάλαιο αυτό γίνεται εκτενής αναφορά στο μηχανισμό της ορθογωνικής κοπής. Εισαγωγή - Κατεργασίες
Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια
Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια Κ. ΝΤΑΒΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Α. ΗΛΩΣΕΙΣ. Να αναφέρετε τα μέσα σύνδεσης.. Σε ποιες κατηγορίες διακρίνονται οι συνδέσεις;. Ποιες συνδέσεις ονομάζονται
Σχήμα 22: Αλυσίδες κυλίνδρων
Αλυσοκινήσεις Πλεονεκτήματα ακριβής σχέση μετάδοση λόγω μη ύπαρξης διολίσθησης, η συναρμολόγηση χωρίς αρχική πρόταση επειδή η μετάδοση δεν βασίζεται στην τριβή καθώς επίσης και ο υψηλός βαθμός απόδοσης
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 2008
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 008 ΘΕΜΑ Ο α. Οι ήλοι, ανάλογα µε την µορφή της κεφαλής τους διακρίνονται σε Ηµιστρόγγυλους. Φακοειδείς. Η κεφαλή είναι λιγότερο καµπυλωτή από αυτή των ηµιστρόγγυλων και µοιάζει
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1 Τόρνος / Συμβατικός και CNC Assistant Prof. John Kechagias Mechanical Engineer, Ph.D. Κατηγορίες τορναρίσματος 2 Με βάση τις κινήσεις του κοπτικού, την τοποθέτηση του ως προς
ΓΕΩΡΓΙΚΟΙ ΕΛΚΥΣΤΗΡΕΣ OΧΗΜΑΤΑ ΑΝΩΜΑΛΟΥ ΕΔΑΦΟΥΣ. Ασκήσεις
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ ΓΕΩΡΓΙΚΟΙ ΕΛΚΥΣΤΗΡΕΣ OΧΗΜΑΤΑ ΑΝΩΜΑΛΟΥ ΕΔΑΦΟΥΣ Ασκήσεις Δρ Γ. Παραδεισιάδης Αναπληρωτής Καθηγητής ΘΕΣΣΑΛΟΝΙΚΗ
1501 - Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Οδοντωτοί Τροχοί (Γρανάζια) - Μέρος Β Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το
Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών
Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών Δυνάμεις κοπής στο φρεζάρισμα Απόκριση εκτός συντονισμού Απόκριση σε συντονισμό Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών Άδεια Χρήσης
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ /9/015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα κινείται σε ευθύγραμμη οριζόντια τροχιά με την ταχύτητά του σε συνάρτηση
ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑΤΑ
ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Να γράψετε στο τετράδιό σας τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης
ΘΕΜΑ 1 ο Α. Ποια είναι τα μορφολογικά χαρακτηριστικά και ποια τα υλικά κατασκευής των δισκοειδών συνδέσμων; Μονάδες 12
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 30 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα
Πρέσσες εκκέντρου. Κινηματική Δυνάμεις Έργο Εφαρμογές. Πρέσσες εκκέντρου. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες εκκέντρου Κινηματική Δυνάμεις Έργο Εφαρμογές Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες εκκέντρου Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ ΙI ΕΔΡΑΝΑ ΟΛΙΣΘΗΣΗΣ Πάτρα 005 Έδρανα ολίσθησης Σελίδα - - 1.1 ΑΣΚΗΣΕΙΣ ΕΔΡΑΝΩΝ ΟΛΙΣΘΗΣΗΣ 1.1.1 ΑΣΚΗΣΗ Ένα πλήρες έδρανο ολίσθησης έχει διάμετρο 0 /d 1. Το φορτίο του
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 2007
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 007 ΘΕΜΑ Ο α. Κατά την σύσφιξη ο κοχλίας καταπονείται σε εφελκυσµό και τα κοµµάτια σε θλίψη. Το περικόχλιο ίσης θλίβεται. Οι δυνάµεις που καταπονούν τον κοχλία είναι θλιπτικές
Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ ΤΕΤΑΡΤΗ 9/04/07 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις που
Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος..
ΑΣΚΗΣΕΙΣ στο μάθημα Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.) Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος.. Λ Υ Σ Η y α Λόγω ομοιότητας των τριγώνων ισχύει ότι : εφφ
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Οδοντωτοί Τροχοί (Γρανάζια) - Μέρος Α Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΑΘΗΜΑ 4-2 ΑΤΡΑΚΤΟΙ ΑΞΟΝΕΣ - ΣΤΡΟΦΕΙΣ
ΟΔΟΝΤΩΣΕΙΣ. Κιβώτιο ταχυτήτων
Οδοντωσεις ΟΔΟΝΤΩΣΕΙΣ Κιβώτιο ταχυτήτων ΟΔΟΝΤΩΣΕΙΣ Μειωτήρας στροφών με ελικοειδείς οδοντωτούς τροχούς ΟΔΟΝΤΩΣΕΙΣ: Κωνικοί οδοντοτροχοί ΟΔΟΝΤΩΣΕΙΣ : Κορώνα - Ατέρμονας κοχλίας ΟΔΟΝΤΩΣΕΙΣ Ανταλλακτικοί
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ
9. ΦΟΡΤΙ ΔΙΤΟΜΗΣ ΔΟΚΩ 9.1 ενικά Ο όρος φορτία σημαίνει είτε δυνάμεις είτε ροπές. Συνοψίζοντας αυτά που αναφέρθηκαν σε προηγούμενα κεφάλαια, μπορούμε να πούμε ότι δοκός είναι ένα σώμα με μεγάλο μήκος και
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Στοιχεία μετάδοσης κίνησης (ιμάντες, αλυσίδες, οδοντωτοί τροχοί). Κινητήρες εσωτερικής καύσης. Μηχανές ηλεκτρικές,
ΕΝΟΤΗΤΑ 8: ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ
ΕΝΟΤΗΤΑ 8: ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ 86 ΣΤΟΧΟΙ: Με τη συμπλήρωση της ύλης της ενότητας αυτής ο μαθητής θα πρέπει να μπορεί να: 1. Εξηγεί τι είναι τα συστήματα μετάδοσης κίνησης και ποιο σκοπό εξυπηρετούν. 2. Ταξινομεί
ΑΡΧΗ ΜΑ: ΘΕΜΑ Α1. Να. στ. σης. εγκοπή. Πείρος με
Γ ΤΑΞΗΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΑΡΑΣΚΕΥΗ ΣΕΠΤΕΜΒΡΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ ΣΥΝΟΛΟ
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ Ο.Π Β Λ Γ Λ 5//08 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ.
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ. ΖΗΤΗΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ ΤΜΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ Τ.Ε.Λ. ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΙ ΙΚΟΤΗΤΑΣ ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΑΠΟΦΟΙΤΟΥΣ
Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων
Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)
ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
α. Άτρακτος ονομάζεται κάθε ράβδος που περιστρέφεται μεταφέροντας ροπή. Σ
ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις
1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης
1 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης Ο Ένα υλικό σημείο κινείται επάνω σε μια ευθεία έτσι ώστε η απομάκρυνση του να δίνεται
ΣΧΕΔΙΑΣΗ ΑΤΡΑΚΤΩΝ. Λειτουργικές Παράμετροι
Άτρακτος: περιστρεφόμενο στοιχείο κυκλικής (συνήθως) διατομής (πλήρους ή σωληνωτής) που χρησιμοποιείται για να μεταφέρει ισχύ ή κίνηση Άξονας: μη περιστρεφόμενο στοιχείο που δεν μεταφέρει ροπή και χρησιμοποιείται
2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:
Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί
ΣΧΕΔΙΟΜΕΛΕΤΗ ΤΡΙΒΑΘΜΙΟΥ ΜΕΙΩΤΗΡΑ ΣΤΡΟΦΩΝ ΜΕ ΜΕΤΩΠΙΚΟΥΣ ΟΔΟΝΤΩΤΟΥΣ ΤΡΟΧΟΥΣ
T.E.I. ANATOΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦYΣΙΚΟΥ ΑΕΡΙΟΥ Τ.Ε. ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ
ΙΜΑΝΤΟΚΙΝΗΣΗ (ΤΡΟΧΑΛΙΕΣ - ΙΜΑΝΤΕΣ)
ΙΜΑΝΤΟΚΙΝΗΣΗ (ΤΡΟΧΑΛΙΕΣ - ΙΜΑΝΤΕΣ) Για να παραλάβει μία άτρακτος περιστροφική κίνηση από μία άλλη, η οποία βρίσκεται σε αρκετή απόσταση, χρησιμοποιείται ως μέσο μετάδοσης κίνησης ο ιμάντας (λουρί) Θα πρέπει
Η εργασία αυτή αφιερώνεται στον χορηγό μου Ζάγορα Φωτεινό, για την υποστήριξη και την υπομονή του κατά τη διάρκεια των σπουδών μου!
2 Η εργασία αυτή αφιερώνεται στον χορηγό μου Ζάγορα Φωτεινό, για την υποστήριξη και την υπομονή του κατά τη διάρκεια των σπουδών μου! 3 4 Με το πέρας της εργασίας θα ήθελα να ευχαριστήσω τον Αναπληρωτή
ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ. ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ -
ΜΕΤΑΦΟΡΙΚΕΣ ΚΑΙ ΑΝΥΨΩΤΙΚΕΣΜΗΧΑΝΕΣ ΚΕΦΑΛΑΙΟ 2 ο : - ΜΕΤΑΦΟΡΙΚΕΣΤΑΙΝΙΕΣ ΤΑΙΝΙΕΣ - Σχήµα 2.1: Τυπική µεταφορική ταινία Σχήµα 2.2α: Κοίλη µεταφορική ταινία Σχήµα 2.2β: Κυρτή µεταφορική ταινία Σχήµα 2.2γ: Οριζόντια
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο
Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει:
ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ 99 11 -- 1111 Θέμα 1 ο 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος που διαδίδεται προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες
Έλεγχος Κίνησης ISL. Intelligent Systems Labοratory
Έλεγχος Κίνησης ISL Intelligent Systems Labοratory 1 Ηέννοιατηςκίνησης "µηχανική κίνηση είναι η µεταβολή της θέσης ενός υλικού σηµείου στο χώρο" µηχανική κίνηση = θέση στο χώρο υλικό σηµείο = µάζα κίνηση
το άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
ΑΡΧΗ ΣΕΙΣ ΣΑΒΒΑΤΟ ΜΑ: ΘΕΜΑ Α1. Να ΣΤΗΛΗ. α. β. γ. δ. ε. στ. Κεφαλής. Γρύλος
Γ ΤΑΞΗΣ HMEΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣ ΣΕΙΣ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΣΑΒΒΑΤΟ 10 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ ΣΥΝΟΛΟ ΣΕΛΙ
ΑΡΧΗ ΣΕΙΣ ΣΑΒΒΑΤΟ ΜΑ: ΘΕΜΑ Α1. Να. Foititikanea.gr ΣΤΗΛΗ. α. β. γ. δ. ε. στ. Κεφαλής. Γρύλος
Γ ΤΑΞΗΣ HMEΡΗΣΙΩΝ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης Β που δίνει τη σωστή αντιστοίχιση. Σημειώνεται
ΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό.
ΔΙΑΙΡΕΤΗΣ ΓΕΝΙΚΑ O διαιρέτης είναι μηχανουργική συσκευή, με την οποία μπορούμε να εκτελέσουμε στην επιφάνεια τεμαχίου (TE) κατεργασίες υπό ίσες ακριβώς γωνίες ή σε ίσες αποστάσεις. Το ΤΕ είναι συνήθως
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
Αναβατόριο με διπλή τροχαλία.
Αναβατόριο με διπλή τροχαλία. Η διπλή τροχαλία Σ 1 (δύο κολλημένοι δίσκοι) του σχήματος έχει εξωτερική ακτίνα R =, m και εσωτερική x = R / =,1 m και μπορεί να στρέφεται γύρω από σταθερό άξονα Ο (κατά τη
Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ
Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει
1η Οµάδα Ασκήσεων (2) Από τις σχέσεις (1) και (2) προκύπτει:
1η Οµάδα Ασκήσεων Άσκηση 1.1 Η εγκατάσταση πρόωσης πλοίου αποτελείται από 4 πολύστροφους όµοιους κινητήρες Diesel που κινούν τον ίδιο ελικοφόρο άξονα µε την παρεµβολή µειωτήρα στροφών. Η µέγιστη συνεχής
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
[50m/s, 2m/s, 1%, -10kgm/s, 1000N]
ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,
2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων
2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων 2.1 Όπως είναι γνωστό, όταν σε κάποιο σώμα ενεργούν δυνάμεις, ένα από τα αποτελέσματά τους μπορεί να είναι να αλλάξει η κατάσταση
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α (μονάδες 25) Α1. Σε μια Α.Α.Τ. η εξίσωση της απομάκρυνσης είναι x=a.συνωt. Τη χρονική στιγμή
α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος
Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1. Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4
Τ.Ε.Ι.Θ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ 1 Ονοματεπώνυμο : Αναγνωστάκης Γιάννης Τμήμα : Οχημάτων Ημερομηνία : 25/5/00 Άσκηση : Ν 4 1 Δεδομένα : 1 3000 2 2000 3 12000 4 15000 d 1 12 d 2 15 Ζητούμενα : Να γίνει ο έλεγχος
10,2. 1,24 Τυπική απόκλιση, s 42
Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.