PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Save this PDF as:
Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P )."

Transcript

1 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo domen, akko P nema prave delitelje nule akko x, y P ) xy = 0 x = 0 y = 0)). ED: Domen P je euklidski [ED] akko postoji funkcija ϕ : P \ {0} N 0 = {0, 1, 2,... } tako da a, b P ) b 0 c, d P ) a = bc + d d 0 ϕd) < ϕb) ) ) ). PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). ND: Domen P je Neterin [ND] akko svaki rastući niz ideala u P je stacionaran to jest, akko u P ne postoji strogo rastući beskonačan niz ideala). Preciznije, P je ND akko za svaki rastući niz ideala I 1 I 2 I 3 postoji n N tako da je k > n) I n = I k. FD: Domen P je faktorizacijski [FD] akko svaki nenula nejedinični element a P ima atomičnu faktorizaciju, faktoriše se na konačan) proizvod nekih atoma. Preciznije, P je FD akko a P \ P0 ) k N) a 1, a 2,..., a k AtomP) ) a = a 1 a 2 a k, gde je P0 = {0} P. UFD: Domen P ima jedinstvenu faktorizaciju [je UFD] akko P je FD i svake dve atomične faktorizacije elementa a P su jednake do na redosled i asociranost faktora. P je UFD akko FD: a P \ P 0 ) k N) a 1, a 2,..., a k AtomP) ) a = a 1 a 2 a k, i UF: ako su a = a 1 a 2 a k i a = b 1 b 2 b l dve atomične faktorizacije, onda je k = l i postoji permutacija σ skupa {1, 2,..., k} tako da je a i b σi), 1 i k. Ekvivalentno, P je UFD akko je FD i važi UF: k, l N) a 1, a 2,..., a k, b 1, b 2,..., b l AtomP) ) a1 a 2 a k b 1 b 2 b l k = l, σ S k ) a 1 b σ1), a 2 b σ2),..., a k b σk) ) ). F ields ED P ID UF D F D ID CommRings F ields ED P ID ND F D ID CommRings F ED P ID ND F D ID CR UF D 1

2 0.2 Euklidski domeni [ED] Definicija. Neka je P integralni) domen. EF: Euklidska funkcija domena P je funkcija ϕ : P \ {0} N 0 = {0, 1, 2,... } takva da EF1:) a, b P ) b 0 c, d P ) a = bc + d d 0 ϕd) < ϕb) ) ) ). ED: P je euklidski domen [ED] akko postoji bar jedna) euklidska funkcija domena P. Stav ED je PID). Ako je P euklidski domen, onda je svaki njegov ideal glavni.. Neka je I proizvoljan ideal prstena. Ako je I = {0}, onda je I = 0) glavni. Ako je I {0}, neka je ϕ euklidska funkcija domena P. Tada neprazan skup I ϕ := {ϕi) i I \ {0}} N 0 ima minimum. Neka je b I \ {0} takav da je ϕb) = min I ϕ. Onda je b) I. Obrat? Neka je a I. Tada postoje c, d P tako da je a= bc + d i d 0 ϕd) < ϕb). Takod e, d = a bc I jer a I, bc b) I. Zato je d = 0 ili ϕd) ϕb). I ovo drugo povlači d = 0, zbog gornje implikacije, kontrapozicijom. Konačno a = bc b), pa je I b). Napomena. Ako je data euklidska funkcija ϕ : P \ {0} N 0, onda se može definisati ϕ : P N 0 tako da je ϕ a) := ϕa) + 1, za a 0, i ϕ 0) := 0, koja je takod e euklidska važi EF1 ), gde je EF1 : a, b P ) b 0 c, d P ) a = bc + d ϕ d) < ϕ b) ) ). Definicija. Domen P je euklidski [ED] akko postoji funkcija ϕ : P N 0 = {0, 1, 2,... } tako da EF1 : a, b P ) b 0 c, d P ) a = bc + d ϕd) < ϕb) ) ). Napomena. Ponekad za kodomen euklidske funkcije domena P funkcije za koju važi EF1 ili EF1 ) uzimamo dobro ured en skup, umesto N 0. Na primer, prsten polinoma F [X] nad poljem F je ED, stepen polinoma deg : F [x] N 0 { } je euklidska funkcija važi EF1 ). Napomena. ϕb) := min β P \{0} Ako je ϕ : P \ {0} N 0 euklidska funkcija, onda je i ϕ : P \ {0} N 0, data sa ϕβb), euklidska funkcija koja ima i osobinu EF2:) a, b P \{0}) ϕa) ϕab).. DDT) Funkcija ϕ je dobro definisana, jer P nema prave delitelje nule i jer je N 0 dobro ured en. Proveravamo da važi EF1. Neka su a, b P, b 0. Ako a bp, onda EF1 važi za d = 0. Neka sada a bp. Kako je b 0, postoji β 0 tako da je ϕb) = ϕβb). Primenom EF1 na a P, βb 0 i funkciju ϕ, dobijamo c, d P ) a = βbc + d ϕd) < ϕβb) ); jer je d 0 zbog a bp. Neka je c P takav da ϕa βbc) = min ϕa βbu) i d := a βbc. Tada je a = bβc + d. Dokazujemo da je ϕd) < ϕb). u P Osobina EF2 sledi iz definicije funkcije ϕ, jer je ϕb) := Zaista ϕd) ϕa βbc) = ϕd) ϕd) < ϕβb) = ϕb). min u b)\{0} ϕu), i iz ab) a). 2

