Algoritmi i strukture podataka

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Algoritmi i strukture podataka"

Transcript

1 Algoritmi i strukture podataka vežbe 5 Mirko Stojadinović 6. novembar Grafovi 1.1 Osnovni pojmovi Graf G = (V, E) se sastoji od skupa čvorova V i skupa grana E, pri čemu grane predstavljaju relacije izmedu čvorova. Grane usmerenog grafa su uredeni parovi čvorova i redosled dva čvora koje povezuje grana je bitan. Grane neusmerenog grafa su neuredeni parovi čvorova. Neusmereni graf G je stablo ako je ispunjen bilo koji od ekvivalentnih uslova: 1. G je povezan aciklični graf 2. G nema ciklusa i ciklus se formira dodavanjem bilo koje grane u G 3. bilo koja dva čvora mogu se povezati jedinstvenim putem 4. Graf G je povezan i ima n čvorova i n 1 granu 5. Graf G nema ciklusa i ima n čvorova i n 1 granu Ako je na stablu potrebno definisati hijerarhiju, onda se sve grane mogu usmeriti od korena. Takva stabla se nazivaju korenska stabla. Koren je poseban izdvojen čvor stabla, a listovi stabla su čvorovi koji nemaju naslednike. 1.2 Predstavljanje grafova u računaru Uobičajena su dva načina predstavljanja grafa: 1. matricom povezanosti (susedstva) 2. listom povezanosti (susedstva) - preko niza i jednostruko povezanih listi Matrica povezanosti grafa G je kvadratna matrica A reda n ( V =n), gde A[i,j]=1 ako postoji grana od čvora v i do čvora v j. Ostali elementu su nule. Ako je graf G neusmeren, matrica je simetrična. Ako je broj grana u G mali, onda će većina elemenata matrice biti nule, ali će ona i dalje zauzimati prostor veličine n 2, što je nedostatak ovog tipa reprezentacije ako se koristi za retke grafove. Matrica povezanosti težinskog grafa može se formirati na sledeći način: 1 Materijali velikim delom preuzeti od Jelene Hadži-Purić: 1

2 Matrica povezanosti neusmerenog grafa (neusmerena grana (a,b) se predstavlja kao dve usmerene grane (a, b) i (b, a)): Lista povezanosti pak omogućuje da se ne vrši eksplicitno predstavljanje nepostojećih grana. Postoje dve implementacije: preko niza (statički) i preko jednostruko povezanih listi (dinamički). U slučaju jednostruko povezanih listi, svakom čvoru pridružuje se povezana lista koja sadrži sve susedne čvorove. U slučaju niza, ako je G statički graf (tj. ne vrše se umetanja, brisanja), onda se za realizaciju liste povezanosti koristi niz dužine V + E, gde su prvih V elemenata pridruženi čvorovima grafa, a vrednost na poziciji j pridružena čvoru v j sadrži indeks početka spiska čvorova susednih čvoru v j. Primer: slika grafa i njegova predstava preko liste povezanosti (niz): Zadatak: Predstaviti prethodni graf preko jednostruko povezane liste. Zadatak: Nacrtati graf koji je predstavljen listom povezanosti (preko niza):

3 Podrazumevano je da je graf usmeren (ukoliko se ne naglasi drukčije). Kod grafova imamo dva parametra koji odreduju veličinu ulaza, ne jedan. To su broj čvorova (n = V ) i broj grana (m = E ). 1. Za graf koji ima n čvorova i m grana odrediti potreban prostor za predstavljanje grafa matricom povezanosti ili listom povezanosti. matrica lista usmereni n 2 n + m n (n+1) neusmereni 2 n + 2m Zašto je bitno da se složenost kod grafova procenjuje u odnosu na dva parametra, i n i m? Na početku kursa je bio zadatak da se pokaže da je max(f, g) = θ(f + g), ovde f i g mogu da se zamene sa n i m. Razmotriti ovo na primeru vrlo retkih i gustih grafova kada je potrebno odrediti broj grana koje vode do nekog čvora (npr. čvora 1) a koriste se liste povezanosti. 2. Za graf koji ima n čvorova i m grana odrediti da li je predstavljanje grafa pogodnije matricom povezanosti ili listom povezanosti u sledećim situacijama: 1. provera da li grana (x, y) pripada grafu 2. redak graf (m<< n 2 ) 3. dodavanje ili brisanje grana iz grafa 4. obilazak grafa 1. matrica povezanosti (brže, zbog direktnog pristupa očitavanjem, tj. O(1) nasuprot O(duž.liste)) 2. lista povezanosti (manje memorije tj. (m+n) nasuprot n 2 ) 3. matrica povezanosti (vreme O(1) nasuprot O(duž.liste)) 4. lista povezanosti (brže, tj. O(m+n) nasuprot O(n 2 )) Retki grafovi se danas češće javljaju nego gusti grafovi pa je to razlog što se liste povezanosti češće koriste. Ako se Web posmatra kao jedan veliki graf onda je on redak, jer od svake stranice postoji mali broj grana do drugih stranica (prosečno desetak). Za algoritme koji se odnose na obilaske mnogo bolja reprezentacija je lista povezanosti (to je velika većina algoritama na ovom kursu). Zato ćemo pri proceni složenosti pretpostavljati da je graf zadat listom povezanosti, ukoliko drukčije nije naglašeno. Ako se u zadatku traži da algoritam bude složenosti O( V+E ) onda je automatski odredeno da je graf predstavljen listom povezanosti. Kod kojih operacija se razlikuje efikasnost implementacija preko niza i jednostruko povezanih listi? 3. Neka je G=(V,E) stablo sa n čvorova. Cilj je formirati simetričnu kvadratnu matricu A reda n, čiji elemenat (i,j) je jednak rastojanju izmedu čvorova v i i v j. Konstruisati algoritam složenosti O(n 2 ) koji rešava ovaj problem ako je stablo zadato listom povezanosti. Koristi se indukcija: 1. Rešenje je jednostavno za stablo sa jednim ili dva čvora. 2. Pretpostavka je da znamo da rešimo problem za n 1 čvor. Neka je S stablo sa n čvorova i neka je v list tog stabla a w otac čvora v (ako stablo ima bar 2 čvora jasne su egzistencija i jedinstvenost ovih čvorova). Uklanjanjem lista v dobija se stablo S sa n 1 čvorova za koje za vreme O((n 1) 2 ) znamo da odredimo rastojanje izmedu svih čvorova. U konstrukciji matrice dimenzije n polazeći od stabla dimenzije n 1 i dodavanjem čvora v u stablo, važe sledeća pravila: (a) Vrednost polja koja odreduju rastojanje dva čvora od kojih su oba različita od v ostaje ista kao i u matrici dimenzije n 1. 3

4 (b) Udaljenost čvora v od sebe samog je 0 (c) Udaljenost čvora v od oca je 1 (d) Udaljenost čvora v do nekog od ostalih čvorova je udaljenost oca od tog čvora uvećana za 1. Vreme izvršavanja opisanog algoritma za problem dimenzije n je T(n), tj. T(n)=T(n-1)+(2n-1)*c1, c1 je konstanta, jer iz matrice stabla sa n-1 čvorom se za dodatnih (2n-1)*c1 koraka dolazi do matrice stabla sa n čvorova, gde vrednosti matrice za k-tu vrstu i k-tu kolonu se računaju za const*(2n-1) koraka (matrica A je dimenzije n 2 ). Dakle, T (n) = = T (n 1) + (2n 1) c1 = = T (n 2) + (2n 3) c1 + (2n 1) c1 = =... = = T (1) + (2n 1 + 2n ) c1 = (2n 2k + 1) c1 = = T (1) + 2 c1 n(n 1) 2 c1 n (n 1) 2 + (n 1) c1 = T (1) + n 1 k=1 Dobija se da je složenost algoritma O(n 2 ). 1.3 Obilazak grafa u dubinu (DFS - Depth-First Search) Motivacija. Najjednostavnija primena je provera da li su svi čvorovi u grafu dostupni iz nekog čvora. Ova provera se koristi npr. da se vidi da li su telefonske ili telekomunikacije veze dobro uradene, tj. da se proveri da neki čvor nije nedostupan. Postoje dva obilaska grafova koja se najčešće koriste. DFS se koristi za agresivan pristup gde se ide što je moguće dalje u dubinu i radi se bektreking samo kad mora (primer je obilazak lavirinta). BFS se koristi kada je potrebno čvorove obići u nivoima ili se može koristiti za odredivanje minimalnog rastojanja izmedu dva čvora u grafu. Struktura podataka koja odgovara DFS algoritmu je stek, a struktura podataka koja odgovara BFS algoritmu je red. DFS obilazak započinje iz proizvoljnog zadatog cvora r, korena pretrage u dubinu. Koren se označava kao posećen. Zatim se bira proizvoljni neoznačeni čvor r1, susedan sa r, pa se iz čvora r1 rekurzivno startuje pretraga u dubinu. Iz nekog nivoa rekurzije izlazi se kad se naide na cvor v kome su svi susedi (ako ih ima) već označeni. Ako su u trenutku završetka pretrage iz r1, svi susedi čvora r označeni, onda se pretraga za čvor r završava. U protivnom, bira se sledeći proizvoljni neoznačeni sused r2 čvora r, izvršava se pretraga polazeći od r2, itd. Pretraga grafa uvek se vrši sa nekim ciljem. Da bi se različite aplikacije uklopile u pretragu u dubinu, posećivanju čvora ili grane pridružuju se dve vrste obrade: ulazna obrada i izlazna obrada. Ulazna obrada vrši se u trenutku označavanja čvora. Izlazna obrada vrši se posle povratka nekom granom, ili kad se otkrije da neka grana vodi već označenom čvoru. Ulazna i izlazna obrada zavise od konkretne primene DFS. Primer DFS obilaska (iz čvora 8): Redosled obilaska je: 8, 6, 1, 3, 5, 7, 4, 2, 9. Redosled obilaska čvorova u opštem slučaju nije jedinstven. Mi uvodimo dodatno pravilo da se medu susedima bira čvor sa najmanjom vrednošću pa obilazak u našem slučaju jeste jedinstven. 4

5 Algoritam DFS(G, v); Ulaz: G = (V,E) (usmereni povezani graf) i v (cvor grafa G). Izlaz: zavisi od primene. oznaci v; izvrsi ulaznu obradu na v; //ulazna obrada zavisi od primene DFS for sve grane (v,w) do if w je neoznacen then DFS(G,w); //Novi rekurzivni poziv izvrsi izlaznu obradu na v; 4. Implementirati DFS algoritam za obilazak grafa G=(V,E) koji je zadat matricom povezanosti (npr. a[i][j]=1, ako postoji grana (i,j), inače a[i][j]=0) tako da ispiše čvorove u redosledu obilaska. Naredni kod u.c fajlu /* DFS implementacija u programskom jeziku C za graf dat matricom povezanosti */ /* Napomena: program ce obici sve cvorove i u slucaju NEPOVEZANOG grafa. */ #include <stdio.h> #include <stdlib.h> #define MAX 10 /*maksimalan broj cvorova */ void DFS(int i, int graf[][max], int n, int m[]); void poseti_sve(int graf[][max], int n); void ucitaj_matricu(int graf[][max], int n); int main() int graf[max][max]; int n; //broj cvorova grafa printf ("\nunesite broj cvorova grafa: "); scanf ("%d", &n); if (n > MAX) fprintf (stderr, "n veci od alocirane dimenzije matrice.\n"); exit (EXIT_FAILURE); ucitaj_matricu (graf, n); poseti_sve (graf, n); return 0; /* DFS obilazak grafa sa n cvorova zadatog matricom graf pocev od neposecenog cvora v; pri obilasku u nizu markiranih cvorova posecen, vrednost clana posecen[v] ce postati 1, kad se poseti cvor v. */ void DFS(int v, int graf[][max], int n, int posecen[]) int w; //cvor koji je u grafu potencijalni sused cvora i //stampa se neposeceni cvor od kog krece nova poseta DFSom printf(" %d ", v); posecen[v] = 1; //markira se cvor i kao posecen /*ako postoji susedni cvor w koji nije markiran(posecen[w]=0), rekurzivno se poziva DFS za w. */ for (w=0; w<n; w++) if (posecen[w] == 0 && graf[v][w] == 1) 5

6 DFS(w, graf, n, posecen); /* obilazak grafa G sa n cvorova zadatog matricom povezanosti graf */ void poseti_sve(int graf[][max], int n) int v, posecen[max]; // cvor i grafa G, niz markiranih (posecenih) cvorova posecen for (v=0; v<n; v++) posecen[v] = 0; // na pocetku su svi cvorovi neposeceni // ako v nije posecen, pokrenuti posetu iz v (osigurava da se svi // cvorovi obilaze i ako graf nije povezan) for (v=0; v<n; v++) if (posecen[v] == 0) DFS(v, graf, n, posecen); printf ("\n"); // Ucitavanje grana grafa sa stdin void ucitaj_matricu(int graf[][max], int n) int i, j; for (i = 0; i < n; i++) for (j = 0; j < n; j++) graf[i][j] = 0; printf("\nunesite grane grafa u obliku i,j. Zavrsite sa EOF\n"); while (scanf("%d%d", &i, &j)!= EOF) graf[i][j] = 1; Složenost DFS algoritma koji koristi matrice je O(n 2 ). Zadatak. Napisati C kod DFS algoritma kao i pomoćnih algoritama koji koriste predstavljanje grafa preko liste povezanosti pomoću: niza jednostruko povezane liste 5. Početno vreme predstavlja vreme prvog nailaska na čvor u DFS algoritmu. Završno vreme se odnosi na vreme kada su obradeni svi susedi čvora. Napisati pseudokodove za izračunavanje dolazne i odlazne numeracije. - G - graf - dolazna[1...n] - niz za dolaznu numeraciju cvorova - odlazna[1...n] - niz za odlaznu numeraciju cvorova - posecen - niz koji oznacava koji su cvorovi poseceni (na pocetku su sve nule) - inicijalizacija promenljivih pre poziva: *p1=0 i *p2=0 DFS_Preorder(G, u, posecen, dolazna, *p1) posecen[u] = 1; *p1 = *p1 + 1; dolazna[u] = *p1; za svaki v susedan za u do if posecen[v] = 0 then DFS_Preorder(G, v, posecen, dolazna, *p1); return; 6

7 DFS_Postorder(G, u, posecen, odlazna, *p2) posecen[u] = 1; za svaki v susedan za u do if posecen[v] = 0 then DFS_Postorder(G, v, posecen, odlazna, *p2); *p2 = *p2 + 1; odlazna[u] = *p2; return; Prethodna dva algoritma mogu se spojiti u jedan tako da se vrši i ulazna i izlazna numeracija. Primetiti da dolazna numeracija odgovara KLD a odlazna LDK obilasku DFS stabla. Svakom DFS obilasku odgovara jedinstveno DFS stablo. Postoje 4 vrste grana u DFS stablu: 1. grana stabla (povezuje oca sa sinom) 2. povratna grana (povezuje potomka sa pretkom) 3. direktna grana (povezuje pretka sa potomkom) 4. poprečna grana povezuje čvorove koji nisu srodnici u stablu i prema dokazanoj lemi sa predavanja, ona moraju biti usmerene zdesna ulevo, te otud i naziv grana ulevo. Za DFS Stablo neusmerenog grafa, pak važi: grane povezanog neusmerenog grafa ne mogu biti poprečne grane za DFS stablo, tj. ne mogu povezivati čvorove na različitim putevima od korena. Kod neusmerenog grafa povratne i direktne grane se poklapaju jer nisu usmerene. Može se pokazati da je usmereni graf ackiličan ako i samo ako DFS stablo nema povratnih grana. 6. Dat je usmeren graf na slici. Primeniti DFS obilazak, skicirati DFS stablo i za svaki čvor iz V prikazati početno vreme/završno vreme. Klasifikovati grane stabla. Napomena: grane grafa nisu uredene pa obilazak nije jedinstven. Rešenje (početno vreme zapisano levo a završno desno od čvora): Klasifikacija grana: 1. grane stabla: 86, 61, 63, 35, direktne grane: 89. 7

8 3. povratne grane: poprečne grane: 76, (april 2009) Usmeren graf G=(V,E) ima skup čvorova V=1, 2, 3, 4, 5, 6, 7 i zadat je listom povezanosti: Za početni poziv DFS(1), klasifikujte grane grafa u odnosu na DFS stablo. Pretpostavlja se da su grane (v,w) koje izlaze iz čvora v uredene numerički prema čvorovima w (u izboru suseda koji će biti posećen biramo onog sa najmanjim brojem). Graf: Pomoćna slika: DFS stablo Grane stabla: 12, 25, 26, 54, 63, 67 Direktne: 14 Poprečne: 73, 65 Povratne: 42 8

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Algoritmi i strukture podataka - 1.cas

Algoritmi i strukture podataka - 1.cas Algoritmi i strukture podataka - 1.cas Aleksandar Veljković October 2016 Materijali su zasnovani na materijalima Mirka Stojadinovića 1 Složenost algoritama Približna procena vremena ili prostora potrebnog

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Overviev BFS-analiza DFS algoritam. Predstavljanje grafova BFS algoritam. Grafovski algoritmi

Overviev BFS-analiza DFS algoritam. Predstavljanje grafova BFS algoritam. Grafovski algoritmi Predstavljanje grafova BFS algoritam Grafovski algoritmi Mnogi računarski problemi definisani u terminima grafova; Graf G = (V, E); V neprazan skup čije elemente nazivamo čvorovi grafa; E V V skup čije

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati:

Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: Staša Vujičić Konstruisati efikasan algoritam znači dati skup preciznih uputstava kako doći do rešenja zadatog problema Algoritmi se mogu opisivati: pseudo jezikom prirodnim jezikom dijagramom toka. 2

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Informatika2. 4. Ciklična algoritamska struktura 5. Jednodimenzionalno polje.

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Informatika2. 4. Ciklična algoritamska struktura 5. Jednodimenzionalno polje. Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika2 4. Ciklična algoritamska struktura 5. Jednodimenzionalno polje Milica Ćirić Ciklična algoritamska struktura Ciklična struktura (petlja)

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

EXIT. Programski jezik C - 6. deo. Funkcija exit. (materijal sa predavanja D. Vitasa)

EXIT. Programski jezik C - 6. deo. Funkcija exit. (materijal sa predavanja D. Vitasa) Programski jezik C - 6. deo (materijal sa predavanja D. Vitasa) EXIT Funkcija exit Funkcija exit se nalazi u sa prototipom void exit( status ); Izaziva normalan završetak programa (zatvaranje

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

Minimalno povezujuće stablo

Minimalno povezujuće stablo Minimalno povezujuće stablo G = (V, E) - neusmereni povezani težinski graf Izlaz Povezani podgraf koji sadrži sve čvorove takav da mu je suma cena grana minimalna. Rešenje Indukcijom po broju grana. Baza:

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Algoritmi i strukture podataka

Algoritmi i strukture podataka Algoritmi i strukture podataka vežbe 1 Mirko Stojadinović 6. oktobar 2015 1 1 Složenost algoritama Postoje 3 mere na osnovu kojih se porede efikasnosti algoritama: 1. najgori mogući slučaj 2. prosečan

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Algoritmi zadaci za kontrolni

Algoritmi zadaci za kontrolni Algoritmi zadaci za kontrolni 1. Nacrtati algoritam za sabiranje ulaznih brojeva a i b Strana 1 . Nacrtati algoritam za izračunavanje sledeće funkcije: x y x 1 1 x x ako ako je : je : x x 1 x x 1 Strana

Διαβάστε περισσότερα

Struktura indeksa: B-stablo. ls/swd/btree/btree.html

Struktura indeksa: B-stablo.   ls/swd/btree/btree.html Struktura indeksa: B-stablo http://cis.stvincent.edu/html/tutoria ls/swd/btree/btree.html Uvod ISAM (Index-Sequential Access Method, IBM sredina 60-tih godina 20. veka) Nedostaci: sekvencijalno pretraživanje

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Binarno stablo (BinaryTree)

Binarno stablo (BinaryTree) Binarno stablo (BinaryTree) Binarno stablo T je konačan skup podataka istog tipa (čvorova) koji je ili prazan ili ima istaknuti čvor (korijen), a ostali čvorovi su podijeljeni u dva podskupa T L i T R

Διαβάστε περισσότερα

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Šta je to relacija? U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Na primer, često se javlja potreba da se izvesni objekti uporede

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Algoritmi i strukture podataka ispitna pitanja i odgovori

Algoritmi i strukture podataka ispitna pitanja i odgovori Algoritmi i strukture podataka ispitna pitanja i odgovori Nikola Ajzenhamer 26. maj 2015. Greške pošaljite na: mi13050@alas.matf.bg.ac.rs Napomena za kodove: Neke od kodova nije potrebno učiti, već su

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Diferencijabilnost funkcije više promenljivih

Diferencijabilnost funkcije više promenljivih Matematiči faultet Beograd novembar 005 godine Diferencijabilnost funcije više promenljivih 1 Osnovne definicije i teoreme, primeri Diferencijabilnost je jedan od centralnih pojmova u matematičoj analizi

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Napredne pretrage u grafovima

Napredne pretrage u grafovima Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Prerequisites i cilj DFS i BFS Koristićemo: Dijkstrin algoritam sa modifikacijama (jedan od razloga zašto je dat u zadatku ACKO na kvalifikacionom

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα