ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1"

Transcript

1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι : n N : n! n n Λύση. Θα χρησιµοποιήσουµε την Αρχή Μαθηµατικής Επαγωγής. Ορίζουµε P (n) να είναι η Πρόταση n! n n Θα δείξουµε οτι η P () ισχύει και ότι, υποθέτοντας n και P (n) ισχύει ότι η P (n + ) ισχύει. Για n = έχουµε ότι η P () είναι που ισχύει. Υποθέτουµε ότι n και η P (n) ισχύει, δηλαδή n! n n. Θα δείξουµε ότι η P (n + ) ισχύει, δηλαδή ότι (n + )! (n + ) (n+). Πράγµατι, έχουµε µε χρήση στην πρώτη ανισότητα της επαγωγικής υπόθεσης P (n): (n + )! = (n + )(n!) (n + )n n (n + )(n + ) n = (n + ) n+ Συνεπώς η P (n + ) ισχύει. Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής αυτό που ϑέλουµε να δείξουµε ισχύει για κάθε n N. Ασκηση. είξτε ότι για κάθε n N ισχύουν τα ακόλουθα : (n ) = n και (3n ) = Λύση.. Θα δείξουµε την Ϲητούµενη σχέση n(3n ) µε χρήση Αρχής Μαθηµατικής Επαγωγής (n ) = n, n ( ) Για n = έχουµε = και για n =, έχουµε + 3 = 4 =. Εποµένως η Ϲητούµενη σχέση ( ) αληθεύει, όταν n =,. Επαγωγικη Υποθεση: Υποθέτουµε ότι για n > ισχύει : (n ) = n

2 Για την περίπτωση του αθροίσµατος των n + πρώτων περιττών αριθµών, ϑα έχουµε, µε χρήση της Επαγωγικής Υπόθεσης : (n ) + n + = n + n + = (n + ) Εποµένως η Ϲητούµενη σχέση ( ) ισχύει και στην περίπτωση του αθροίσµατος των n+ περιττών αριθµών. Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N.. Θα δείξουµε την Ϲητούµενη σχέση (3n ) = µε χρήση Αρχής Μαθηµατικής Επαγωγής. n(3n ), n ( ) Για n = έχουµε = (3 ) και για n =, έχουµε + 4 = = (3 ). Εποµένως η Ϲητούµενη σχέση ( ) αληθεύει, όταν n =,. Επαγωγικη Υποθεση: Υποθέτουµε ότι για n > ισχύει : n(3n ) (3n ) = Για την περίπτωση του αθροίσµατος των n + όρων, ϑα έχουµε, µε χρήση της Επαγωγικής Υπόθεσης : (3n ) + (3(n + ) ) = (3n ) + (3n + ) = n (3n ) + 3n +. (πράξεις). = 3n(n + ) + (n + ) (3n + )(n + ) = = (n + )( 3(n + ) ) Εποµένως η σχέση ( ) ισχύει και στην περίπτωση του αθροίσµατος των n + όρων. Σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N. Ασκηση 3. Να δείξετε ότι υπάρχει ϕυσικός αριθµός N N έτσι ώστε : n N : n > n 3 Λύση. Πρώτα δοκιµάζουµε µικρές ϕυσικές τιµές του n σε αναζήτηση υποψήφιου N. Για n = η ανισότητα n > n 3 ισχύει, όχι όµως και για n = γιατί = 4 < 3. Με δοκιµές παρτηρούµε ότι η ανισότητα δεν ισχύει και για n =, 3,..., 9, ενώ ισχύει για n = 0, αφού 0 = 04 > 000 = 0 3.

3 3 Ορίζουµε P (n) την Πρόταση n > n 3 και ϑέτουµε N = 0. Θα δείξουµε ότι η P (n) ισχύει για κάθε n N µε χρήση της Αρχής Μαθηµατικής Επαγωγής. Εποµένως πρέπει να δείξουµε οτι η P (0) ισχύει και ότι, υποθέτοντας n 0 και P (n) ισχύει ότι η P (n + ) ισχύει. Για n = 0 είδαµε ότι η P (0) ισχύει. Υποθέτουµε ότι n 0 και η P (n) ισχύει, δηλαδή n > n 3. Θα δείξουµε ότι η P (n + ) ισχύει, δηλαδή ότι n+ > (n + ) 3. Εχουµε µε χρήση της επαγωγικής υπόθεσης P (n): n+ = n > n 3 Εποµένως αρκεί να δείξουµε οτι για n 0 έχουµε n 3 (n + ) 3. Εχουµε n 3 (n + ) 3 = ( 3 n) 3 (n + ) 3 = ( 3 n (n + ))( 3 n + 3 n(n + ) + (n + ) ) το οποίο είναι µη αρνητικό όταν 3 n (n + ) 0, δηλαδή όταν n 3. Αφού. 3 =.78 <, έχουµε 3 >., άρα 3 <. n 0, ισχύει n 3 (n + ) 3. Ετσι δείξαµε ότι η P (n + ) ισχύει. =. Εποµένως για n, άρα και για Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η ανισότητα n > n 3 ισχύει για κάθε n 0. Σχόλιο. Η ανισότητα n 3 > (n + ) 3 για n µπορεί να δειχτεί και ως εξής. Εστω f : R R η συνάρτηση µε f(x) = x 3 (x + ) 3. Εχουµε f (x) = 3x 6x 3 = 3(x x ) = 3(x x + ) = 3((x ) ) Εποµένως f (x) > 0 για x > 3. Άρα η f είναι γνησίως αύξουσα στο (3, + ). Επιπλέον f() = 34 > 0, άρα για κάθε x R µε x έχουµε f(x) > f() > 0. Ασκηση 4. Να δείξετε ότι :. n ( n(n + ) k 3 = n 3 = k=. n k k! =! +! + + n n! = (n + )! k= Λύση.. Θα δείξουµε την Ϲητούµενη σχέση ( n(n + ) ), n 3 = n ( ) µε χρήση Αρχής Μαθηµατικής Επαγωγής. Για n = έχουµε ( ( + ) ) 3 = = = Εποµένως η Ϲητούµενη σχέση ( ) αληθεύει, όταν n =. Επαγωγικη Υποθεση: Υποθέτουµε ότι για n ισχύει : ( n(n + ) n 3 = ) )

4 4 Για την περίπτωση του αθροίσµατος των n + όρων, ϑα έχουµε, µε χρήση της Επαγωγικής Υπόθεσης : n 3 + (n + ) 3 = ( n(n + ) ) + (n + ) 3 = (n + ) n + (n + )3 4 = (n + ) ( n ) 4 + n + = (n + ) n + 4n (n + ) = (n + ) 4 ( (n + )(n + ) ) = () Εποµένως η Ϲητούµενη σχέση ( ) ισχύει και στην περίπτωση του αθροίσµατος των n + όρων. Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N.. Θα δείξουµε την Ϲητούµενη σχέση µε χρήση Αρχής Μαθηµατικής Επαγωγής.! +! + + n n! = (n + )!, n ( ) Για n = έχουµε! = = = (+)!. Εποµένως η Ϲητούµενη σχέση ( ) αληθεύει, όταν n =. Επαγωγικη Υποθεση: Υποθέτουµε ότι για n > ισχύει :! +! + + n n! = (n + )! Για την περίπτωση του αθροίσµατος των n + όρων, ϑα έχουµε, µε χρήση της Επαγωγικής Υπόθεσης :! +! + + n n! + (n + ) (n + )! = (n + )! + (n + ) (n + )! = (n + )! + n (n + )! + (n + )! = ( + n + )(n + )! = (n + )(n + )! = (n + )! Εποµένως η σχέση ( ) ισχύει και στην περίπτωση του αθροίσµατος των n + όρων. Σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N. Σχόλιο. Από γνωστό παράδειγµα, την παραπάνω Άσκηση 4. καθώς και την Άσκηση 3. του Φυλλαδίου. των Προτεινοµένων Ασκήσεων προς Λύση, έχουµε ότι : n = n = n(n + )(n + ) 6 n(n + ) & n 3 = ( n(n + ) )

5 Γενικότερα, για κάθε d, υπάρχει ανάλογος τύπος για το άθροισµα : d + d + + n d Αποδεικνύεται, µε διάφορους µη-τετριµµένους τρόπους οι οποίοι ξεφεύγουν από τα πλαίσια του µαθήµατος (για παράδειγµα µε χρήση Απειροστικού Λογισµού), ότι : d + d + + n d = d ( ) d + B j (n + ) d+ j d + j j=0 όπου B j είναι ο j-οστός αριθµός του Bernoulli. Οι αριθµοί του Bernoulli, B m, m 0, ορίζονται µοναδικά από τις αναδροµικές σχέσεις B m = m ( ) m + B k, B 0 = m + k k=0 και εµφανίζονται σε πολλές περιπτώσεις και σε πολλούς µαθηµατικούς τύπους, για παράδειγµα στο ανάπτυγµα : x e x = x n B n n! n=0 Οι 6 πρώτοι αριθµοί του Bernoulli είναι οι εξής : B 0 =, B =, B = 6, B 3 = 0, B 4 = 30, B = 0 B 6 = 4, B 7 = 0, B 8 = 30, B 9 = 0, B 0 = 3 66 B = 0, B = 7 6, B 3 = 0, B 4 = , B = 0 Ασκηση. Υπενθυµίζουµε ότι η ακολουθία Fibonacci { F n N n N } είναι η ακολουθία ϕυσικών αριθµών η οποία ορίζεται αναδροµικά ως εξής : F =, F =, και F n = F n + F n, n 3 είξτε ότι ισχύουν τα ακόλουθα για κάθε n, m N:.. n F k = F + F + + F n = F n+ k= F n = an b n όπου a = + Τέλος να υπολογισθεί το άθροισµα n Λύση.. Θα δείξουµε την Ϲητούµενη σχέση µε χρήση Αρχής Μαθηµατικής Επαγωγής. k= F k & b = F + F + + F n = F n+, n 0 ( ) Ισως δούµε µια απόδειξη στα πλαίσια των Θεωρητικών Θεµάτων.

6 6 Για n = έχουµε F = και F + = F 3 =. Τότε F = = = F 3, και άρα η σχέση ( ) αληθεύει, όταν n =. Επαγωγικη Υποθεση: Υποθέτουµε ότι, n > : F + F + + F n = F n+ Για την περίπτωση του αθροίσµατος των n + πρώτων όρων της ακολουθίας, ϑα έχουµε, µε χρήση της αναδροµικής σχέσης F n+3 = F n+ + F n+, n 0, και της Επαγωγικής Υπόθεσης : F + F + + F n + F n+ = F n+ + F n+ = F n+ + F n+ = F n+3 = F (n+)+ Εποµένως η Ϲητούµενη σχέση ( ) ισχύει και στην περίπτωση του αθροίσµατος των n + πρώτων όρων της ακολουθίας. Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N.. Θα δείξουµε την Ϲητούµενη σχέση µε χρήση Αρχής Μαθηµατικής Επαγωγής. Για n = έχουµε : a b = F n = an b n, n 0 ( ) + = Για n =, χρησιµοποιώντας ότι a b = έχουµε : = = F a b = (a b )(a + b ) = a + b = + + = + = = F Επαγωγικη Υποθεση: Υποθέτουµε ότι : F m = am b m, m < n Για την περίπτωση υπολογισµού του όρου F n, χρησιµοποιώντας την αναδροµική σχέση F n = F n + F n, και την Επαγωγική Υπόθεση ϑα έχουµε : F n = F n + F n = an b n + an b n = ( a n + a n b n b n ) Για να υπολογίσουµε την τελευταία παράσταση, παρατηρούµε ότι οι αριθµοί a, b είναι οι ϱίζες της εξίσωσης x x, και άρα ϑα έχουµε : a = a + & b = b + Χρησιµοποιώντας τις τελευταίες σχέσεις, ϑα έχουµε : F n = ( a n + a n b n b n ) = ( a n (a + ) b n (b + ) ) = ( a n a b n b ) = ( a n b n) Άρα η Ϲητούµενη σχέση ( ) ισχύει και για τον n-οστό όρο της ακολουθίας.

7 7 Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N. 3. Τέλος για τον υπολογισµό του αθροίσµατος n F k ( ) k= ϑα χρησιµοποιήσουµε πάλι την Αρχή Μαθηµατικής Επαγωγής. Για ευκολία καταγράφουµε τους αρχικούς όρους της ακολουθίας Fibonacci, ξεχωριστά για τους άρτιους και για τους περιττούς δείκτες : Παρατηρούµε ότι : F =, F 4 = 3, F 6 = 8, F 8 = F 3 =, F =, F 7 = 3, F 9 = 34 F = = F 3 = F + F + F 4 = 4 = F = F + F + F 4 + F 6 = = F 7 = F 3+ F + F 4 + F 6 + F 8 = 33 = F 9 = F 4+ Οι παραπάνω σχέσεις µας οδηγούν στην υπόθεση ότι για κάθε n N, ισχύει η ακόλουθη ισότητα :. F + F F n = F n+ ( ) Με χρήση Αρχής Μαθηµατικής Επαγωγής ϑα δείξουµε ότι πράγµατι η παραπάνω ισότητα ισχύει για κάθε n N. Για n 4 οι παραπάνω σχέσεις δείχνουν ότι η σχέση ( ) είναι αληθής. Επαγωγικη Υποθεση: Υποθέτουµε ότι : F + F F n = F n+ Για την περίπτωση του αθροίσµατος των n + πρώτων όρων µε άρτιους δείκτες της ακολουθίας ϑα έχουµε, µε χρήση της αναδροµικής σχέσης F n = F n +F n, n, και της Επαγωγικής Υπόθεσης : F + F F n + F (n+) = F n+ + F (n+) = F n+ + F n+ = F n+ + F n+ = F n+3 = F (n+)+ Εποµένως η Ϲητούµενη σχέση ( ) ισχύει και στην περίπτωση του αθροίσµατος των n + πρώτων όρων µε άρτιους δείκτες της ακολουθίας. Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N.

8 8 Ασκηση 6.. Να εκτελεσθεί η Ευκλείδεια ιαίρεση µεταξύ των ακεραίων a και b, όταν : a = 98 και b = & a = 944 και b = 37. Εστω a, b Z, b 0. Να δείξετε ότι υπάρχουν µοναδικοί ακέραιοι q, r έτσι ώστε : Λύση. a = bq + r, b < r b. Υπενθυµίζουµε από την Θεωρία, ότι αν πραγµατοποιούµε την Ευκλείδεια ιαίρεση του ακεραίου a µε τον µη µηδενικό ακέραιο b, τότε όταν b > 0 το πηλίκο q της διαίρεσης είναι ίσο µε τον µεγαλύτερο ακέραιο που είναι µικρότερος ή ίσος µε τον ϱητό αριθµό a/b (δηλαδή το q είναι η ακέραια τιµή [a/b] του a/b) και το υπόλοιπο r είναι ίσο µε a qb. Εστω a = 98 και b =. Εχουµε q = 8888 και r = a qb = 8. Εστω a = 944 και b = 37. Εχουµε q = 03 και r = a qb = 33.. Υπαρξη: Από την Ευκλείδεια ιαίρεση έχουµε ότι υπάρχουν ακέραιοι q, r ώστε a = q b + r και 0 r < b. Αν r b ϑέτουµε q = q και r = r. Είναι άµεσο ότι a = qb + r και b < r b. Αν r > b και b > 0 ϑέτουµε q = q + και r = r b. Είναι άµεσο ότι a = qb + r. Αφού b = b έχουµε b < r < b και εποµένως b = b < r < 0. Αν r > b και b < 0 ϑέτουµε q = q και r = r + b. Είναι άµεσο ότι a = qb + r. Αφού b = b έχουµε b < r < b και εποµένως b = b < r < 0. Μοναδικότητα: Εστω a = qb + r = q b + r, µε b < r b και b < r b. Εχουµε r r = (q q)b. Αν q = q τότε και r = r. Υποθέτουµε q q και ϑα καταλήξουµε σε αντίφαση. Χωρίς ϐλάβη της γενικότητας µπορούµε να υποθέσουµε ότι q < q και άρα r < r. Από r r = (q q)b έπεται ότι r r = q q b b, αφού q q είναι ένας µη µηδενικός ακέραιος. Χρησιµοποιώντας τις r b και r > b έχουµε ότι r r = r r < b που έρχεται σε αντίφαση µε το r r b. Ασκηση 7. Να δείξετε ότι :. το γινόµενο δύο διαδοχικών ακεραίων είναι άρτιος αριθµός.. το γινόµενο τριών διαδοχικών ακεραίων είναι πολλαπλάσιο του 3. Επιπλέον να εξετασθεί αν : 3. το γινόµενο n το πλήθος διαδοχικών ακεραίων είναι πολλαπλάσιο του n. Λύση. Προφανώς αρκεί να δείξουµε το µέρος 3., καθώς τα. και. είναι ειδικές περιπτώσεις του. Εστω k Z. Θα δείξουµε ότι : n k(k + )(k + ) (k + n ) Από την Ευκλείδεια ιαίρεση έπεται ότι υπάρχουν µοναδικοί ακέραιοι q και r έτσι ώστε : Θέτουµε : k = nq + r, και 0 r < n A = k(k + )(k + ) (k + n ) ( )

9 9 Αν r = 0, τότε : k = nq και Αν r =, τότε : k = nq + και A = nq(k + )(k + ) (k + n ) = n A A = k(k + )(k + ) (nq + + n ) = k(k + )(k + ) n(q + ) = n A. Αν r = n, τότε : k = nq + n και A = k(k+)(k+) (k+n ) = k(nq+n +)(k+) n(q+) = kn(q+)(k+) n(q+) = n A Εποµένως σε κάθε περίπτωση n A. Ασκηση 8.. είξτε ότι για κάθε περιττό ϕυσικό αριθµό n: Λύση.. είξτε ότι για κάθε άρτιο ϕυσικό αριθµό n: 3. Εστω a i Z, 0 i m, και είξτε ότι : 0 n + 0 n a = a 0 + a 0 + a a m 0 m a a 0 a + a a ( ) m a m Εφαρµογή: Εξετάστε αν ο διαιρεί τον αριθµό n = Γράφουµε n = k + όπου k 0. Εχουµε 0 n + = 0 k+ +. Θα χρησιµοποιήσουµε την Αρχή Μαθηµατικής Επαγωγής. Ορίζουµε P (k) να είναι η Πρόταση 0 k+ + Εχουµε ότι η P (0) ισχύει, γιατί το διαιρεί το. Υποθέτουµε ότι k 0 και ότι η P (k) ισχύει, δηλαδή ότι το διαιρεί το 0 k+ +. Θα δείξουµε την P (k + ), δηλαδή ότι το διαιρεί το 0 ((k+)+) + = 0 k+3 +. Πράγµατι, έχουµε 0 k+3 + = 00 0 k+ + = (99 + ) 0 k+ + = (9 0 k+ ) + (0 k+ + ) Χρησιµοποιώντας ότι το διαιρεί το 0 k+ + έχουµε ότι το διαιρεί 0 k+3 +. Άρα η P (k + ) ισχύει. Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής αυτό που ϑέλουµε να δείξουµε ισχύει για κάθε k 0.

10 0. Γράφουµε n = k όπου k. Εχουµε 0 n = 0 k. Θα χρησιµοποιήσουµε την Αρχή Μαθηµατικής Επαγωγής. Ορίζουµε Q(k) την Πρόταση 0 k Εχουµε ότι η Q() ισχύει, γιατί το διαιρεί το 0 = 99. Υποθέτουµε ότι k και ότι η Q(k) ισχύει, δηλαδή ότι το διαιρεί το 0 k. Θα δείξουµε την Q(k + ), δηλαδή ότι το διαιρεί το 0 (k+) = 0 k+. Πράγµατι, έχουµε 0 k+ = 00 0 k = (99 + ) 0 k = (9 0 k ) + (0 k ) Χρησιµοποιώντας ότι το διαιρεί το 0 k έχουµε ότι το διαιρεί 0 k+. Συνεπώς η Q(k + ) ισχύει. Άρα σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής αυτό που ϑέλουµε να δείξουµε ισχύει για κάθε k. 3. Θέτουµε A = a 0 a + a a ( ) m a m Εχουµε a = a 0 + a 0 + a a + a 0 + a a + + a m 0 m + a m a m = A + a (0 + ) + a (0 ) + a 3 (0 3 + ) + + a m (0 m ( ) m+ )) Χρησιµοποιώντας τα µέρη. και. έχουµε ότι ο διαιρεί τον a (0 + ) + a (0 ) + a 3 (0 3 + ) + + a m (0 m ( ) m+ )) Εποµένως ο διαιρεί τον a αν και µόνο αν διαιρεί τον A. Εφαρµογή: Εχουµε = 0 Εποµένως από το µέρος 3. έπεται ότι το διαιρεί το Ασκηση 9. Εστω p =, p = 3, p 3, p 4, p,, p n, p n+,, η αύξουσα ακολουθία των πρώτων αριθµών. είξτε ότι για κάθε n : p n+ p p p n + και p n+ n Λύση. (α) Θέτουµε a = p p p n +. Τότε a > και εποµένως σύµφωνα µε την Θεωρία ο αριθµός a έχει έναν πρώτο διαιρέτη q. ηλαδή q a και ιδιαίτερα q a = p p p n +. Ο πρώτος q δεν µπορεί να είναι κάποιος από τους p, p, p n, διότι διαφορετικά αν q = p i για κάποιο i =,,, n, τότε p i a & p i p p p n p i a p p p n = το οποίο είναι άτοπο. Εποµένως q p i, i n, δηλαδή ο q δεν είναι κάποιος από τους n πρώτους στην διάταξη πρώτους αριθµούς. Ετσι q p n+, και τότε : p n+ q p p p n + (β) Θα δείξουµε µε χρήση Αρχής Μαθηµατικής Επαγωγής ότι : p n n, n ( ) Για n = έχουµε p = = = 0 και άρα η σχέση ( ) αληθεύει.

11 Επαγωγικη Υποθεση: Υποθέτουµε ότι : p m m, m < n Απο το (α) µε χρήση της Επαγωγικής Υπόθεσης για τους πρώτους αριθµούς p,, p n, έπεται ότι : p n p p p n + 0 n + = ++ +n + Επειδή n = n, η παραπάνω σχέση δίνει p n n + n + n = n = n και άρα η σχέση ( ) ισχύει και για n. Εποµένως σύµφωνα µε την Αρχή Μαθηµατικής Επαγωγής η σχέση ( ) ισχύει για κάθε n N. Ασκηση 0.. είξτε ότι κάθε ϕυσικός αριθµός της µορφής 6k + έχει έναν πρώτο διαιρέτη της µορφής 6k +.. είξτε ότι υπάρχουν άπειροι πρώτοι της µορφής 6k +. Λύση.. Εστω a = 6k + ένας πρώτος αριθµός, όπου k Z. Προφανώς k 0, διότι διαφορετικά αν k < 0 ϑα έχουµε a < 0 το οποίο είναι άτοπο. Εστω p a ένας πρώτος διαιρέτης του a. Σύµφωνα µε την Ευκλείδεια ιαίρεση ϑα έχουµε ότι υπάρχουν µοναδικοί ακέραιοι λ και r έτσι ώστε : p = 6k + r, όπου 0 r < 6 όπου προφανώς k 0 ηλαδή ο p ϑα έχει µια από τις παρακάτω µορφές : p = 6k ή p = 6k + ή p = 6k + ή p = 6k + 3 ή p = 6k + 4 ή p = 6k + Λαµβάνοντας υπ όψιν ότι ο p είναι πρώτος, προφανώς ϑα έχουµε ότι ο p ϑα έχει µια από τις παρακάτω µορφές : p = 6k + ή p = 6k +, k 0 Άρα κάθε πρώτος διαιρέτης του a είναι της µορφής p = 6k + ή της µορφής p = 6k +, k 0. Επειδή : (α) γνωρίζουµε από την Θεωρία ότι κάθε αριθµός είναι το γινόµενο των πρώτων (όχι απαραίτητα διακεκριµµένων) διαιρετών του, (β) γινόµενο αριθµών της µορφής 6k + είναι προφανώς πάλι αριθµός της µορφής 6k +, και (γ) ο αριθµός a είναι της µορφής 6k +, έπεται ότι δεν είναι δυνατόν όλοι οι πρώτοι διαιρέτες του a να είναι της µορφής 6k+. Εποµένως σύµφωνα µε την παραπάνω ανάλυση, τουλάχιστος ένας διαιρέτης του a είναι της µορφής 6k+.. Υποθέτουµε ότι το σύνολο των πρώτων διαιρετών της µορφής 6k + είναι πεπερασµένο και έστω ότι p, p,, p n είναι όλοι οι (διακεκριµµένοι) πρώτοι αριθµοί της µορφής 6k +. Θεωρούµε τον αριθµό : a = 6p p p n Επειδή a = 6p p p n = 6p p p n 6 + = 6(p p p n ) + = 6k +

12 όπου k = p p p n N, ο αριθµός a είναι της µορφής 6k +. Εποµένως σύµφωνα µε το. ο αριθµός a έχει έναν πρώτο διαιρέτη q της µορφής 6k +, και άρα q = p i για κάποιο i =, n. Τότε όµως επειδή p i a και p i 6p p p n, έπεται ότι p i a 6p p p n, δηλαδή p i το οποίο είναι άτοπο. Στο άτοπο καταλήξαµε υποθέτοντας ότι υπάρχει πεπερασµένο πλήθος πρώτων αριθµών της µορφής 6k +. Εποµένως το πλήθος των πρώτων αριθµών της µορφής 6k + είναι άπειρο. Ασκηση. είξτε ότι αν p > και ο p διαιρεί τον (p )! + τότε ο p είναι πρώτος. Λύση. Υποθέτουµε ότι ο p δεν είναι πρώτος και ϑα καταλήξουµε σε αντίφαση. Αφού ο p δεν είναι πρώτος και p, υπάρχει πρώτος διαιρέτης q του p µε q p. Εποµένως ο q διαιρεί τον (p )!. Αφού ο p διαιρεί τον (p )! + και ο q διαιρεί τον p έχουµε ότι ο q διαιρεί το (p )! +. Εποµένως ο q διαιρεί και τον ((p )! + ) (p )! =, αντίφαση. Ασκηση. () Να εξετασθεί αν ένας ϕυσικός αριθµός της µορφής 3n, n N, είναι τετράγωνο ακεραίου αριθµού. () ύο πρώτοι αριθµοί p και q, όπου p < q, καλούνται δίδυµοι αν q = p +. Αν p και q είναι δίδυµοι πρώτοι αριθµοί, όπου p > 3, τότε να δείξετε ότι : Λύση. p + q () Θα δείξουµε ότι ένας ϕυσικός αριθµός της µορφής 3n, n N δεν είναι ποτέ τετράγωνο ακεραίου αριθµού. Εστω ότι δεν ισχύει. Υποθέτουµε ότι 3n = a για n N και a ακέραιο και ϑα καταλήξουµε σε αντίφαση. Εχουµε τρεις περιπτώσεις : ο a να είναι της µορφής 3k, της µορφής 3k + ή της µορφής 3k +. Αν ο a είναι της µορφής 3k έχουµε 3n = 9k, εποµένως 3n 9k =, άρα το 3 διαιρεί το που είναι αντίφαση. Αν ο a είναι της µορφής 3k + έχουµε 3n = (3k + ) = 9k + 6k + εποµένως 3n 9k 6k =, άρα το 3 διαιρεί το που είναι αντίφαση. Αν ο a είναι της µορφής 3k + έχουµε 3n = (3k + ) = 9k + k + (3 + ) εποµένως 3n 9k k 3 =, άρα το 3 διαιρεί το που είναι αντίφαση. () Εστω p, q δίδυµοι πρώτοι µε q = p + και p > 3. Θα δείξουµε ότι p + q. Ο p είναι αναγκαστικά περιττός, αφού είναι πρώτος διάφορος του. Γράφουµε p = k + µε k ϕυσικό, και έχουµε να δείξουµε ότι 4k + 4. Εποµένως αρκεί να δείξουµε ότι 3 k +. Εχουµε τρεις περιπτώσεις : ο k + να είναι της µορφής 3m, της µορφής 3m + ή της µορφής 3m +. Αρκεί να δείξουµε ότι το k + δεν µπορεί να είναι της µορφής 3m + ή της µορφής 3m +. Εστω ότι k + = 3m +, άρα k = 3m. Τότε q = p + = k + 3 = 6m + 3 Εποµένως 3 q, αντίφαση γιατί q είναι πρώτος και q >.

13 3 Εστω ότι k + = 3m +, άρα k = 3m +. Τότε p = k + = 6m + 3 Εποµένως 3 p, αντίφαση γιατί p πρώτος µε p > 3. Ασκηση 3. Εστω a, b, p, q N, όπου οι αριθµοί p, q είναι πρώτοι. Λύση.. Να δείξετε ότι : pb = a = p b.. Αν p q, να εξετασθεί αν ο αριθµός pq είναι τέλειο τετράγωνο. 3. Να προσδιορισθούν όλοι οι πρώτοι αριθµοί της µορφής a ή b Επειδή pb = a, έπεται ότι p a = a a, και εποµένως επειδή ο p είναι πρώτος, έπεται ότι p a. Άρα a = pc για κάποιον ακέραιο c. Τότε ϑα έχουµε : pb = a = pb = (pc) = pb = p c = b = pc Η τελευταία σχέση δείχνει ότι p b.. Το Ϲητούµενο προκύπτει άµεσα από το (), ϑέτοντας b = q: αν pq = a, για κάποιον ακέραιο a, τότε το () δείχνει ότι p q και εποµένως επειδή ο q είναι πρώτος και p q, ϑα έχουµε p το οποίο είναι άτοπο. Άρα το γινόµενο pq δεν µπορεί να είναι τετράγωνο ακεραίου αριθµού. 3. (α ) Παρατηρούµε ότι για a =, ο αριθµός a = + 4 = είναι πρώτος. Θα δείξουµε ότι αν a >, τότε ο αριθµός a δεν είναι ποτέ πρώτος. Πραγµατικά για κάθε ακέραιο a > ϑα έχουµε a = (a ) + = (a ) + + 4a 4a = (a + ) 4a = (a + + a)(a + a) Επειδή a >, ϑα έχουµε a > 0 και άρα a + a = a a++ = (a ) + >. Ετσι επειδή προφανώς a + + a >, έπεται ότι η παραπάνω σχέση δίνει µια µητετριµµένη παραγοντοποίηση του a + 4, δηλαδή ο a δεν είναι πρώτος αριθµός, a >. (ϐ ) Παρατηρούµε ότι για b =, ο αριθµός b 3 + = + = είναι πρώτος. Θα δείξουµε ότι αν b >, τότε ο αριθµός b 3 + δεν είναι ποτέ πρώτος. Πραγµατικά για κάθε ακέραιο b > ϑα έχουµε b 3 + = (b + )(b b + ) η οποία επειδή προφανώς b + > και b b + > είναι µια µη-τετριµµένη παραγοντοποίηση του b 3 +, δηλαδή ο b 3 + δεν είναι πρώτος αριθµός, b >. Ασκηση 4. Να δείξετε ότι δεν υπάρχει µη-σταθερό πολυώνυµο f(t) = a 0 + a t + a t + + a n t n µε ακέραιους συντελεστές έτσι ώστε ο ακέραιος f(m) να είναι πρώτος αριθµός, για κάθε m Z. Λύση. Υποθέτουµε ότι ο ισχυρισµός της Άσκησης δεν είναι αληθής, δηλαδή : υπάρχει µη-σταθερό πολυώνυµο f(t) = a 0 + a t + a t + + a n t n µε ακέραιους συντελεστές a i, 0 i m, έτσι ώστε ο αριθµός f(m) είναι πρώτος για κάθε m Z. Σταθεροποιούµε έναν ϕυσικό αριθµό x 0 N. Τότε ϑα έχουµε ότι ο αριθµός f(x 0 ) = p είναι πρώτος

14 4 Για κάθε k Z, ϑεωρούµε τον ακέραιο αριθµό f(x 0 + kp). Σύµφωνα µε την υπόθεσή µας, ο αριθµός f(x 0 + kp) Χρησιµοποιώντας το ιωνυµικό Θεώρηµα, ϑα έχουµε m =,,, n: και άρα όπου ϑέσαµε : (x 0 + kp) m = (x + y) n = m i=0 (x 0 + kp) m = ( m x m 0 + = x m 0 + r m p r m := είναι πρώτος, k N n i=0 ( ) m x i i 0(kp) m i = ) x m 0 kp + + ( ) n x i y n i i m i=0 ( ) m x k i 0k m i p m i ( ) m x 0 k m p m + k m p m m ( ) ( ) m m x m 0 k + + x 0 k m p m + k m p m, m Λαµβάνοντας υπ όψιν τις παραπάνω σχέσεις ϑα έχουµε : f(x 0 + kp) = a 0 + a (x 0 + kp) + + a n (x 0 + kp) n + a n (x 0 + kp) n Ετσι ϑα έχουµε m n = a 0 + a (x 0 + kp) + + a n (x0 n + r n p) + a n (x n 0 + r n p) = ( a 0 + a x a n x0 n + a n x n ) ( 0 + a kp + + a n r n p + a n r n p ) = f(x 0 ) + ( ) a k + + a n r n + a n r n p = f(x 0 ) + r p, όπου r := a k + + a n r n + a n r n = p + r p = ( + r) p k Z : f(x 0 + kp) = p(r + ), ιδιαίτερα : p f(x 0 + kp) Επειδή από την υπόθεσή µας ο αριθµός f(x 0 + kp) είναι πρώτος και p f(x 0 + kp), έπεται ότι f(x 0 + kp) = p, Τότε όµως το πολυώνυµο µε ακέραιους συντελεστές g(t) := f(t) p k Z δέχεται κάθε έναν από τους, άπειρους το πλήθος, ακέραιους αριθµούς x 0 + kp ως ϱίζα, διότι : g(x 0 + kp) = f(x 0 + kp) p = 0 Γνωρίζουµε όµως ότι ένα µη-µηδενικό πολυώνυµο h(t) µε ακέραιους (ή γενικότερα ϱητούς ή πραγµατικούς συντελεστές) έχει το πολύ n ϱίζες, όπου n = deg h(t). Επειδή το σύνολο {x 0 + kp Z k Z}, το οποίο αποτελείται από ϱίζες του g(t), είναι άπειρο, έπεται ότι αναγκαστικά ϑα έχουµε ότι το πολυώνυµο g(t) είναι το µηδενικό : g(t) = 0. Τότε όµως f(t) = p είναι σταθερό πολυώνυµο, κάτι το οποίο είναι άτοπο από την αρχική µας υπόθεση. Στο άτοπο καταλήξαµε υποθέτοντας ότι υπάρχει µη-σταθερό πολυώνυµο µε ακέραιους συντελεστές το οποίο λαµβάνει όλες τις τιµές του στο σύνολο των πρώτων αριθµών. Εποµένως δεν υπάρχει µη-σταθερό πολυώνυµο f(t) µε ακέραιους συντελεστές έτσι ώστε ο ακέραιος f(m) να είναι πρώτος αριθµός, για κάθε m Z.

15 Σχόλιο 3. () Παρατηρούµε ότι αν p είναι ένας πρώτος αριθµός, τότε το σταθερό πολυώνυµο h(t) = p έχει ακέραιους συντελεστές και ο ακέραιος h(m) είναι ο πρώτος αριθµός p, για κάθε m Z. Γι αυτό τον λόγο υποθέτουµε στην άσκηση 4. ότι το πολυώνυµο f(t) δεν είναι σταθερό. () Εστω P = { p, p,, p n,, } το σύνολο των πρώτων αριθµών εφοδιασµένο µε την ϕυσική του διάταξη. Η Άσκηση 4. δείχνει ιδιαίτερα ότι δεν υπάρχει πολυώνυµο f(t) µε ακέραιους συντελεστές έτσι ώστε f(m i ) = p i, i, όπου m i Z. Υπάρχουν κάποια πολυώνυµα µε ακέραιους συντελεστές τα οποία παράγουν κάποιους πρώτους αριθµούς, αλλά σύµφωνα µε την παραπάνω άσκηση τα πολυώνυµα αυτά δεν µπορεί να λαµβάνουν όλες τις τιµές τους στο σύνολο P. Για παράδειγµα, εύκολα ϐλέπουµε ότι για το πολυώνυµο (α ) f(t) = t t + 4, ο ακέραιος f(m) είναι πρώτος, 0 m 40, αλλά f(4) = 4 4 είναι σύνθετος. (ϐ ) g(t) = t +, ο ακέραιος g(m) είναι πρώτος, 0 m 0, αλλά g() = 3 είναι σύνθετος. (γ ) h(t) = t + 9, ο ακέραιος h(m) είναι πρώτος, 0 m 9, αλλά h(9) = 9 9 είναι σύνθετος. Αποδεικνύεται επίσης ότι δεν υπάρχει πολυώνυµο πολλών µεταβλητών f(t, t,, t n ), ό- που n τυχόν ϕυσικός αριθµός, µε ακέραιους συντελεστές το οποίο να µας δίνει, µε την παραπάνω έννοια, όλους τους πρώτους αριθµούς. Η απόδειξή του όµως είναι αρκετά πιο δύσκολη. Γενικά δεν υπάρχει κάποιος απλός τύπος ο οποίος να παράγει µόνο, ή όλους τους, πρώτους αριθµούς. Ασκηση. είξτε ότι ο πραγµατικός αριθµός είναι άρρητος, δηλαδή δεν µπορεί να γραφεί στην µορφή a/b όπου a, b ακέραιοι και b 0. e = Λύση. Υποθέτουµε e = a/b, όπου a και b είναι ϑετικοί ακέραιοι. Εστω n=0 n! p = +! +! + 3! + + b! q = (b + )! + (b + )! + Εχουµε e = p + q. Οι αριθµοί b!e και b!p είναι ακέραιοι και συνεπώς και ο b!q είναι ακέραιος, αφού b!q = b!e b!p. Χρησιµοποιώντας ότι για κάθε πραγµατικό d µε 0 < d < το άθροισµα της γεωµετρικής σειράς n= dn d είναι ίσο µε d έχουµε και 0 < b!q = b + + (b + )(b + ) + (b + )(b + )(b + 3) + < = / / = Εποµένως 0 < b!q < που έρχεται σε αντίφαση µε το ότι ο b!q είναι ακέραιος. Άρα ο e είναι άρρητος.

16 6 Σχόλιο 4. Με Μαθηµατική Επαγωγή είναι εύκολο να δείξουµε ότι για κάθε n έχουµε n! n, εποµένως n! n Αφού η γεωµετρική σειρά n= n συγκλίνει το ίδιο ισχύει και για την σειρά n= n!. Επιπλέον, έχουµε ότι για κάθε ακέραιο d 0 n=0 n! = d n=0 n! + n=d+ n!

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Α Μπεληγιάννης - Σ Παπαδάκης Ιστοσελιδα Μαθηµατος : http://usersuogr/abelga/numbertheory/nthtml Τετάρτη 10 Απριλίου 2013 Ασκηση 1 Θεωρούµε τις αριθµητικές

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 25 Μαιου 2013 2

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος Α. Μπεληγιάννης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος Α. Μπεληγιάννης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2016-2017 Τµηµα Β ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html 19 Οκτωβρίου 2016 Το παρόν

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς :

1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ 1. Να σημειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισμούς : 1. Αν μια πρόταση Ρ(ν) αληθής για ν = 3 και με την υπόθεση ότι Ρ(ν) είναι αληθής αποδείξουμε ότι και η Ρ(ν+1)

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος.

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. Πανεπιστηµιο Αιγαιου Τµηµα Μαθηµατικων 8 200 Καρλοβασι Σαµος Καρλόβασι 09/02/2012 Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος. 1. Απαντήστε µε α(αλήθεια)

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Γραµµικη Ανεξαρτησια, Βασεις και ιασταση Στο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ - 11 - ΚΕΦΑΛΑΙΟ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΡΧΗ ΤΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΑΓΩΓΗΣ Έστω Ρ(ν) ένας ισχυρισµός, ο οποίος αναφέρεται στους θετικούς ακέραιους Αν: i) o ισχυρισµός είναι αληθής για τον ακέραιο 1,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 ιαιρετότητα και Ισοτιµίες Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης Στη µνήµη του δασκάλου µου, Χάρη Βαφειάδη... www.math.uoc.gr/

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

Όνοµα: Λιβαθινός Νικόλαος 2291

Όνοµα: Λιβαθινός Νικόλαος 2291 ΠΡΩΤΗ ΆΣΚΗΣΗ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ Όνοµα: Λιβαθινός Νικόλαος 9 Ηµεροµηνία: 3/5/003 Άσκηση ώστε όλες τις υποοµάδες των Z και Ζ 5 * Προκειµένου να δώσουµε τις υποοµάδες θα πρέπει αρχικά να ορίσουµε τα σύνολα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ 4. Ορισµοί KΕΦΑΛΑΙΟ 4 AΚΟΛΟΥΘΙΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Ορισµός 4.. Μία συνάρτηση : µε πεδίο ορισµού το σύνολο των φυσικών αριθµών και τιµές στην πραγµατική ευθεία καλείται ακολουθία πραγµατικών αριθµών.

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ 1β. 2n + 1 n(n + 1) xn. n=1. 2n + 1 ln(1 x)(1 + x) + x. a n = 2n + 1 n(n + 1) = 1 n + 1. a n+1 x n+1 a n x n.

ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ 1β. 2n + 1 n(n + 1) xn. n=1. 2n + 1 ln(1 x)(1 + x) + x. a n = 2n + 1 n(n + 1) = 1 n + 1. a n+1 x n+1 a n x n. ΛΟΓΙΣΜΟΣ Ι ΤΜΗΜΑ β 4 Ιανουαρίου 005 Τα ϑέµατα,, και 4 είναι υποχρεωτικά. Από τα ϑέµατα 5 και 6 ϑα επίλέξετε ϑέµα. ηλαδή ϑα γράψετε ΜΟΝΟ 5 ϑέµατα. ΘΕΜΑ o.5 + 0.5 = ϐ.) α) Να αποδειχθεί ότι η δυναµοσειρά

Διαβάστε περισσότερα

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2. Κεφάλαιο 6 Πεπερασµένα παραγόµενες αβελιανές οµάδες Στο κεφάλαιο αυτό ϑα ταξινοµήσουµε τις πεπερασµένα παραγόµενες αβελιανές οµάδες. Αυτές οι οµάδες είναι από τις λίγες περιπτώσεις οµάδων µε µία συγκεκριµένη

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2013-2014 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση: Να γνωρίζει: την αποδεικτική μέθοδο της μαθηματικής επαγωγής για την οποία πρέπει να γίνει κατανοητό ότι η αλήθεια

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα Κεφάλαιο 1 Εισαγωγικές Εννοιες Σ αυτό το κεφάλαιο ϑα αναφερθούµε συνοπτικά σε ϐασικές έννοιες για σύνολα και απεικονίσεις. Επιπλέον, ϑα αναφερθούµε στη µέθοδο της επαγωγής, η οποία αποτελεί µία από τις

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 5ο κεφάλαιο: Πρόοδοι ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα 1 ΠΡΟΟ

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 1 1.7 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΘΕΩΡΙΑ 1. Ταυτότητα Ευκλείδειας διαίρεσης : Για δύο οποιαδήποτε πολυώνυµα (x) και δ(x) µε δ(x) µπορούµε να βρούµε δύο άλλα πολυώνυµα π(x) και υ(x) τέτοια ώστε να ισχύει (x) = δ(x)π(x)

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 ιανυσµατικοι Υποχωροι και Κατασκευες Το παρόν

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x.

ΑΣΚΗΣΕΙΣ. 2. ίνεται το Ρ(x) αν το ρ είναι ρίζα Ρ(2x) 2x τότε το ρ είναι ρίζα του Ρ( Ρ(2x)) 2x. ΑΣΚΗΣΕΙΣ. ίνονται τα πολυώνυµα Ρ (x), Ρ (x), Ρ (x) αν τα πολυώνυµα Ρ (x) και Ρ (x) δεν έχουν κοινή ρίζα και ισχύει : ( Ρ (x)) + (Ρ (x)) = (Ρ (x)) για κάθε x R να δείξετε ότι το Ρ (x) δεν έχει πραγµατική

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Απλές επεκτάσεις και Αλγεβρικές Θήκες

Απλές επεκτάσεις και Αλγεβρικές Θήκες Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 20 Νοεμβρίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 20 Νοεμβρίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι ανανεωμένο στις 20 Νοεμβρίου 202 Τμήμα Θ Αποστολάτου & Π Ιωάννου Ακολουθίες - Όρια ακολουθιών Έστω η ακολουθία μια αριθμημένη σειρά δηλαδή) των αριθμών:

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

Αναδρομικές ακολουθίες και Θεωρία Αριθμών

Αναδρομικές ακολουθίες και Θεωρία Αριθμών Αναδρομικές ακολουθίες και Θεωρία Αριθμών Εμμανουήλ Καπνόπουλος Επιβλέπων καθηγητής Ιωάννης Αντωνιάδης Μεταπτυχιακή Εργασία Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης Ηράκλειο Οκτώβριος

Διαβάστε περισσότερα

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών

Θεωρία Τελεστών. Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών Ενότητα: Το ϕασµατικό ϑεώρηµα για αυτοσυζυγείς τελεστές Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 )

Συνέχεια Συνάρτησης. Λυγάτσικας Ζήνων. Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο. 1 εκεµβρίου f(x) = f(x 0 ) Συνέχεια Συνάρτησης Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 1 εκεµβρίου 013 1 Ορισµός Ορισµός 1.1 Μια πραγµατική συνάρτηση f : A R λέµε ότι είναι συνεχής στο x 0 A αν και µόνο αν : x x 0 fx

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

f( x 1, x ( ) ( ) f x > f x. ( ) ( )

f( x 1, x ( ) ( ) f x > f x. ( ) ( ) MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του

Διαβάστε περισσότερα