3 0.3 Glavnoidealski domeni [PID] Definicija. Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). Stav ED je PID). Ako je P ED, onda je P PID. Definicija. Neka je P domen. Element d P je najveći zajednički delilac n.z.d.) elemenata a, b P akko d a, d b, i d P ) d a, d b d d). Tada, ipak, pišemo d = a, b). : d, d P su oba n.z.d. elemenata a, b P akko d i d su asocirani d d ) akko d) = d ). Lema NZD). Ako je P glavnoidealski, onda za svako a, b P postoji njihov najveći zajednički delilac d P i pri tom važi a) + b) = d).. Zbir ideala a) + b) je glavni ideal u P. Zato postoji d P tako da je a) + b) = d). Dokazujemo da je d = a, b). a) a) + b) = d) a) d) d a, b) a) + b) = d) b) d) d b, d a, d b a) d ), b) d ) a) + b) d ) d) d ) d d. Stav atom=prost). Neka je P PID, i a P. Tada: ako je a atom, onda je a prost.. Neka je a P atom. Tada je a prost akko b, c P ) a bc a b a c). Pretpostavimo: a je atom; b, c P, a bc, a b. Dokazujemo: a c. a je atom, a b a je atom, b a a, b) = 1 a) + b) = 1) = P, zbog Leme, s, t P ) as + bt = 1 s, t P ) asc + btc = c s, t P ) a asc + bct = c, jer a bc, a c. Primer. Z[i 5] := {a + bi 5 a, b Z} nije PID, jer je 2 atom, ali nije prost.. Ako je N : Z[i 5] N 0 : a + bi 5 a 2 + 5b 2, onda je N multiplikativna, N2) = 4 i N1 ± i 5) = 6. Zato je 2 atom, a iz 2 3 = 6 = 1 i 5) 1 + i 5) i 4 6 sledi da 2 nije prost. Stav PID je ND). Neka je P glavnoidealski. Ako je I 1 I 2 I 3 rastući niz ideala u P, onda postoji n N tako da je k > n) I n = I k.. Neka je I 1 I 2 I 3 rastući niz ideala, i neka je I := I s. Tada je I ideal Zašto?). s 1 P je glavnoidealski, pa postoji a P tako da je I = a). Tada a I = I s, pa a I n, za neko n 1. Ako je k > n, onda a I n I k I = a). Otuda I = a) I n I k I, pa je I n = I k, za k > n. 3 s 1

4 0.4 Neterini domeni [ND] Definicija. Domen P je Neterin [ND] akko svaki rastući niz ideala u P je stacionaran to jest, akko u P ne postoji strogo rastući beskonačan niz ideala). Preciznije, P je ND akko za svaki rastući niz ideala I 1 I 2 I 3 postoji n N tako da je k > n) I n = I k. Stav PID je ND). Ako je P PID, onda je P ND. Lema. Ako je P Neterin domen, onda za svako a P \ P 0 postoji bar jedan atom koji ga deli.. Trebalo bi da dokažemo: Ako je P Neterin domen, onda a P \ P 0 ) b P ) b a b je atom). Dokazujemo: Ako a P ) a P 0 Neka je Ψa) := a P 0 Ψa) a P 0, a nije atom, Ψa) b P ) b a b nije atom)), onda P nije ND. b P ) b a b nije atom)), i pretpostavimo da a P ) Ψa). a 1 P ) a 1 a, a 1 P 0, a 1 a), Ψa) a 1 P ) a 1 P 0, b P ) b a 1 b a), a 1 a, a 1 a), Ψa) a 1 P ) a 1 P 0, b P ) b a 1 b nije atom), a 1 a, a 1 a) a 1 P ) Ψa 1 ), a) a 1 )). Zato a, a 1, a 2,... P tako da Ψa), Ψa 1 ), a) a 1 ), Ψa 2 ), a 1 ) a 2 ),.... Sledi da a, a 1, a 2,... P tako da je a) a 1 ) a 2 ) strogo rastući niz ideala. Znači da P nije ND. 0.5 Faktorizacijski domeni [FD] Definicija. Domen P je faktorizacijski [FD] akko svaki nenula nejedinični element a P ima atomičnu faktorizaciju, faktoriše se na konačan) proizvod nekih atoma. Preciznije, P je FD akko a P \ P 0 ) k N) a 1, a 2,..., a k AtomP) ) a = a 1 a 2 a k, gde je P 0 = {0} P. Stav ND je FD). Ako je P ND, onda je P FD.. Pretpostavimo suprotno: P je Neterin, a nije faktorizaciski domen. Neka je Φa) := a P 0 a nema atomičnu faktorizaciju). P nije FD, pa a P ) Φa). P je ND, pa, prema prethodnoj Lemi, a P 0 a 1, b 1 P ) a = a 1 b 1 a 1 je atom). Φa) a P 0, Φa) a 1, b 1 P ) a = a 1 b 1, a 1 je atom, b 1 P 0 b 1 P ) b 1 a b 1, Φb 1 )) b 1 P ) Φb 1 ), a) b 1 )). ), Φa) Zato a, b 1, b 2,... P tako da Φa), Φb 1 ), a) b 1 ), Φb 2 ), b 1 ) b 2 ),.... Sledi da a, b 1, b 2,... P tako da je a) b 1 ) b 2 ) strogo rastući niz ideala. Ovo je u kontradikciji sa pretpostavkom da je P ND. 4

5 0.6 Domeni sa jedinstvenom faktorizacijom [UFD] Definicija. Domen P ima jedinstvenu faktorizaciju [je UFD] akko P je FD i svake dve atomične faktorizacije elementa a P su jednake do na redosled i asociranost faktora. Detaljnije, P je UFD akko a P \ P0 ) k N) a 1, a 2,..., a k AtomP) ) a = a 1 a 2 a k, i: ako su a = a 1 a 2 a k i a = b 1 b 2 b l dve atomične faktorizacije, onda je k = l i postoji permutacija σ skupa {1, 2,..., k} tako da je a i b σi), 1 i k. Ekvivalentno, P je UFD akko P je FD i važi UF: k, l N) a 1, a 2,..., a k, b 1, b 2,..., b l AtomP) ) a1 a 2 a k b 1 b 2 b l k = l, σ S k ) a 1 b σ1), a 2 b σ2),..., a k b σk) ) ). Stav o UFD). Neka je P FD. Tada: P je UFD akko svi atomi su prosti.. : Neka je P UFD, a P atom. Neka su b, c P i neka a bc. Ako b P0, onda a c; ako c P0, onda a b; ako je b = 0 ili c = 0, onda a b ili a c, jer a 0. Znači, ako b P0 ili c P0, onda a b ili a c. Ako b P0, c P0, onda d P ) ad = bc, d P0 ), ovo drugo zbog UF. P je FD, b, c, d P0, pa k, l, j N) b 1,..., b k, c 1,..., c l, d 1,..., d j AtomP) ) d = d 1 d j, b = b 1 b k, c = c 1 c l, ad 1 d j = b 1 b k c 1 c l ). Iz poslednje jednakosti sledi, na osnovu UF, a b s ili a c t, za neke s, t, 1 s k, 1 t l. Znači, ako b P0, c P0, onda a b ili a c. : Neka su svi atomi u P prosti. Indukcijom po k, dokazujemo UF: k, l N) a 1, a 2,..., a k, b 1, b 2,..., b l AtomP) ) a1 a 2 a k b 1 b 2 b l k = l, σ S k ) a 1 b σ1), a 2 b σ2),..., a k b σk) ) ). BI: k = 1. Uvodimo oznake: Φ 1 za a 1, b 1, b 2,..., b l AtomP), Ψ 1 za a 1 b 1 b 2 b l. Tada: Φ 1, Ψ 1 a 1 je prost, a 1 b 1 b 2 b l, Ψ 1, Φ 1 a 1 b 1... a 1 b l, Ψ 1, Φ 1 σ S l ) b σ1) a 1 b 1 b 2 b l, Φ 1 σ S l ) a 1 b σ1), b σ2) b σl) 1), Φ 1 l = 1, a 1 b 1. KI: Neka je k > 1, i pretpostavimo da IH:) tvrd enje važi za k 1. Uvodimo oznake: Φ k za a 1, a 2,..., a k, b 1, b 2,..., b l AtomP), Ψ k za a 1 a 2 a k b 1 b 2 b l. Tada: Φ k, Ψ k a 1 je prost, a 1 b 1 b 2 b l, Ψ k, Φ k a 1 b 1... a 1 b l, Ψ k, Φ k ρ S l ) a 1 b ρ1), Ψ k, Φ k ρ S l ) a 1 b ρ1), a 2 a k b ρ2) b ρl) ), Φ k k 1 = l 1, σ S k ) a 1 b σ1), a 2 b σ2),..., a k b σk) ), po IH, k = l, σ S k ) a 1 b σ1), a 2 b σ2),..., a k b σk) ). Stav PID je UFD). Ako je P PID, onda je P UFD.. PID je ND, ND je FD, u PID su svi atomi prosti. Sledi: PID je UFD. 5

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

1 Algebarske operacije i algebraske strukture

1 Algebarske operacije i algebraske strukture 1 Algebarske operacije i algebraske strukture Defnicija 1.1 Neka su I i A skupovi. I-familija elemenata skupa A, ili familija elemenata iz A indeksirana skupom I, je funkcija a : I A koju radije zapisujemo

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

1 Svojstvo kompaktnosti

1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti U ovoj lekciji će se koristiti neka svojstva realnih brojeva sa kojima se čitalac već upoznao tokom kursa iz uvoda u analizu. Na primer, važi Kantorov princip:

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f} Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f} nazivamo inverznom korespondencijom korespondencije f. A f B A f 1 B

Διαβάστε περισσότερα

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo FUNKCIJE - 2. deo Logika i teorija skupova 1 Logika FUNKCIJE - 2. deo Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f}

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Funkcije. Predstavljanje funkcija

Funkcije. Predstavljanje funkcija Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije.

Binarne relacije. Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije. Binarne relacije Definicija. Uopštena binarna relacija je uredjena trojka (A, B, ρ) gde je ρ A B; (A, B) je tip ove binarne relacije. Kaže se i da je ρ binarna relacija sa skupa A u skup B (kao u [MP]).

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE

ELEMENTARNE FUNKCIJE 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE

ELEMENTARNE FUNKCIJE 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

1. Dušan Adnad ević i Zoran Kadelburg, Matematička analiza I, Naučna knjiga, Beograd, 1990.

1. Dušan Adnad ević i Zoran Kadelburg, Matematička analiza I, Naučna knjiga, Beograd, 1990. PREDGOVOR Predavanja su namenjena studentima koji polažu ispit iz predmeta Matematička analiza. Materijal je u nastajanju, iz nedelje u nedelju se dodaju novi sadržaji, moguće su i izmene u prethodno unešenom

Διαβάστε περισσότερα

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora). UVOD U TEORIJU BROJEVA Drugo predavanje - 10.10.2013. Prosti brojevi Denicija 1.4. Prirodan broj p > 1 zove se prost ako nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a > 1 nije

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

10 Iskazni račun - deduktivni sistem za iskaznu logiku

10 Iskazni račun - deduktivni sistem za iskaznu logiku 10 Iskazni račun - deduktivni sistem za iskaznu logiku Definicija 20 Iskazni račun je deduktivni sistem H = X, F orm, Ax, R, gde je X = S {,, (, )}, gde S = {p 1, p 2,..., p n,... }, F orm je skup iskaznih

Διαβάστε περισσότερα

Relacije poretka ure denja

Relacije poretka ure denja Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

KOMUTATIVNI PRSTENOVI I NJIHOVI MODULI

KOMUTATIVNI PRSTENOVI I NJIHOVI MODULI SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Gut KOMUTATIVNI PRSTENOVI I NJIHOVI MODULI Diplomski rad Voditelj rada: prof. dr. sc. Dražen Adamović Zagreb, rujan, 2014.

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 23. Reč autora Ovo je verzija teksta koji je pod naslovom Linearna algebra prvobitno bio pripremljen za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Elementarna matematika - predavanja -

Elementarna matematika - predavanja - Elementarna matematika - predavanja - February 11, 2013 2 Sadržaj I Zasnivanje brojeva 5 I.1 Peanove aksiome............................. 5 I.2 Celi brojevi................................ 13 I.3 Racionalni

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Prsteni neprekidnih funkcija

Prsteni neprekidnih funkcija 0 Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Prsteni neprekidnih funkcija Master rad Student: Damjan Kocić Mentor: Prof. dr Vladimir Pavlović Niš, Oktobar 2013. Sadržaj

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 03. Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 2

ELEMENTARNA MATEMATIKA 2 ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

3.1. Granične vrednosti funkcija

3.1. Granične vrednosti funkcija 98 3. FUNKCIJE: GRANIČNE VREDNOSTI I NEPREKIDNOST 3.1. Granične vrednosti funkcija 3.1.1. Definicija i osnovne osobine Da bismo motivisali definiciju granične vrednosti funkcija, dajemo dva primera. Posmatrajmo

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Aksioma zamene. Aksioma dobre zasnovanosti. Aksioma dobre zasnovanosti Svaki neprazan skup A sadrži skup a takav da je A a = 0.

Aksioma zamene. Aksioma dobre zasnovanosti. Aksioma dobre zasnovanosti Svaki neprazan skup A sadrži skup a takav da je A a = 0. Aksioma zamene Aksioma zamene opisuje sledeće: ako je P (x, y) neko svojstvo parova skupova (x, y) takvo da za svaki skup x postoji tačno jedan skup y takav da par (x, y) ima svojstvo P, tada za svaki

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα