III VEŽBA: FURIJEOVI REDOVI

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "III VEŽBA: FURIJEOVI REDOVI"

Transcript

1 III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/. Koeficijenti X[k] nazivaju se koeficijenti urijeovog reda ili spektralni koeficijenti signala x(t). Celobrojna promenljiva k predstavlja redni broj harmonika osnovne učestanosti f. Na ovaj način se signal razlaže na harmonijske komponente, čime se može vršiti dodatna analiza signala. urijeov koeficijent za k =, X[], predstavlja srednju vrednost signala x(t) na intervalu t t t + : 1 X [ ] = t + t x( t) dt Pomoću urijeovih koeficijenata X[k] može se predstaviti funkcija x(t) na intervalu odgovarajućim redom t t t + kf t x t = + X k e j 2π ( ) [ ], t t t + k = kf t koji se naziva urijeov razvoj funkcije x(t) u red, ili kraće, urijeov red. Signali e j 2π X[ k] se nazivaju harmonijske komponente signala, ili kraće harmonici. Izvan intervala t t t +, prethodni red ne opisuje funkciju x(t) u opštem slučaju. Van ovog intervala vrednosti koje se dobijaju ovim redom će biti jednake vrednostima funkcije x(t) samo ukoliko je ta funkcija periodična, pri čemu širina intervala predstavlja celobrojni umnožak osnovnog perioda funkcije x(t). Stoga su urijeovi redovi najvecu primenu upravo i našli u analizi vremenski kontinualnih periodičnih funkcija. Ukoliko postoji beskonačno mnogo ne nultih urijeovih koeficijenata, prilikom proračuna vrednosti funkcije x(t) u okviru intervala od interesa, u realnom slučaju uzima se samo konačan broj članova u razvoju u red. Samim tim se umesto urijeovog razvoja kao dovoljno dobra aproksimacija funkcije ponekad uzima tzv. N-ta parcijalna suma urijeovog reda ili prekinuti urijeov razvoj: x N N ( t) = X [ k ] e k = N t t t j 2πkf t, + 18

2 3.2. Zadaci Zadatak 1 - Razvoj signala u urijeov red na zadatom intervalu Dat je signal x( t) = 1cos(1 π t). a) Primenom simboličkog paketa naći kompleksne koeficijente razvoja date funkcije na intervalu t = ( 7.5ms,7.5ms). b) U dva prozora jedne slike, pomoću komande stem prikazati moduo i fazu koeficijenata X[k] za 1 k 1. c) U dva prozora jedne slike, pomoću komande plot prikazati moduo i fazu koeficijenata X[k] za 5 k 5. d) U četiri prozora jedne slike, nacrtati dve periode signala x N (t) koji odgovara N-toj parcijalnoj sumi urijeovog reda za N = 1, N = 3, N = 3 i N. e) U tri prozora jedne slike, nacrtati dve periode signala e = lim x ( t) x ( t), gde je x ( t ) K-ta parcijalna suma urijeovog reda signala (t), Primer za x( t) = sin(1πt ). N N M M x za N = 1, N = 3, N = 3. % signal x(t)=sin(1pi *t) syms t k % simbolicke konstante = 15/1; w = 2*pi/; Ck=(1/)*int(sin(1*pi*t)*exp(-j*w*k*t),t,-/2, /2) % rezultat simbolicke integracije se iskopira u program % odredjivanje koeficijenata c[k] za -3<=k<=3 k = -1:1:1; ck = 2^(1/2)*(-3+4*i.*k + 3*exp(2*i*pi.*k) % Ima smisla crtati samo dvadesetak koeficijenata pomocu %komande stem ro = abs(ck); fi = angle(ck); subplot(2,1,1) stem(k,ro); title('moduo koeficijenata') subplot(2,1,2) stem(k,fi); title('faza koeficijenata') close all; K % brisanje definicija svih varijabli: k,ck k = -5:1:5; 19

3 ck = 2^(1/2)*(-3+4*i.*k+3*exp(2*i*pi.*k) % Ima smisla crtati samo dvadesetak koeficijenata pomocu % komande stem ro = abs(ck); fi = angle(ck); subplot(2,1,1) plot(k,ro); axis tight; grid on title('moduo koeficijenata') subplot(2,1,2) plot(k,fi); axis tight; title('faza koeficijenata'), grid on % za N->beskonacno dobija se periodicno produzenje osnovne % periode rezolucija crtanja=1 tacaka=>dt=2/1 dt = 2*/1; t = -:dt:; x = sin(1*pi.*t).*((t>-/2)&(t</2))+sin(1*pi.*(t+)).*(t<- /2)+sin(1*pi.*(t-)).*(t>/2); k = -1:1:1; ck1 = 2^(1/2)*(-3+4*i.*k+3*exp(2*i*pi.*k) k1 = -3:1:3; ck3 = 2^(1/2)*(-3+4*i.*k1+3*exp(2*i*pi.*k1)+ 4*i*exp(2*i*pi.*k1).*k1)./exp(i*pi.*k1)./pi./(16.*k1.^2-9); k2 = -3:1:3; ck3 = 2^(1/2)*(-3+4*i.*k2+3*exp(2*i*pi.*k2) +4*i*exp(2*i*pi.*k2).*k2)./exp(i*pi.*k2)./pi./(16.*k2.^2-9); Nmax = length(t); x1 = zeros(1,nmax); % N-ta parcijalna suma N=1 x3 = zeros(1,nmax); % N-ta parcijalna suma N=3 x3 = zeros(1,nmax); % N-ta parcijalna suma N=3 Index_od_t=1; for t = -:dt: for n = 1:1:21 x1(index_od_t)=x1(index_od_t)+ck1(n)*exp(i*k(n)*w*t); for n=1:1:61 x3(index_od_t)=x3(index_od_t)+ck3(n)*exp(i*k1(n)*w*t); for n=1:1:61 x3(index_od_t)=x3(index_od_t)+ck3(n)*exp(i*k2(n)*w*t); Index_od_t = Index_od_t+1; t = -:dt:; subplot(2,2,1) 2

4 plot(t,x); axis tight; grid subplot(2,2,2) plot(t,x1); axis tight; grid subplot(2,2,3) plot(t,x3); axis tight; grid subplot(2,2,4) plot(t,x3); axis tight; grid e1 = abs(x-x1); e3 = abs(x-x3); e3 = abs(x-x3); % greske subplot(3,1,1) plot(t,e1); axis tight; grid on subplot(3,1,2) plot(t,e3); axis tight; grid on subplot(3,1,3) plot(t,e3); axis tight; grid on Rezultat simboličke integracije: Ck = 2^(1/2)*(3+4*i*k+3*exp(i*pi*k)^2 +4*i*exp(i*pi*k)^2*k)/exp(i*pi*k)/pi/(16*k^2-9) Dobijeni grafici: 21

5 Slika 3.1. Grafički prikazi dobijeni priloženim Matlab programom 22

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu Elektrotehnički fakultet Univerziteta u Sarajevu P R I P R E M N I Z A D A C I za DRUGI PARCIJALNI ISPIT IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Š.G. 005 / 006. UPUTSTVO: 1. Za svaki od prva četiri zadatka

Διαβάστε περισσότερα

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike

PREDMET: Upravljanje sistemima. Frekvencijske karakteristike Osnovne akademske studije PREDMET: Upravljanje sistemima TEMA: Frekvencijske karakteristike Predmetni nastavnik: Prof. dr Milorad Stanojević Asistent: mr Marko Đogatović Kompleksna funkcija prenosa Ukoliko

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

uniformno konvergira na [ 2, 2]?

uniformno konvergira na [ 2, 2]? Građevinski fakultet Univerziteta u Beogradu 27.6.2015. ZAVRXNI ISPIT IZ MATEMATIKE 3 Prezime i ime: Broj indeksa: 1. Definisati diferencijabilnost funkcije u = u(x, y, z) u taqki (0, 1, 2). 2. Definisati

Διαβάστε περισσότερα

Glava 1. Z transformacija. 1.1 Pojam z transformacije

Glava 1. Z transformacija. 1.1 Pojam z transformacije Glava 1 Z transformacija 1.1 Pojam z transformacije U elektrotehnici se vrlo često susrećemo sa signalima koji su diskretnog tipa. To znači da je radimo sa signalima koji su zadati svoji vrednostima samo

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Arhitektura računara

Arhitektura računara Arhitektura računara vežbe - čas 1 i 2: Minimizacija logičkih funkcija Mladen Nikolić URL: http://www.matf.bg.ac.yu/~nikolic e-mail: nikolic@matf.bg.ac.yu 1 Bulova algebra Klod Šenon je 1938. uočio da

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 3: Dinamički modeli sistema u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 3: Dinamički modeli sistema u MATLABu OSNOVI AUTOMATSKO UPAVLJANJA POCESIMA Vežba br. : Dinamički modeli itema u MATLABu I Prenone funkcije Dinamički itemi e mogu prikazati u tri domena: vremenkom, Laplace-ovom i frekentnom. U vremenkom domenu

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

y x = k = const, gde je x bilo koja promena veličine x, a y odgovarajuća promena y. Ako je = k za svako x i svako h 0.

y x = k = const, gde je x bilo koja promena veličine x, a y odgovarajuća promena y. Ako je = k za svako x i svako h 0. 73 7 Diferenciranje 7. Marginalna funkcija i izvod Ako su dve veličine, y i x, povezane linearnom funkcijom, y = f(x) = kx + n, onda se y menja ravnomerno u odnosu na x, tj. važi formula (43) y x = k =

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

Neodred eni integrali

Neodred eni integrali Neodred eni integrali Definicija. Za funkciju F : I R, gde je I interval, kažemo da je primitivna funkcija funkcije f : I R ako je za svako I. F () f() Teorema 1. Ako je F : I R primitivna funkcija za

Διαβάστε περισσότερα

Karakteristične kontinualne funkcije Laplasova transformacija

Karakteristične kontinualne funkcije Laplasova transformacija Karakteristične kontinualne funkcije Laplasova transformacija Signali Fizikalne karakteristike signala ćemo opisati matematičkim modelima koji će s dovoljno tačnosti prikazati osnovna svojstva realnih

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

Frekventne metode analize sistema automatskog upravljanja

Frekventne metode analize sistema automatskog upravljanja Frekventne metode analize sistema automatskog upravljanja Pored odskočne pobude pri ispitivanju linearnih sistema automatskog upravljanja se često primenjuje i prostoperiodična, odnosno sinusna pobuda.

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

NEPARAMETRIJSKE TEHNIKE

NEPARAMETRIJSKE TEHNIKE NEPARAMETRIJSKE TEHNIKE Neparametrijske tehnike se koriste za obradu podataka dobijenih na nominalnim i ordinalnim skalama. za testiranje značajnosti distribucije frekvencija po kategorijama jedne nominalne

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 2

ELEMENTARNA MATEMATIKA 2 ELEMENTARNA MATEMATIKA 1. Osnovni pojmovi o funkcijama Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

REALNA, KOMPLEKSNA ANALIZA I HILBERTOVI PROSTORI

REALNA, KOMPLEKSNA ANALIZA I HILBERTOVI PROSTORI RALNA, KOMPLKSNA ANALIZA I HILBRTOVI PROSTORI M. MATLJVIĆ Abstract. R R M M Uvod Radna verzija, 26 septembar 2007, 29 maj 2008. Kurs iz Teorije Realnih i Kompleksnih funkcija (TR-KF, popularno TRiK) sastoji

Διαβάστε περισσότερα

Priprema za laboratorijske vežbe iz predmeta Osnovi algoritama i strukutura DSP I Vežba 9 Adaptivni digitalni sistemi

Priprema za laboratorijske vežbe iz predmeta Osnovi algoritama i strukutura DSP I Vežba 9 Adaptivni digitalni sistemi VEŽBA 9 Adaptivni digitalni sistemi Potrebno predznanje Poznavanje programskog jezika C Urađena Vežba 1 Uvod u Digitalnu Obradu Signala Urađena Vežba 7 FIR filteri Odslušana predavanja iz predmeta OAiS

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

f[n] = f[n]z n = F (z). (9.2) n=0

f[n] = f[n]z n = F (z). (9.2) n=0 9. Z transformacija 9.. Z transformacija Z transformacija nia brojeva {f[n]} a koje vrijedi je Z [ f[n] ] = f[n] = 0, n < 0 9.) f[n] n = F ). 9.) Ovom transformacijom niu brojeva {f[n]} pridružuje se funkcija

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA / VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ SADRŽAJ. SCHRÖDINGER-OVA JEDNAČINA.. NESTACIONARNA SCHRÖDINGER-OVA JEDNAČINA.. STACIONARNA SCHRÖDINGER-OVA

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα